Euclid: ESA Cosmology Mission

F.J. Castander on behalf of the Euclid Consortium www.euclid-ec.org

Institut de Ciències de l'Espai (ICE-CSIC) Institut d'Estudis Espacials de Catalunya (IEEC)

Euclid

 Cosmology mission to study the accelerated expansion of the universe aka dark energy • Selected by ESA on October 4th 2011 • Adopted June 19th 2012 • M class mission • M2 launch slot • launch Q3 2023

Euclid: Overview and current status

Issue	Euclid's Targets
What is Dark Energy	Measure the Dark Energy equation of state parameters w_p and w_a to a precision of 2% and 10%, respectively, using both expansion history and structure growth.
Test Gravity	Distinguish General Relativity from modified-gravity theories , by measuring the galaxy clustering growth factor exponent γ with a precision of 2%.
The nature of dark matter	Test the Cold Dark Matter paradigm for structure formation, and measure the sum of the neutrino masses to a precision better than 0.04eV when combined with Planck.
The seeds of cosmic structure	Improve by a factor of 20 the determination of the initial condition parameters compared to Planck alone. n (spectral index), σ_8 (power spectrum amplitude), f_{NL} (non- gaussianity)

Euclid Top Level Science Requirements

Sector	Eu	clid Targets						
	•	Measure the cosmic expansion history to better than 10% in redshift bins $0.9 < z < 1.8$						
Dark Energy	•	Look for deviations from $w = -1$, indicating a dynamical Dark energy.						
	•	Euclid <i>alone</i> to give $FoM_{DE} \ge 400$ (1-sigma errors on w_{p} , & w_a of 0.02 and 0.1 respectively)						
	•	Measure the growth index, γ , with a precision better than 0.02						
	•	Measure the growth rate to better than 0.05 in redshift bins between 0.5< $z < 2$.						
Test Gravity	•	Separately constrain the two relativistic potentials. ψ and ϕ						
	•	Test the cosmological principle						
	•	Detect Dark matter halos on a mass scale between 10^8 and $>10^{15}$ M _{Sun}						
	•	Measure the Dark matter mass profiles on cluster and galactic scales						
Dark Matter	•	Measure the sum of neutrino masses, the number of neutrino species and the neutrino hierarchy with an accuracy of a few hundredths of an eV						
Initial Conditions	•	Measure the matter power spectrum on a large range of scales in order to extract values for the parameters σ_8 and <i>n</i> to a 1-sigma accuracy of 0.01.						
	•	For extended models, improve constraints on <i>n</i> and α wrt to Planck alone by a factor 2.						
	•	Measure a non-Gaussianity parameter : f_{NL} for local-type models with an error < +/-2.						

- DE equation of state: $P/\rho = w$, and $w(a) = w_p + w_a(a_p-a)$
- Growth rate of structure formation: $f \sim \Omega^{\gamma}$;

Euclid Euclid Consortium Institutions

EUCLID Consortium

Euclid Euclid Consortium Institutions

EUCLID Consortium

WL probe: Cosmic shear over 0<z<2

1.5 billion galaxies shapes, shear and phot-z (u,g,r,i,z, Y,J,H) with 0.05 (1+z) accuracy over 15,000 deg^2

GC: BAO, RSD probes: 3-D positions of galaxies over 0.9<z<1.8 :

35 million spectroscopic redshifts with 0.001 (1+z) accuracy over 15,000 deg²

Euclid Wide+Deep Surveys

• Euclid Wide:

- 15000 deg²: avoid the galactic and ecliptic planes
- 12 billion sources (3-σ)
- 1.5 billion galaxies (30 gal/arcmin²) with
 - Very accurate morphometric information (WL)
 - Visible photometry: (u), g, r, i, z, (R+I+Z) AB=24.5, 10.0 σ +
 - NIR photom: Y, J, H AB = 24.0, 5.0σ
 - Photo-z with 0.05(1+z) accuracy
- 35 million spectroscopic redshifts of emission line galaxies with
 - R: 260
 - 0.001 z accuracy
 - H α galaxies within 0.9 < z < 1.85
 - Flux line: 2 . 10⁻¹⁶ erg.cm⁻².s⁻¹; 3.5σ

Euclid Deep:

- 1x20 deg² North Ecliptic pole (EDF-N) + 1x20 deg² South Ecliptic pole (EDF-S1 + 1x10 deg² at CDFS (EDF-S2)
- 10 million sources $(3-\sigma)$
- 1.5 million galaxies with
 - Very accurate morphometric information (WL)
 - Visible photometry: (u), g, r, i, z, (R+I+Z) AB=26.5, 10.0 σ +
 - NIR photom: Y, J, H AB = $26.0, 5.0\sigma$
 - Photo-z with 0.05(1+z) accuracy
- 150 000 spectroscopic redshifts of emission line galaxies with
 - R: 260
 - 0.001 z accuracy
 - H α galaxies within 0.7 < z < 1.85
 - Flux line: 5 . 10^{-17} erg.cm⁻².s⁻¹; 3.5 σ

