Status on action 5.11 – NEOtoolkit, TOOLBOX FOR A CHARACTERISATION PAYLOAD

pierre.bousquet@cnes.fr, massimiliano.vasile@strath.ac.uk

UN-City, Vienna, February 6th 2020

To reach a consensus among SMPAG members regarding the objectives of a space mission designed for a NEO characterization, and then the instruments that can be made available for achieving it.

This consensual definition of a 'straw man payload' would be available on a reasonably short notice for a characterization mission targeted to NEOs that present a potential threat.

Lead : CNES

Support from Belgium, DLR, UKSA, ASI, ESA

Planned sequence :

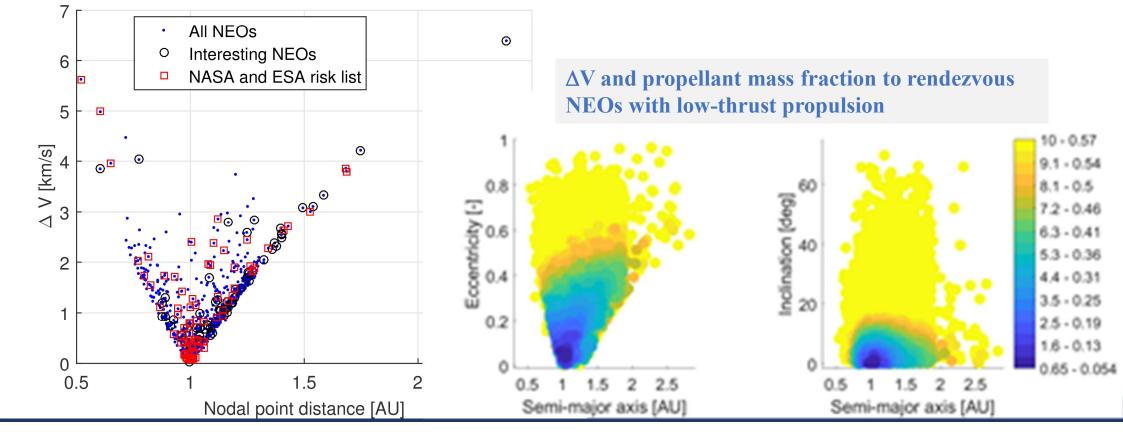
Summarize the outcomes of a study dedicated to Apophis (done)

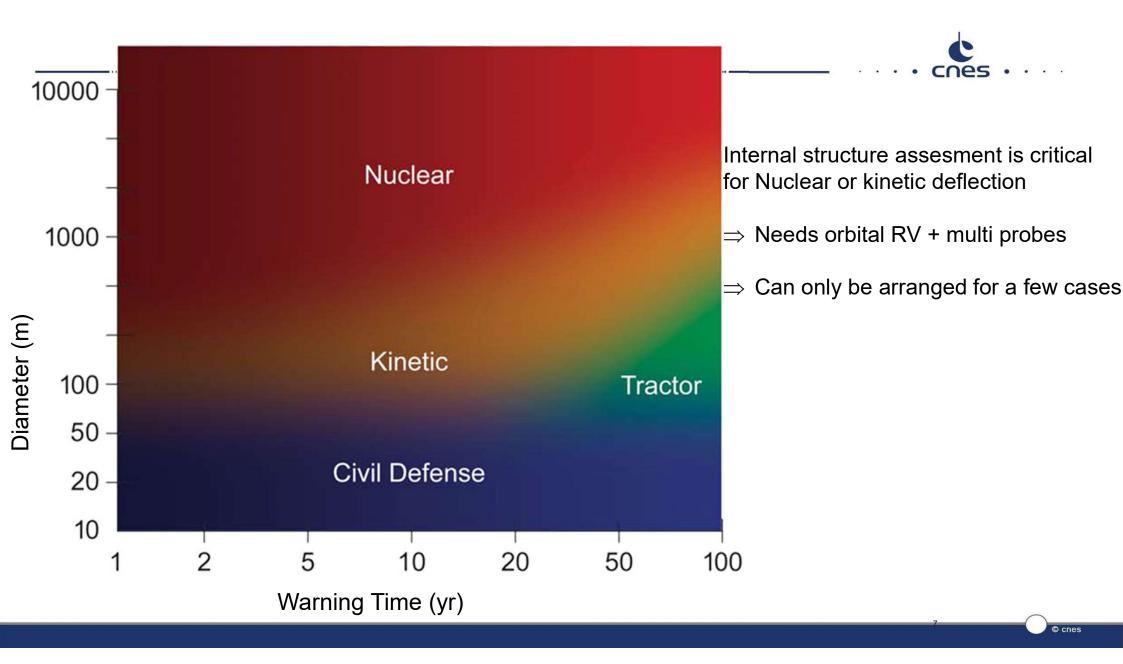
- Identify some short notice mission scenarios and specify the objectives of the associated characterization mission
- Specify the instruments and mission requirements for achieving these objectives

