# The Comet Interceptor mission – selected for ESA F-class call

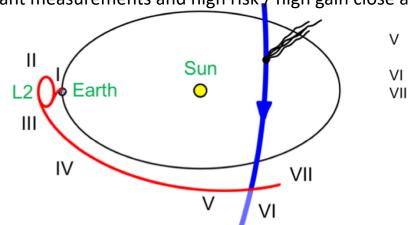
Colin Snodgrass, Geraint Jones, + comet interceptor team

#### **Comet Interceptor**

- F-class mission to a DNC
- Fly-by, multi-point measurements
  - Mothership and released probes architecture
- Proposal led by Geraint Jones (MSSL)



#### How?


- The only way to encounter a dynamically new comet (DNC) is to discover it inbound with enough warning to direct a spacecraft to it
- The likelihood of this happening will soon be greatly increased by LSST
  - LSST probably won't increase the number of DNCs found every year, but will increase the distance at which they're discovered inbound
  - F-class mission will involve delivery to L2 (with ARIEL): spacecraft can wait in dynamically-stable location until the target is found

#### F-class mission to a DNC

- Mission 'parked' at L2 after launch, waits for new target discovery (2-3 years)
- Short cruise and fast flyby near 1 AU
- F-class call encouraged multi-point measurements useful at a comet:
  - To separate time and space variation in coma
  - To enable simultaneous coma + nucleus + magnetic fields studies at different distances
  - Separating safe / distant measurements and high risk / high gain close approaches

#### **Mission Phases**

I Launch & delivery to L2 II Station-keeping at L2 III Departure from L2 IV Cruise and instrument commissioning



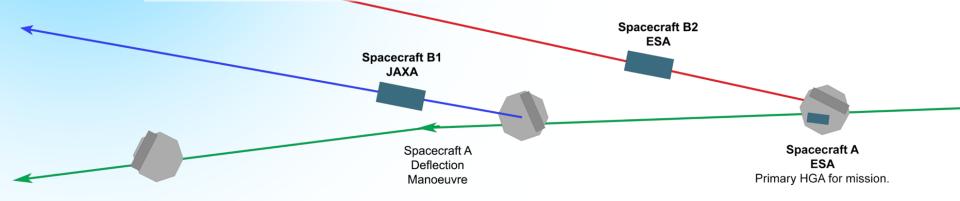
Separation of spacecraft elements Target Encounter Data playback and solar wind studies, if possible

Not to scale

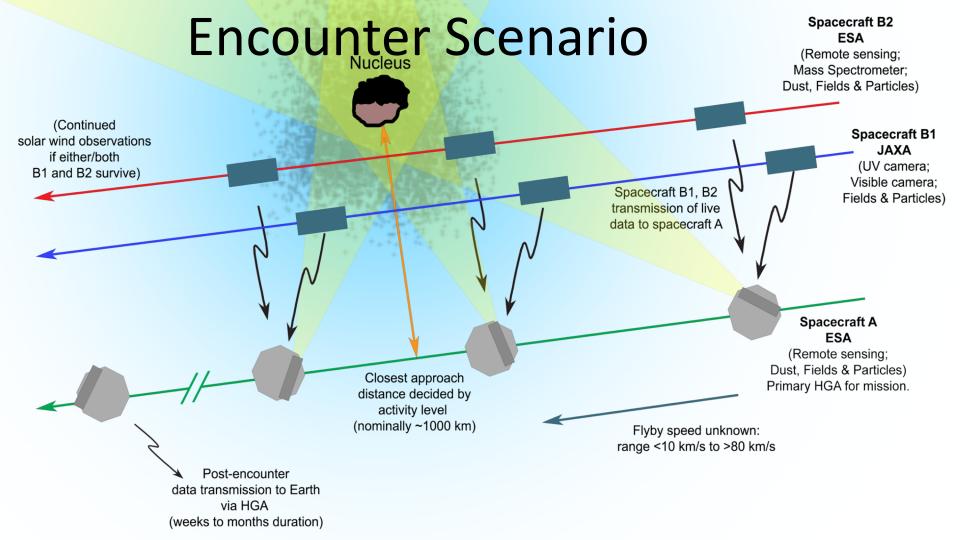
4

#### Nucleus

#### Multiple spacecraft architecture




- A: main spacecraft (ESA)
  - Passes sunward of comet at ~1000 km ('safe' distance)
  - Data relay for other spacecraft
  - Propulsion + communication
  - Minimum payload to ensure
    results even if other spacecraft
    fail


- B1: inner coma (JAXA)
  - Targeted to pass through inner coma
  - Will probably survive encounter
  - In-situ sampling, coma imaging 3 axis stabilised, ~24U sized