Euclid Survey Machine: 15,000 deg² + 50 deg²

Euclid: exploring the DM-dominated / DE-dominated transition period

The Euclid mission

ESA product tree

ESA Euclid mission:

- 2 200 kg
- Dimensions:
- 4,5 m x 3 m
- Launch: Q3 2023 by a SpaceX/Falcon9 rocket from Cape Canaveral
- Euclid placed in L2
- Survey: 6 years

S/C QR

done 2021

PLM SVM

mating

done 2022

Consortium

Euclid satellite elements

Euclid Spacecraft Flight Hardware

Consortium

CCD

VIS delivered Mar 2021

Cropper et al 2016:SPIE

Spectral Band	550 – 900 nm
System Point Spread Function size	\leq 0.18 aresec full width half maximum at 800 nm
System PSF ellipticity	\leq 15% using a quadrupole definition
Field of View	>0.5 deg ²
CCD pixel sampling	0.1 arcsec
Detector cosmetics including cosmic rays	≤3% of bad pixels per exposure
Linearity post calibration	≤0.01%
Distortion post calibration	≤0.005% on a scale of 4 arcmin
Sensitivity	$m_{\texttt{AB}}{\geq}24.5$ at $10\sigma\text{in}3$ exposures for galaxy size 0.3 arcsec
Straylight	\leq 20% of the Zodiacal light background at Ecliptic Poles
Shear systematic bias allocation	additive $\sigma_{sys} \le 2 \ge 10^{-4}$; multiplicative $\le 2 \ge 10^{-3}$

NISP delivered April 2021

Courtesy: T. Maciaszek and the NISP team

NISP

- FoV: 0.55 deg²
- Mass : 159 kg
- Telemetry: < 290 Gbt/day
- Size: 1m x 0.5 m x 0.5 m
- 16 2kx2K H2GR detectors
- 0.3 arcsec pixel on sky
- Limiting mag, wide survey AB : 24 (5 σ)
- 3 Filters:
- Y (950-1192nm)
- J (1192, 1544nm)
- H (1544, 2000nm)
- 4 grisms:
- + 1B (920 1300) , 1 orientation 0° $\,$
- + 3R (1250 1850), 3 orientations 0° , 270° , 180°

OVERVIEW OF THE NISP INSTRUMENT

CoLA (Corrector lens Assembly)

CaLA (Camera lens Assembly)

FW-H

RGS000

Slitless Spectrometer:

RGS	0°, 180°, 270°	1250-1850 nm
BGS	0°	920-1250 nm

Photometer:

FW-Y	950 - 1192 nm
FW-J	1192 - 1544 nm
FW-H	1544 - 2000 nm

OVERVIEW OF THE NISP INSTRUMENT

Warm electronic

ICU : Instrument Control Unit

DPU : in-flight Data Processing Unit

Focal Plane Array:

16 HgCDTe infrared sensor of 2048×2048 pixels

FoV	0.55 deg ²
Pixel scale	0.3″

NI-CU (NISP Calibration Unit)

Calibration unit:

2×5 infrared LEDs (nominal+redundant) for detector flat field and detector calibration

NIR detectors and VIS CCD's

- QE \ge 90% 1 µm to 2.2 µm
- Spectroscopic noise ≤ 7 e- over 560 s
- Photometric noise $\leq 5 \text{ e-over } 60 \text{ s}$
- Dark current ≤ 0.005 e-/s/px
- Linearity ≤ 0.7% between 6 ke- and 60 ke-
- CCD (e2v), 4096 x 4132 pixels, 12x12 μm
 FWC=175,000e-
- 4 read-out nodes (in corners)
- SiC package extremely tight flatness
- QE ≥ 70% 500nm to 850nm (95% at 650nm)
- PRNU much better than 2% at all spatial scales
- Noise better than required 3.6 e- at 70 kpix/s

NIR and VIS focal planes & dithers @esa

Euclid Survey: Wide and Deep

- |b|>30°
- Minimise SAA variations;
- Minimise zodiacal light
 → high ecliptic latitude;
- Low galactic extinction;
- Specific pointed calibration;
- Wide survey: one visit / field
- Deep survey: many visits

Scaramella et al 2022

Region of interest

The Euclid survey Reference Observation Sequence (ROS)

Unique ROS over the whole wide survey — the depth will vary for VIS and NISP across the RoI