Review available existing instruments and, in case of gaps, assess the need for the development of new instruments

Provide with cost estimates of such instruments, if available

Physical parameters needed for various mitigation methods									
	[impactor deflection	Civil Defence	ted, 2, 5.3 &					
Mitigation method→ Parameter ↓	Gravitational tractor	Solar sail, harpoon techniques based on tracting and requiring anchoring the asteroid	Methods based on thermal properties modification	Impactor, Explosion to deflect	Atmospheric entry	amended and complemented, e completion of actions 5.2, 5			
Accurate orbit determination	X	X	X	X	X	nended and completion			
Mass	Х	Х	Х	Х	Х	amen e con			
Shape	Х	X	X	Х	X				
Spin	Х	X	Х	Х	X	6no. ssno			
Sub surface		X	X	Х	X	e dise ar thi			
Thermal properties			x	X	x	Table to be discussed, in particular through th			
Chemical properties				X	X	Table in pa			
Internal structure		Wou	ld need a RV	X	Х	© cnes			




- 1 Minimum characterization : **fly-by** of NEO target.
- 2 Enhanced remote sensing : **RV** / with NEO target.
- 3 Same as 2 + companion cubesat
 => potential access to inner structure.
- 4 Same as 2 + one or several landers
 => inner structure characterization.

Flybies are much more accessible than RVs Impact or blast mitigators tend to apply to high eccentricity and inclination cases

 ΔV cost to flyby NEOs at one of their nodal points.

<u>Methods ", Thiry, N., Vasile, M., Acta Astronautica, Volume 140, November</u> 2017, Pages 293-307, https://doi.org/10.1016/j.actaastro.2017.08.021.

© cnes

Only a limited subset of objectives can be met :

- Orbital parameters (enhanced with simultaneous fly-by by 2+ probes),
- Size,
- Shape & large surface features (limited extrapolation of inner structure),
- Mass (enhanced with simultaneous fly-by by 2+ probes),
- Large surface features,
- Possibly rough estimation of thermal & chemical properties
- => Minimal instrument package can be compatible with a small probe, possibly a multi U cubesat.

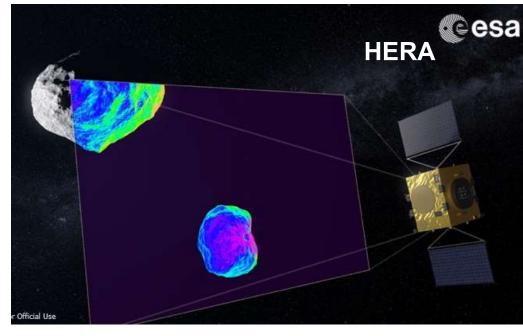
The possibility of sending several – small – fly-by probes is very attractive:

- For obvious reliability reasons
- To improve shape characterization through several angles of view (in particular for slow spinning asteroids)
- To improve orbital parameters and mass evaluation (see NEOCORE presentation)

Minimum instrumentation compatible with 12 U smallsat:

- A Narrow Angle Camera to detect the target days ahead of flyby, and provide information on size, shape, and local features.
- Two-way ranging for mass estimation using a LIDAR and / or ISL Radioscience in S or X band
- Possible addition of Thermal radiometer / Polarimetric camera / IR spectrometer for surface thermal and chemical properties. However, remote sensing is affected by several limitations (one face visible, restricted sun illumination, high relative velocity, limited exposure time, target angular motion).

Instrumentation RV orbiters



A single spacecraft is OK. Same package as defined for a flyby mission

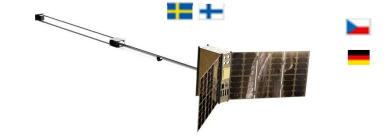
(Lidar, Narrow Angle Camera and RSE). Enhanced estimation of size, shape, mass & local features through a complete scan repeated several times.