#### B2: nucleus + coma (ESA)

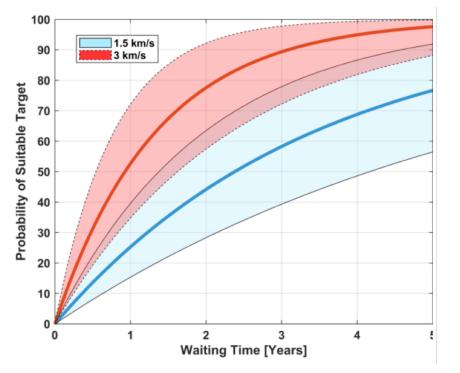
- Targeted near nucleus (but unlikely to actually hit it)
- May survive, but designed to be expendable
- In-situ sampling, nucleus + coma imaging
- Spin stabilised, no AOCS



Separation ~days before flyby (depending on desired distances, accuracies, comet activity level)



#### Proposed payload


| Spacecraft | Instrument | Description                                    |
|------------|------------|------------------------------------------------|
| A<br>ESA   | CoCa       | Visible/NIR imager                             |
|            | MIRMIS     | NIR/Thermal IR spectral<br>imager              |
| B2<br>ESA  | DFP        | Dust, Fields & Plasma (similar<br>on A and B2) |
|            | MANIaC     | Mass spectrometer                              |
|            | EnVisS     | All-sky multispectral visible<br>imager        |
|            | OPIC       | Visible/NIR imager                             |
| B1         | Н          | Lyman-alpha Hydrogen imager                    |
| JAXA       | PS         | Plasma Suite                                   |
|            | WAC        | Wide Angle Camera                              |

- F-class call constraints required high TRL instrumentation: a minimum TRL of 5/6 attainable by the end of 2019
- Proposed payload has strong heritage from past missions and instruments already developed/built for future missions
- MIRMIS is a US led and (part) NASA funded contribution
- Payload being refined at the moment as part of ESA phase 0 study – will have to be reduced

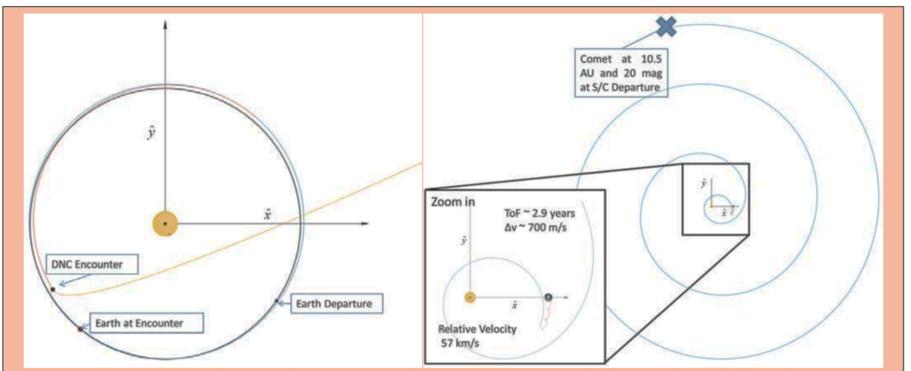
#### **Target selection**

- Only a flyby is possible
- Encounter has to take place close to the ecliptic each comet crosses the ecliptic at two locations
- Encounter location within a restricted heliocentric distance range, for thermal and power reasons (~ 0.8-1.2 AU)
- Relative speed at encounter can be very high if comet is retrograde (>60 km/s) – increases risk of dust impact damage
- Need to leave L2 within 2-3 years post-launch, < 5 year total mission
- Comet is preferably observable from Earth at the same time
- Preferably encounter is pre-perihelion (more pristine, less NGA)

#### **Target selection**



- Used previous hyperbolic comet orbits and calculations of population to look at how many reachable comets there will be
- With quite low delta-v requirements there will be targets within a few years
- With a little more delta-v it gets easier / more options
  - Trade of potential wait time vs fuel mass


# Example – C/2001 Q4 (NEAT)

- Based on previous bright DNC
- Real comet found ~3 years out
- LSST would have found it ~8 years out
- Target known before launch
- ~1.5 year wait
- ~3 year cruise

| Table 7.2.1. Dates of key events inexample mission to C/2001 Q4 (NEAT). |             |  |  |
|-------------------------------------------------------------------------|-------------|--|--|
| Event                                                                   | Date        |  |  |
| LSST discovery                                                          | ~July 1996  |  |  |
| Launch                                                                  | 10-Dec-1999 |  |  |
| Departure from L2                                                       | 29-Jul-2001 |  |  |
| Real discovery                                                          | 24-Aug-2001 |  |  |
| OP Nav images begin                                                     | Jan 2004    |  |  |
| Flyby                                                                   | 14-May-2004 |  |  |
| End of mission                                                          | Nov 2004    |  |  |



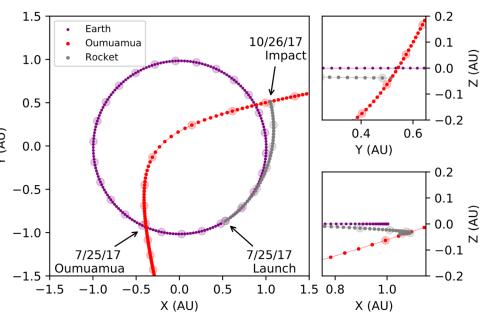
#### Example – C/2001 Q4 (NEAT)