Median depths driven by the Euclid core science

The mission was proposed in 2011 based on a median performance across the Rol out of 3 exposures only (over the 4 dithers) = \sim 90% of the survey coverage:

- VIS : 24.5 AB at SNR=10 for extended sources (field galaxies ~1" size)
- NISP (Y/J/H) : 24.0 AB at SNR=5 for point sources
- The performance from 4 exposures (~50% survey area) adds 0.15 magnitude

Euclid was built to achieve this performance near the worst part of the Rol (margin = minimum depths reached), and the actual median (2021, still assuming some remaining margins through the depth metric) is expected to be, out of 3 exposures:

- VIS : 24.5 AB at SNR=16 for extended sources (field galaxies ~1" size)
- NISP (Y/J/H) : 24.0 AB at SNR=7.2 for point sources

This translates in depths for the initial SNR requirements to:

- VIS : 25.0 AB at SNR=10 for extended sources (field galaxies ~1" size)
- VIS : 26.2 AB at SNR=5 for point sources (PSF fitting photometry)
- NISP (Y/J/H) : 24.4 AB at SNR=5 for point sources
- The performance from 4 exposures (50% survey area) adds 0.15 magnitude

Euclid Wide and Deep Surveys

R.A. (2000)

RSD 2022g ECTile realization of a Euclid Wide Survey within the 17 Kdeg.² Rol : 14,707 deg.² over 6 years in 254 patches

Euclid Region of Interest (RoI) : 17 Kdeg.² core science compliant, with 779 blinding spots skipped [black dots]

Euclid DR1 area 2021 33%-66% average North-South split : 2500 deg²

Euclid Deep Fields (EDF, from north to south): 20+10+23 deg.²

Euclid Wide Survey chronology (2.5Kdeg.²/yr)

Year1 Year2 Year3 Year4 Year5 Year6

Background image: Euclid Consortium / Planck Collaboration / A. Mellinger

Euclid deep and auxiliary fields characteristics

Field	R.A.	Dec	Area [deg ²]	Δm	Completion (semester)	EWS Footprint
Self-Cal	270.000	+66.50	4	2.80	12	in
CDFS	53.117	-27.81	0.5	2.27	2	in
EDF-N	269.737	+66.02	20	2.00	6	in
EDF-F	52.938	-28.10	10	2.00	12	in
EDF-S	61.240	-48.42	23	2.00	12	in
COSMOS-Wide	150.119	+02.21	2	1.75	4	out
SXDS	34.500	-05.00	2	1.75	8	in
VVDS-Deep	36.500	-04.50	0.5	1.75	9	in
CANDELS/AEGIS	214.827	+52.82	1	1.50	1	in
CANDELS/GOODS-N	189.250	+62.25	0.5	1.50	9	in
CPC-N (outer annulus)	269.737	+66.02	10	1.25	2	in

Delta(m) gives the extra depth versus the Wide survey at that location which can be derived from the previous maps

Euclid complementary data

- Spectroscopy:
 - 45 nights at Keck telescope: spectroscopy on Euclid Wide fields north
 - 25 nights at VLT VMOS/KMOS: spectroscopy on Euclid Wide fields south
 - programmes at GTC & LBT: further supporting spectroscopic data
- Complementary space data on Euclid Deep Fields:
 - 5300 hrs of Spitzer satellite, period 13, priority 1 on 2 Euclid Deep field (20 deg2)
- Complementary visible photometry on Euclid Wide:
 - DES survey data
 - 271 nights at CFHT *u-, r-* band data on Euclid Wide North
 - 110 nights at JST/T250 g- band data on Euclid Wide North
 - WHIGS: g band data on Subaru/HSC
 - WHISHES: z band data on Subaru/HSC
 - *i*-band and *z*-band on Euclid Wide North with Pan-STARRS PS1/2
 - Rubin-LSST ugrizY data on Euclid Wide South

Euclid Data Releases and expected ground depths

Photo-z proxy depth metric (for all): point source in 2 arcseconds diameter aperture, 10o

Euclid (median over the Rol, as-built): VIS=25.0, Y=J=H=23.5

DES in Euclid DR1/2/3: g=24.7, r=24.4, i=23.8, z=23.1 (~1600, ~3000, ~4500 sq. deg)

UNIONS in Euclid DR1: *u*=23.6, *g*=24.5, *r*=24.1, *i*=23.6, *z*=23.4 (~900 sq. deg) UNIONS in Euclid DR2: *u*=23.6, *g*=24.5, *r*=24.1, *i*=23.7, *z*=23.4 (~3000 sq. deg) UNIONS in Euclid DR3: *u*=23.6, *g*=24.5, *r*=24.1, *i*=23.8, *z*=23.4 (~5000 sq. deg)

