STARDUST

PUSHING THE BOUNDARIES OF SPACE RESEARCH TO SAVE OUR FUTURE

Southampton

Utilizing Risk to Define Thresholds for Impact Threat Response Actions Presenter: Clemens Rumpf

Collaborators: Hugh G. Lewis, Peter M. Atkinson

UNCOPOUS – SMPAG / IAWN Vienna, March 16th -18th, 2016

Outline

- Problem: When is the right time to decide on Planetary Defense actions?
 - Initiate dedicated observation mission
 - Plan civil defence measures
 - Initiate deflection mission
- Comparison to Torino/Palermo scale
- Risk Definition
- Asteroid Risk Calculation
- Example Calculation
- Conclusions

RISK IN COMPARISON TO TORINO/PALERMO

Torino and Palermo Scale

Torino

- Kinetic Energy
- Impact Probability

Palermo

- Kinetic Energy
- Impact Probability
- Lead Time
- Comparison to background threat

- Kinetic Energy as proxy for consequences
 - Indifferent to impact location, impact situation, effect on population

Risk definition

• How bad would it be if X happens?

– What is exposed?

– How much of what is exposed would be lost?

• How likely is it that X happens in the first place?

- Risk Elements: Probability, Exposure, Vulnerability
- Available data and method

ASTEROID RISK CALCULATION

Probability – Evolves Over Time

Exposure – World Population

Impact Effects and Vulnerability

- Impact Effects [Collins 2005]:
 - Thermal Radiation
 - Cratering
 - Seismic Shaking
 - Aerodynamic Shock
 - Ejecta Blanket Deposition
 - Tsunami
- Effect strength determines Vulnerability

RISK CALCULATION – AN EXAMPLE

Risk Calculation - Practical Example

- Object Size: 120 m
- Global Impact Probability: 3.06 x 10⁻⁶

Risk Calculation - Practical Example

Exposure – Global Population

Risk Calculation - Practical Example

Vulnerability

Expected Casualties

 \rightarrow Comparable to other natural disasters \rightarrow Helps to define thresholds

0.0593 Expected Casualties - Global Impact Probability: 3.06E-6 19419 Expected Casualties - Global Impact Probability: 1.0

Purpose of Presentation

- Showcasing what is possible today
- Showing how this could help the cause of Planetary Defense
- The system shown here is a research project and serves this purpose well
 - It is not ready to be implemented in an automated system
 - Many areas to improve and fine tune
 - I am happy to assist

Conclusions

- Risk calculation applied to asteroids
- Distinguishes from Torino/Palermo:
 - Takes into account location
 - Takes into account effects
 - Takes into account population
- Risk figures evolve with better information
 - New observations modify impact probability
 - New observations collapse impact corridor
- Results are expressed in **Expected Casualties**
 - Directly comparable to other disasters
 - Help for threshold definition

Thank You For Your Attention

Presenter: Clemens Rumpf