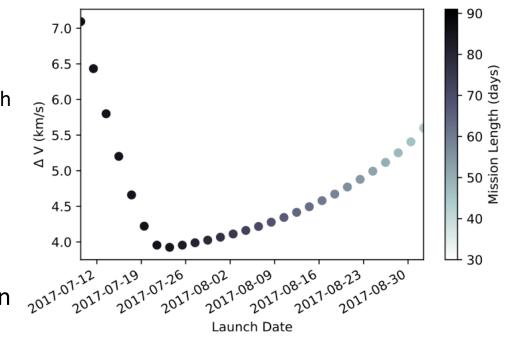
*Fig. 7.2.2. Trajectory for the example mission to C/2001 Q4, in an inertial reference frame (left) and a Suncentred Earth-rotating reference frame (right).* 

### Summary

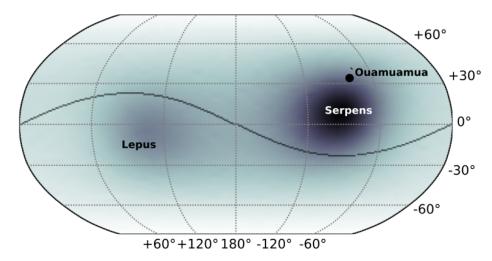
- Comet Interceptor: Multi-spacecraft encounter of a DNC
  - A 'pristine' object. Comparison with 67P, MU69
- Fast flyby near 1 AU heliocentric distance
- Proposed payload:
  - Cameras with wavelength coverage from FUV through thermal IR
  - In situ measurement (dust/gas/plasma)
- Launch in 2028, comet encounter sometime in early 2030s
- <u>http://www.cometinterceptor.space/</u>




#### **INTERSTELLAR TARGETS?**


## Interstellar Targets?

- Can we intercept an interstellar target instead of an Oort cloud DNC?
  - Still needs to come close enough and cross ecliptic where we can reach it
  - Likely less warning time, but worth a rapid response...
- Different science if apparently inactive like 'Oumuamua (no dust), but would be hard to turn down such an opportunity
  - Remote sensing payload still useful. Late deployment of sub-s/c?
- If active, no real difference in the flyby (except that it could be even faster)
  - Potentially problematic if flyby speeds restricted for engineering reasons


- Study of possibility of intercepting 'Oumuamualike objects (Seligman & Laughlin 2018 - 1803.07022) 3
- Proposed mission similar to Deep Impact with 'launch on detection'
- Assumes Falcon Heavy and typical delta-V ~ 12km/s



- Best delta-v for 'Oumuamua was ~4 km/s
- MC simulation:
  - (i) are visible using LSST (given both magnitude and angle constraints),
  - (ii) have a perihelion distance that is closer than 1 AU, and
  - (iii) are visible prior to the proposed impact dates.
  - This population is  $\sim 1/8$  the total number that are visible by LSST
- LSST finds one accessible target in ~10 years




- Best delta-v for 'Oumuamua was ~4 km/s
- MC simulation:
  - (i) are visible using LSST (given both magnitude and angle constraints),
  - (ii) have a perihelion distance that is closer than 1 AU, and
  - (iii) are visible prior to the proposed impact dates.
  - This population is  $\sim 1/8$  the total number that are visible by LSST
- LSST finds one accessible target in ~10 years



#### Model has most objects coming from apex

- Best delta-v for 'Oumuamua was ~4 km/s
- MC simulation:
  - (i) are visible using LSST (given both magnitude and angle constraints),
  - (ii) have a perihelion distance that is closer than 1 AU, and
  - (iii) are visible prior to the proposed impact dates.
  - This population is  $\sim 1/8$  the total number that are visible by LSST
- LSST finds one accessible target in ~10 years



### ISO with Comet Interceptor

- Already waiting in space an advantage in terms of reaction time
- Delta-v limitations may restrict us to only the most favourable ones
  - Probably 1-2 km/s available
- Will still need a very fast response
  - Not planned for DNCs
  - Would expect to have months to characterise comet, improve orbit, calculate optimum trajectories, plan and rehearse manoeuvres
  - Could we get ESA to scramble in case we find something?
- Not in baseline mission plan
- Not driving any design constraints
- Was mentioned as a possibility in science case, as very exciting (if unlikely)

### What could we do?

- Future similar proposal to Comet Interceptor (i.e. waiting in 'parking' orbit)
- Stripped down payload, single spacecraft
  - Remote sensing only?
- Most of mass for fuel to maximise available delta-v
- Might be suitable for a future ESA F-call, but probably a larger class (M) to have a dedicated launch and more mass available for fuel
- NASA options? SIMPLEX? Could it be done with cubesats?
- Useful to do more detailed simulations on expected rates