Rubin LSST* Y1 in Euclid DR2: *u*=23.7, *g*=24.9, *r*=25.0, *i*=24.3, *z*=23.6 (~3000 sq. deg) Rubin LSST* Y1 to Y4 in Euclid DR3: *u*=24.4, *g*=25.6, *r*=25.7, *i*=25.0, *z*=24.3 (~7000 to ~9000 sq. deg) *Rubin-LSST DDP main releases depth with point source PSF performance scaled to the 2" diam. metric

Euclid and the Rubin LSST Derived Data Products

Rubin-	Euclid Co	pordination Timeline								
Survey Data Release		2023	2024	2025	2026	2027	2028	2029	2030	
Euclid	Q1	Misc. sky areas (EDF, etc), total 50 sq deg								
Euclid	DR1	Euclid Y1 (2500 sq deg, << 1000 sq deg overlap)					<u> </u>			
Euclid	Q2	Euclid Y2							n d	2
Euclid	DR2	Euclid Y3 (7500 sq deg, ~3000 sq deg overlap)								2
Euclid	Q3	Euclid Y4								
Euclid	Q4 (TBC)	Euclid Y5								
Euclid	DR3	Euclid Y6 (15000 sq deg, ~7000 sq deg overlap)								
LSST	DP1	LSST ComCam								
LSST	DP2	LSST SV (~1000 sq deg, 180 visits / Y2 depth)								
LSST	DR1	LSST First 6 Months								
LSST	DR2	LSST Y1 (90 visits)								
LSST	DR3	LSST Y2 (180 visits)								
LSST	DR4	LSST Y3 (270 visits)								
LSST	DR5	LSST Y4 (360 visits)								
LSST	DR6	LSST Y5 (450 visits)								
Assump	tions:									
Eak		Evelid mission levels date								

February 2023 Euclid mission launch date

April 2024 LSST survey start

Surveys color keys:

	Observing
	Processing
	Proprietary Access
	Public Access
lotes:	

- (a) LSST data release dates may move by +/3 months as the operations team adapts to circumstances.
- (b) Euclid plan additional quick releases containing specific featured data products made with the Y2 ("Q2"), Y4 ("Q3") and Y5 ("Q4", TBC) data. The data from these years will be available to the Euclid Consortium to use while they are being processed, there just won't be an internal release of a full data release dataset.
- (c) The overlap between Euclid Y1 and LSST SV is potentially quite small, because Rubin commissioning observations are needed at a wide range of latitude (and the best calibration pre-cursor data tends to be closer to equatorial). The SIT-Com team's field selection is not yet determined.
- (d) DDP transient science can start in 2023 with limited sky overlap (green bar).
- (e) LSST Y1 leads to matched survey depths for photo-z estimation: the production of related DDPs (photometric catalogs) spans 4 years (top darker green bar, 2025 to 2029) based on LSST Y1 to Y4 yearly data releases progressively matched to the Euclid survey increasing overlap.

RSD 2022g ECTile realization of a Euclid Wide Survey within the 17 Kdeg.² Rol : 14,707 deg.² over 6 years in 254 patches

Lucid Region of Interest (Rol : 17 Kdeg² core science compliant, with 779 billinding spots skipped [black dots]

Euclid Relation 2021 33%-65% average Noth-South split : 2500 deg²
Euclid Deep Fields (EDF, from orbit hs south): 20+10+23 deg²
Euclid Deep Fields (EDF, from orbit hs south): 20+10+23 deg²
Euclid Deep Fields (EDF, from orbit hs south): 20+10+23 deg²
Euclid Deep Fields (EDF, from orbit hs south): 20+10+23 deg²
Euclid Deep Fields (EDF, from orbit hs south): 20+10+23 deg²
Euclid Deep Fields (EDF, from orbit hs south): 20+10+23 deg²
Euclid Deep Fields (EDF, from orbit hs south): 20+10+23 deg²
Euclid Deep Fields (EDF, from orbit hs south): 20+10+23 deg²
Euclid Deep Fields (EDF, from orbit hs south): 20+10+23 deg²
Euclid Deep Fields (EDF, from orbit hs south): 20+10+23 deg²
Euclid Deep Fields (EDF, from orbit hs south): 20+10+23 deg²
Euclid Deep Fields (EDF, from orbit hs south): 20+10+23 deg²
Euclid Deep Fields (EDF, from orbit hs south): 20+10+23 deg²
Euclid Deep Fields (EDF, from orbit hs south): 20+10+23 deg²
Euclid Deep Fields (EDF, from orbit hs south): 20+10+23 deg²
Euclid Deep Fields (EDF, from orbit hs south): 20+10+23 deg²
Euclid Deep Fields (EDF, from orbit hs south): 20+10+23 deg²
Euclid Deep Fields (EDF, from orbit hs south): 20+10+23 deg²
Euclid Deep Fields (EDF, from orbit hs south): 20+10+23 deg²
Euclid Deep Fields (EDF, from orbit hs south): 20+10+23 deg²
Euclid Deep Fields (EDF, from orbit hs south): 20+10+23 deg²
Euclid Deep Fields (EDF, from orbit hs south): 20+10+23 deg²
Euclid Deep Fields (EDF, from orbit hs south): 20+10+23 deg²
Euclid Deep Fields (EDF, from orbit hs south): 20+10+23 deg²
Euclid Deep Fields (EDF, from orbit hs south): 20+10+23 deg²
Euclid Deep Fields (EDF, from orbit hs south): 20+10+23 deg²
Euclid Deep Fields (EDF, from orbit hs south): 20+10+23 deg²
Euclid Deep Fields (EDF, from orbith