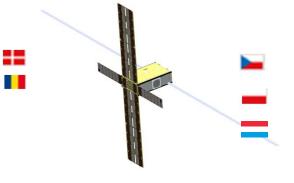
In addition:

 Polarimetric camera & IR Spectrometer to map the mineralogical composition and the surface diversity,

- Thermal IR Spectrometer to complement the surface mineralogy, coupled with a thermal radiometer for surface thermal properties,
- One or several landers for sub-surface & internal structure, with seismometers and radar tomography such as on Rosetta / Philae.

Hera Payload


Asteroid Framing Cameras (Visible Imaging in 8 filters)


PALT (µLidar)

RADIOSCIENCE

APEX Cubesat

- Vis and near-IR imaging spectrometer
- Secondary Ion Mass Analyzer
- Magnetometer

Posters : **Gordo**: Helena – Hera Lidar Engineering Model Altimeter Design **Herique** Radar Package

JUVENTAS Cubesat

- Radar
- Accelerometers
- Gravimeter

TIRA (Thermal

Instrument)

Infrared

talks: **Graziano:** on Autonomous GNC and data fusion GNC, **Kohout :** APEX CubeSat

European Space Agency

<u>es</u>2

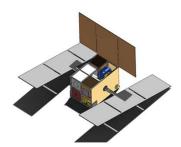
Reconnaissance missions to a threatening NEO will often be limited to a flyby, which can improve the **orbital determination** and reduce the uncertainty on **mass**, **size and shape** with **NAC**, **Lidar and Radioscience**. Having 2 (or more) spacecraft performing a simultaneous flyby greatly enhances the mass estimation.

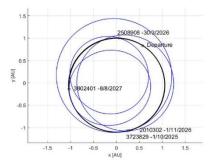
Orbiters can tackle **mineralogy**, **surface properties and inner structure**, but will seldom be feasible prior to a mitigation mission using impact or blast deflection.

The NEO and PEO catalogue is growing fast. With small probes, systematic characterization of NEOs - regardless of their expected danger - becomes affordable. => See NEOCORE presentation.

In case of a short warning threat, many references would then be available to support the definition of a mitigation mission.

 \Rightarrow Next phase of actions 5.11: survey of existing instruments (+ gaps)


Instrument type	Radio Science (DTE or ISL)	Accelerometer	Lidar altimeter	WAC & NAC Camera	Polarimetric camera	Thermal IR radiometer	Thermal IR imager	Vis& near IR spectro- imager	Monostatic HF radar	Seismometer
Organisation	,						5	5		
Instrument										
name										
Instrument principle										
Mission (flown or planned)										
TRL										
Performances										
Mass										
Volume										
Electrical power										


Mission scenario	Radio Science	Accelerometer	WAC & NAC Camera	Lidar	Thermal IR imager	Monostatic HF radar	Bi-static LF radar	Seismometer (+ excitation ?)	Vis& near IR spectro- imager
Fly by			х	Х	Х				Х
RV orbiter	х	х	х	Х	Х	Х			Х
RV orbiter + cubesat	X ++	Х	х	Х	Х	Х	Х		Х
RV orbiter + lander(s)	х	х	х	х	х	х	Х	Х	х
	Orbit improvement	Enhanced orbit improvement							
	Mass/Density	Mass/Size/ Density	Mass/Size/Density	CoG			CoG	CoG	
			Shape	Shape					
			Dynamical state						
			Surface & photometric properties	Topography & morphology	Surface roughness	Shallow sub- surface structure	Deep internal strcture	Deep internal structure	
			Chemical & mineral composition (?)		Thermal properties				Mineralogy

NEOCORE - NANOSPACECRAFT EXPLORATION OF ASTEROIDS BY COLLISION AND FLYBY RECONNAISSANCE

- Gravimetric measurement via intersatellite ranging
- Ephemerides improvement
- 3D shape and size
- Hyperspectral imaging

Spacecraft 1

Spacecraft 2

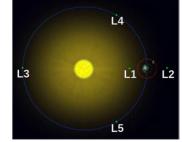
- Commercial prospection of asteroids
- Multiple launch opportunities every year
- Low-cost standard platform

