Rendezvous Mission to Apophis for Scientific Investigation and Planetary Defense: Pre-phase A Study

April 13 2029 31,600 km

H.-K. Moon¹, Y.-J. Choi¹, M.-J. Kim¹, M. Jeong¹, J. Choi¹, JeongAhn¹, H. Yang¹, H-J Lee¹, M. Ishiguro², S.-M. Baek¹, C. K. Sim¹, D. Lee¹, S.-Y. Park³, P. Kim³ and RMA collaborations

¹ Korea Astronomy and Space Science Institute (KASI) ² Seoul National University ³ Yonsei University

Rendezvous Mission to Apophis: Science topics

Spin change

NASA, JHU, USGS, Asphaug+02, KASI

Rendezvous Mission to Apophis: Candidate science payloads

payload	mass (kg)	max power (W)	volume (mm)	notes
Wide-angle camera	3	10	200 x 150 x150	FOV 60°x60°
Polarimetric camera	4	15	300 x 150 x 150	< 0.25 m/pixel @ 10 km, P_err: < 1 %p
Laser altimeter	3.5	17	230 x 200 x 200	Si APD detector, ND:YAG laser
Imaging spectrograph	< 1	10	128 x 96 x 100	HERA/ASPECT, 850-1650 nm
•••	• • •	•••	•••	•
Total budget	40	38 W, max	-	c.f.) operation scenario

Rendezvous Mission to Apophis: Spacecraft

Rendezvous Mission to Apophis: Trajectory design

Rendezvous Mission to Apophis: Mission scenario

Rendezvous Mission to Apophis: Milestones and collaboration opportunities

- We found the **launch windows** in **mid-2027-mid-2028** is the most realistic and energyefficient opportunities to arrive the target **before Earth encounter**.
- One of our current options for the launcher is to use the KSLV (Korea Space Launch Vehicle) series rocket in development.
- Our tentative plan is 1) to design (2022-24), 2) to build, integrate, and test (2025-27),
 3) to launch (2027-2028), and to perform 4) science operations (2028-2030) with universities, research institutes, and companies in Korea.
- However, it is opened to overseas institutes for joint scientific studies and operations.