Rubin-Euclid DDPs is the only existing path to an early access to the LSST dataset with at least a one-year lead time on our public releases. This conditions the Euclid DRs as follows:

- DR2 will rely on LSST Year 1 at best
- DR3 will rely on LSST Year 4 at best

Uniform depth on EDF-South with an optimal Rubin dithering

Ground Segment

Complex organisation:

- 10 Organisation Units
- 9 Science Data Centers

Data: huge volumes, heterogeneous data sets

• VIS+NIR imaging, morphometry, photometry, spectroscopy, astrometry, transients

- data ground + space
- ~100 Pbytes
- 1⁺ million images
- > 10¹⁰ sources (>3-σ)

SGS Implementation Review passed Mar 2021

SGS Readiness Review ongoing

Euclid Flagship Simulation:

a tool for Euclid E2E performances

Science Ground Segment

Flagship 2 WIDE mock galaxy catalogue

The Euclid Flagship Simulation

- Λ -CDM + Planck 2013 cosmology
- 2 Trillion particles N body simulation down to z=0
- 400 Healpix maps of the projected matter density and potential density
- 100+ redshift slices
- Consistent mocks for WL and GC

From D. Potter, J. Stadel, R. Teyssier

Euclid Flagship Simulation: mock galaxy catalog

OU-SIM Field X1:NIP YJH

Euclid Flagship Simulation

OU-SIM Field X1: NIP YJH

Euclid Flagship Simulation

Performances and forecasts

EC Science Working Groups

Performance Status on Oct 2018

Technical Per	f ōenhmicel Me dsun	Requirement	CBE Current		
	Image Quality				
	Technical Performa	₽₽₩₩₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	180 mas	160 mas	
	Image Quality	ellipticity	15.0%	9.4%	
		R2 (@ 800 nm)	0.0576	0.0551	
VIS Channe	I VIS Channel	ellipticity stability o(ɛi)	2.00E-04 2.00E-04	1.90E-04 2.00E-04	
	VIS Channel	R2 stability σ(R2)/ <r2></r2>	1.00E-03	1.00E-04	
		Plate scale	0.10 "	0.100 "	
		rEE50 (@1486nm)	400 mas	225 mas	
NISP Channel	NISP Channel NISP Channel	rEE80 (@1486nm)	700 mas	584 mas	
		Plate scale	0.30 "	0.299 "	
	Sensitivity				
VIS SNR (for i	WASBSANERY. 15 DEFININGE	sta.24.5ureurces)	10	16.99	
NISP-S SNR (@	NISBRESESIN ROOP. 41.6	filente and the end of the second	3.5	4.81	
NISP- P SNR (1	ଅଲା ହାହ୍ୟ PSNR (for	Y-band	5	5.89	
mAB = 24	MSP ₱ \$NR (for	()-laandd	5 ⁵	ର୍ଚ.୧୫	
sources)	ନେମ୍ୟାଟେ ଅର୍ଭ) sources) ି	tP-Bahd	5 ⁵	5.34	
	NISP-S Performan	5	5.35		
Purity	Burity	-	80%	72%	
Completenes	Completeness		45%	52%	
	Survey				
	Wide Survey Covera	15,000 deg2	15,000		
	Survey length [year	s]	5.5	5.4	
From ESA PO					

Mission CDR passed in Oct 2018

baseu un .

- MC analysis worst case (4500 PSFs, 465 AOCS realizations)

- Eucline Derformances meet the Stability requirements analysis assessment performed at Scientifie Tands-Survey afequirements analysis will be analysis iterations. Stability requirements analysis will be updated at time of PLM CDR.
 - Image quality of the system fully in line with needs.
 - Ellipticity, R² stability and Non-convolutive errors performance dictated mainly by ground processing
 - *Purity* not compliant with current data processing methods but expected to be recovered with Euclid specific algorithms (not yet installed at this stage).