NEACORE - MISSION SCENARIOS

Dedicated Launch, 2 S/C, flyby only

Dedicated Launch, 1 S/C, flyby only

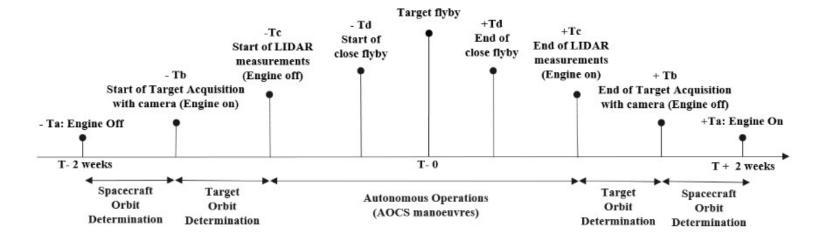
Dedicated Launch, 2 S/C, flyby + impactor


University o

Engineering

Strathclvde

Piggyback launch to L2 parking orbit


NEACORE - TARGET SELECTION

- Single target set selected for study
 - 'Case study' framework intended for many possible target sets / trajectories.
 - Hundreds of possible trajectories generated (up to 2027)
 - Self imposed target size limitation >50m
 - Limit of 3 years of mission time

SPK ID	Family	Date of encounter	Diameter [m]	a [AU]	e	<i>i</i> [deg]	Flyby rel. vel. [km/s]
3723829	Apollo	1/10/2025	70.756219	1.09	0.18	14.8	8.91
2508908	Aten	30/3/2026	223.750812	0.88	0.27	5.6	7.89
2010302	Amor	1/11/2026	467.481706	1.27	0.14	4.37	3.06
3802401	Aten	8/8/2027	70.756219	0.89	0.20	18.49	9.53

Details of the chosen target set

NEACORE - SCIENTIFIC RETURN AND MEASUREMENT STRATEGY

University of

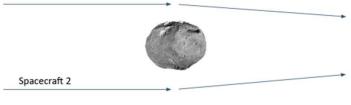
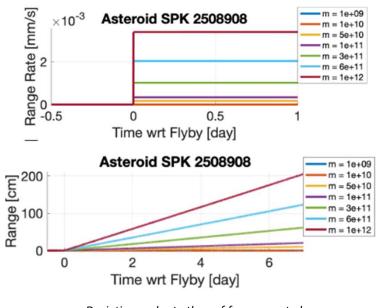
Engineering

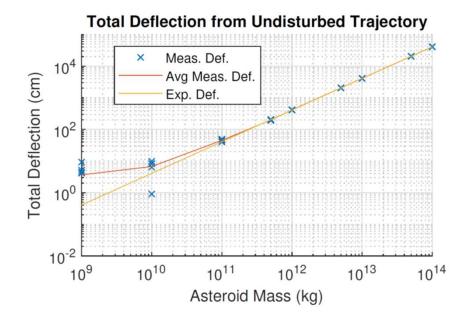
Strathclvde

Concept of operations for asteroid flyby

NEACORE - SCIENTIFIC RETURN AND MEASUREMENT STRATEGY

- Asteroid mass determination
 - Opposing flyby trajectories
 ~20km altitude
 - Measure relative velocity pre flyby
 - Measure deflection via two-way ranging (LIDAR or ISL) over time
 Spacecraft 1


Illustration of gravitational deflection. Flyby altitude ~20km (Not to scale)

Deviation and rate thereof from expected intersatellite range post-flyby

PRELIMINARY SIMULATION RESULTS

- Two way LIDAR system
- Measurement of range and line of sight
- Estimation of asteroid mass from differential of the relative displacement between the two spacecraft.
- Measurement 8 hours before and after the flyby

NEACORE – CURRENT WORK

- Accurate simulation of two way LIDAR
- Major error comes from pulse rate and pulse identification
- Significant improvement can be achieved with shorter higher intensity pulses → millimitre/sub-millimitre accuracy
- Millimetre or sub-millimitre accuracy is required for < 100m size
- Mass estimation integrated in the filtering process
- Longer integration time post close encounter

FUTURE PERSPECTIVE

AURORA proposal H2020 submitted in January 2020 – led by the University of Belgrade

Expected evaluation in May 2020

Expected start of AURORA, if successful Jan 2021

Key objectives:

- Characterisation of small asteroids and asteroid families
- Combine use of dynamical astronomy and machine learning

Proposal of support message from SMPAG

SMPAG also acknowledges the emergence at ESA and JAXA of two - small class – high velocity fly by missions to small bodies, Comet Interceptor and Destiny+. These initiatives pave the way towards similar reconnaissance missions to PHAs, and related instrumentation, that could be needed prior to mitigation missions.