- Straylight levels in worst case position of the survey

Euclid forecast: Primary Program

Ref: Euclid RB arXiv:1110.3193	Modified Gravity	Dark Matter	Initial Conditions	Dark Energy		
Parameter	γ	m _v /eV	f _{NL}	w _p	Wa	FoM $= 1/(\Delta w_0 \times \Delta w_a)$
Euclid primary (WL+GC)	0.010	0.027	5.5	0.015	0.150	430
EuclidAll (clusters,ISW)	0.009	0.020	2.0	0.013	0.048	1540
Euclid+Planck	0.007	0.019	2.0	0.007	0.035	6000 →
Current (2009)	0.200	0.580	100	0.100	1.500	~10
Improvement Factor	30	30	50	>10	>40	>400

DE equation of state: $P/\rho = w$, and $w(a) = w_p + w_a(a_p-a)$

From Euclid data alone, get FoM=1/($\Delta w_a \times \Delta w_p$) > 400 \rightarrow ~1% precision on w's.

Growth rate of structure formation: $f \sim \Omega^{\gamma}$;

Notice neutrino constraints -> minimal mass possible $\sim 0.05 \text{ eV}$

Euclid forecast: Primary Program

SPV02

Table 20.1.: Figure of Merit for non flat GR and MG cosmological models. We set $\ell_{max} = 5000$ for WL forecasts, and take two values of ℓ_{max} for GCp and XC. First (second) half of the table refers to GCs forecast with $k_{max} = 0.30h$ Mpc⁻¹ leaving the nuisance parameters (σ_p, σ_v) free (fixing them).

data	G	R	MG		
	$\ell_{max} = 3000$	$\ell_{max} = 5000$	$\ell_{max} = 3000$	$\ell_{max} = 5000$	
GCs	24.70	24.70	16.13	16.13	
WL + GCp + XC	127.3	219.0	94.45	163.6	
WL + GCp + XC + GCs	227.2	347.0	211.66	317.8	
GCs	32.55	32.55	21.07	21.07	
WL + GCp + XC	127.3	219.0	94.45	163.6	
$\rm WL+GCp+XC+GCs$	261.6	399.7	256.22	384.7	

Euclid Legacy Science

VIS: Simulation of M51

From J. Brinchmann

2.4m SDSS-like @ z=0.1

Euclid @ z=0.1

Euclid @ z=0.7

- Euclid will get the resolution of SDSS but at z=1 instead of z=0.05.
- Euclid will be 3 magnitudes deeper \rightarrow Euclid Legacy = Super-Sloan Survey

Euclid and the next generation wide field VIS/NIR surveys

Objects	Euclid	Before Euclid	From J. Brinchmann 2013 Euclid in 5 yrs						
Galaxies at 1 < z < 3 with precise mass measurement	~2x10 ⁸	~5x10 ⁶	15, 000 deg2						
Massive galaxies (1< z< 3)	Few hundreds	Few tens							
Ha Emitters with metal abundance measurements at z~2-3	~ 4 10 ⁷ ?	~104?							
Galaxies in clusters of galaxies at $z > 1$	~1.8x10 ⁴	~10 ³ ?	HST in 15 yrs - <20 deg2						
Active Galactic Nuclei galaxies (0.7 < z< 2)	~104	<10 ³							
Dwarf galaxies	~10 ⁵		2000 2010 2020						
Teff ~400K Y dwarfs	~few 10 ²	<10	Spectroscopic targets for JWST,						
Lensing galaxies with arcs and rings	~150,000	~10-1000	E-ELI, IMI, Subaru, VLI, 4MOST, MSE,						
Quasars at z > 8	~30	None	 Synergy with Rubin-LSST, eROSITA, Subaru/HSC, Roman Blanck, SKA 						

Schedule

Development – Planning/Progress Overview

2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Mission SRR Board Feb VIS PDR Apr PLM PDR May NISP PDR May Calibration Review Sep	SFS SRR KO Jan SCS CDR Mar S/C PDR May- Jul M-PDR Sep- Oct	SGS TK I Jun GSRqR Jul NISP CDR Sep-Nov	VIS CDR KO Jan SPV KO Jan PLM CDR Jun-Jul GSDR KO Nov	GSDR Board Jan VIS CDR C/O Feb AVM full ready Jun S/C CDR Mar-May M-CDR Oct-Nov	S/C STM ready Apr S/C STM test Apr- Nov SGS TK2 Oct	VIS FM delivery Mar NISP delivery Apr-May S/C TMQR KO Mar VIS QAR KO Sep SCOMTR KO Sep NISP QAR KO Oct	GSIR Mar PLM FM e2e test Apr-Jul PLM FM delivery Oct SVM/PLM EI int. end Nov Spacecraft QR KO Dec	QR Board Mar SVM/PLM FM mating Mar S/C FM Env Test start Jul TBTV Test Oct-Nov GSRR Oct-Dec Mech Tests Nov-Dec	Test finished Feb FAR Feb-Apr Transport to LS or storage Apr S/C Ready to Launch Jun Launch with F9 Jul-Sep MCRR Oct/Dec
	2014 Mission SRR Board Feb VIS PDR Apr PLM PDR May NISP PDR May Calibration Review Sep	2014 Mission SRR Board Feb VIS PDR Apr PLM PDR May NISP PDR May Calibration Review Sep	201420152016Mission SRR Board FebSFS SRR KO Jan SCS CDR MarSGS TK I Jun GSRqR JulVIS PDR Apr PLM PDR MayS/C PDR May- JulNISP CDR Sep-NovNISP PDR MayM-PDR Sep- OctSCCalibration Review SepSince SepSince Sep	2014201520162017Mission SRR Board FebSFS SRR KO Jan SCS CDR Mar JulSGS TK I Jun GSRqR Jul NISP CDR Sep-NovVIS CDR KO Jan SDV KO Jan PLM CDR Jun-JulNISP PDR MayM-PDR Sep- OctSDR KO NovCalibration Review SepSUB SUB KO Sub Sub Sub Sub Sub Sub Sub Sub Sub Sub	20142015201620172018Mission SRR Board Feb VIS PDR Apr PLM PDR MaySFS SRR KO Jan SCS CDR Mar SCS CDR Mar JulSGS TK I Jun SGS RqR Jul SPK KO Jan PLM CDR Sp-NovVIS CDR KO An SPV KO Jan PLM CDR DrotGSDR Board Jan VIS CDR Co Feb AVM full ready JunNISP PDR MayM-PDR Sep- OctSISP RDR Sp-NovSISP RDR AVM full ready DrotSISP CDR Sp-NovSISP RDR AVM full ready Sp-NovSISP RDR Sp-NovCalibration Review SepSISP SIGN KO Sp-NovSIC CDR AVM full ready DrotSIC CDR Mar-May	201420152016201720182019Mission SRR Board Feb VIS PDR Apr PLM PDR MaySFS SRR KO Jan SCS CDR Mar JUSGS TK I Jun SGS RdR Jul NISP CDR Sep-NovVIS CDR KO Jan SPV KO Jan PLM CDR Son CSDR Board JanS/C STM ready JanNISP PDR May NISP PDR RayM-PDR Sep- OctNISP CDR Sep-NovVIS CDR KO Jun-Jul GSDR KO NovS/C STM ready Jun-Jul AVM full SGS TK2 OctS/C STM ready Jun-Jul AVM full SGS TK2 OctCalibration Review SepVIS CDR VIS CDR CTS/C CDR Mar-MayS/C CDR Mar-May	2014201520162017201820192020Mission SRR Board Feb VIS PDR Apr PLM PDR MaySFS SRR KO Jan SC CDR May- JulSGS TK I Jun GSR qR JulVIS CDR KO AprGSDR Board AprS/C STM ready AprVIS FM delivery MarNISP PDR May MayM-PDR Sep- OctNISP CDR Sep-NovNISP CDR AprNISP CDR AprNISP CDR AprNISP CDR AprNISP CDR AprNISP CDR AprNISP CDR AprReview SepF-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-	20142015201620172018201920202021Mission SRR Board Feb VIS PDR AprSFS SRR KO Jan SCS CDR Mar JulSGS TK1 Jun GSRqR Jul SCP PDR May-VIS CDR KO GSRqR Jul SPV KO Jan SPV KO Jan SPV KO JanS/C STM PLM CDR SPV KO Jan PLM CDRVIS CDR SPV KO Jan PLM CDRS/C STM PLM CDR SPV KO Jan SPV KO Jan SPV KO JanVIS CDR SCS TK1 SPV KO Jan PLM CDRS/C STM PLM CDR SPV KO Jan SPV KO Jan SPV KO Jan SPV KO JanVIS CDR SC STM C/O Feb Jun SGS TK2VIS FM PLM FM CO FEBGSIR Mar PLM FM PLM FM PLM FM SGS TK2S/S TM PLM FM PLM FM FM SGS TK2VIS FM PLM FM PLM FM FM SGS TK2S/S TM2 SGS TK2S/S TM2 SGS TK2S/S TM2 SGS TK2S/S APR SC CMTR KO SepCalibration Review SepVIS VIS VIS VIS VIS VIS QAR KO SepVIS QAR RCD PLSCOMTR KO SepS/S COMTR KO SepS/S CMTR KO SepS/S CMTR KO Sep	201420152016201720182019202020212022Mission SRR Board Feb VIS PDR Apr MarSFS SRR KO Jan SCS CDR Mar JulSGS TK1 Jun SGS RL SGS RL JulNIS CDR KO Jan SPV KO Jan SPV KO Jan PLM CDR JunJulSIS CDR SC STM SPV KO Jan PLM CDR SPV KO Jan PLM CDR SPV KO JanS/C STM SC STM SC STM SCS CTM SC STM SC STM SC STM CID Feb SIG STK1SIS CDR SIG STK1 SIS CDR SIG STK1 SIG STK1SIS CDR KO SIG STK1 SC STM SIG STK1SIS CDR SIG STK1 SIG STK1SIS CDR SIG STK1 SIG STK1SIS CDR SIG STK1SIS CDR SIG STK1SIS CDR SIG STK1SIS CDR SIG STK1SIS CDR SIG STK1SIS CDR SIG STK2SIS TK1 SIS CDR SIG STK2SIS CTM SIS CDR SIS CTM SIS CDR SIG STK2SIS CTM SIS CDR SIS CTM SIS CDR SIS CTM SIS CTM SIS CDRSIS CTM SIS CTM<

Euclid Schedule

Euclid Schedule: Oslo 2022

	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Mission Milestones	Mission Adoption		SRR	PDR			CDR					FAR Readiness
MISSION MILESLONES	Jun 12		Feb 14	Oct 15			Nov 18					Apr 23 May 23
PLM KO Implement Pha	se	🔶 Jan 13										
S/C KO Implement Pha	se	🔶 Jul	13 PDR Eau	ip Selection								
PLM Subco Selection		←──	Apr 14		Jan 16							
PLM Equip. Manufactur	ing I	May 13 🔶	C Cubauatama	PLM Equ	пртепт мапит	acturing) Jan 19				
S/C Subsystems Select	ion	5, (C Subsystems	\longrightarrow Jun 1.	5							
S/C Equipment Selection	n		S/C Equip	ment Selection	→ Mar 16	קס FM	STM		VIS FM			
VIS Reviews and Delive	eries		PDR Feb 14		Jan 17	Dec 17	◆ Apr 18		Mar 20			
NISP Reviews and Deliv	veries		PDR Mar 14		CDR	STM lov 16 Se	EM p 17 ◆ Jun 1	8	May 2	0		
S/C Equip. Manufacturi	ng		Aug 14 🕳	S/C	Equipment Ma	nufacturing	>	Nov18				
S/C Equipment Deliver	ies			Feb 1	6	S/C Equipm	ent Deliveries		→ Apr 20			
PLM FM Assembly & Te	st						Jan 19	PLN	1 FM Assembly	\longrightarrow	Sep 21	
SGS – OGS Reviews		SGS-PRR Jul 13		SGS-SRR	GS-RQR	GS-SGS-DR		GS-TK2		GS-SGS-IR	GS-SGS-F	R Mar 23
S/C FM Integration & T	est			Mar 15	May 16	Nov 17	Sep 18 🗲	Oct 19		Mar 21	Oct 22	GS-ORR →Feb 23
. 5 .		1							S/C FM Int	tegration & Te	sting	

Euclid Consortium Meeting 2022 |Project Status, G.D.Racca | Oslo, 26/04/2022 | Slide 30

→ THE EUROPEAN SPACE AGENCY

Mission Timeline

Overview mission timeline

Mission Timeline

Delivery

S/C Activity

GS Activity

Data Releases

Science with Euclid will start in 2024 with Q1 and in 2025 with DR1

Summary

- Euclid cosmology mission to study the structure of the Universe and the nature of dark energy:
 - Uses 3 cosmological probes, and their cross-correlations
 - Perfect complementarity with Planck: probes and data, cosmic time
 - Explore the Dark universe: DE, DM (neutrinos), MG, inflation, biasing, baryons
 - Explore the transition DM-to-DE-dominated universe period
 - Get the percent precision on w and the growth factor γ
 - Synergy with New Gen wide field surveys: LSST, Roman, e-ROSITA, SKA
- Euclid =12 billion sources, 35 million redshifts, 1.5 billion shapes/photo-z of galaxies;
 - A huge dataset of images and spectra for the community to study for years;
 - A reservoir of spectroscopic targets for JWST, E-ELT, TMT, ALMA, VLT, MSE, 4MOST, MOONS,
 - A set of astronomical catalogues useful until 2040+
- Big challenges: data processing (100-300 Petabytes), cosmological simulations
- Launch 2023, start 2023: 2500 deg² public in 2025, 7500 deg² in 2027, final 2029

Euclid Consortium Meeting in Helsinki 2019

