# From Euclid to SPHEREx: New Opportunities in Reionization Studies

2025+

### Asantha Cooray



University of California, Irvine



## Outline

Three separate sub-projects led by students.

 Identifying highest-z's lensed quasars and galaxies with Euclid
 Quasar identification at z > 6 with SPHEREx and Euclid
 Intensity mapping opportunities to study reionization and structure formation with SPHEREx and Euclid (and other datasets in 2027-2030)

## **Euclid Strong Lens Detection with CNNs**

- Goal: identify and separate (VIS & NISP) z > 6 lensed quasars and LGBs.
- Objective: Automate the detection of strong lensing events from Euclid's survey with deep learning, aided by human classification or downsample for a citizen science project.

#### Methods

- Sample galaxies from CANDELS survey to generate mock images of strong lensing events observed by Euclid
- Use the images to train a Convolutional Neural Network (CNN)
- Work in progress: Accurate Euclid data simulations to find strong lenses and in the future post-launch apply to survey data.



Thomas Li (aided by Milad Pourrahmani, Nima Chartab)

## What are artificial neural nets and how do they learn?



I. An Artificial Neuron

II. A Neural Network

**III. Gradient Descent** 

## Deep ConvNets



## Identifying lenses in HST/ACS i-band in COSMOS 2 deg2.

- → Phase 0: Pre-train on 2 classes of CIFAR
- → Phase 1: Train on lenses and all non-lenses
  - Balanced batch selection: n\_class x 64
- → Phase 2: Train on lenses and high rank non-lenses
- → We identified ~90 lenses half of which were new



| Layer | Туре        | Data Dimensionality       |
|-------|-------------|---------------------------|
|       | input       | $1 \times 100 \times 100$ |
| 1     | convolution | $30 \times 96 \times 96$  |
| 2     | tanh        | $30 \times 96 \times 96$  |
| 3     | pooling     | $30 \times 48 \times 48$  |
| 4     | convolution | $60 \times 44 \times 44$  |
| 5     | tanh        | $60 \times 44 \times 44$  |
| 6     | pooling     | $60 \times 22 \times 22$  |
| 7     | convolution | $90 \times 18 \times 18$  |
| 8     | tanh        | $90 \times 18 \times 18$  |
| 9     | pooling     | $90 \times 9 \times 9$    |
| 10    | flatten     | 7290                      |
| 11    | linear      | 1000                      |
| 12    | ReLU        | 1000                      |
| 13    | dropout     | 1000                      |
| 14    | linear      | 800                       |
| 15    | ReLU        | 800                       |
| 16    | dropout     | 800                       |
| 17    | linear      | 600                       |
| 18    | ReLU        | 600                       |
| 19    | dropout     | 600                       |
| 20    | linear      | 2                         |
| 21    | softmax     | 2                         |
|       | output      | 2                         |

|                                  | First Convolution                            |                           |
|----------------------------------|----------------------------------------------|---------------------------|
| Deveneenmented                   | Filter Size: 5 x 5                           |                           |
| and                              | Number of Filters:                           |                           |
| Normalized Image                 | Non-linearity: Tanh                          | Feature                   |
| 100 x 100<br>Number of Channels: |                                              | Maps<br>30 x 96x 9        |
| 1                                |                                              | 1                         |
| Batch Size: 128                  |                                              |                           |
| Sa                               | ond Convolution Law                          | or                        |
|                                  | Filter Size: 5 x 5                           |                           |
| Feature                          | Number of Filters: 60                        |                           |
| Maps<br>60 x 44 x                | Non-linearity: Tann                          | Feature Maps<br>30 x 48 x |
| 44                               |                                              | 48                        |
| _                                |                                              |                           |
|                                  | hird Convolution Layer<br>Filter Size: 5 x 5 | r                         |
|                                  | Number of Filters: 90                        |                           |
| Downsampled<br>Feature Maps      | Non-linearity: Tanh                          | Feature<br>Maps           |
| 22                               |                                              | 90 x 18 x<br>18           |
|                                  |                                              |                           |
| Follo<br>Another Max-Poolin      | owed by                                      |                           |
| Siz                              | ze: 2 x 2                                    |                           |
|                                  | ¥                                            |                           |
|                                  |                                              |                           |
| 9 2 9 9 2 9                      | 7290 Neurons 9                               | x 9 9 9 x 9               |
|                                  | ···· ··                                      |                           |
|                                  | <b>V</b>                                     | +                         |
|                                  | ully-Connected Layer                         |                           |
|                                  | 1000 Linear Neurons                          |                           |
|                                  |                                              |                           |
| •                                |                                              | +                         |
|                                  | ully-Connected Layer                         |                           |
|                                  | 800 Linear Neurons                           |                           |
|                                  | Non-linearity: ReLu                          |                           |
| ×                                | *                                            | *                         |
| F                                | ully-Connected Layer                         |                           |
|                                  | 600 Linear Neurons                           |                           |
|                                  | Non-Emeanty. ReEu                            |                           |
|                                  |                                              |                           |
|                                  |                                              |                           |
| "non-lens"                       | Classifying Layer                            | "lens"                    |
| Class                            | 2 soltmax neurons                            | Class                     |

#### Pourrahmani et al. 2019

## Subaru HSC Survey lens identification

Pourrahmani et al. 2020

~1000 deg<sup>2</sup> wide in *grizy* bands



## Problem! Not enough lenses to create a training set.

SuGOHI Project found only 50 grade A and B lenses in HSC-PDR1

Option 1: Simulate Option 2: GAN Augment



Sonnenfeld et al. 2017

## Augmentation with Generative Adversarial Network (GANs)

- Generator vs Discriminator
- Pre-train on negative images
- Train on real lenses
- Mode Collapse Problem
  - Retrain and resample 200 images for 10 cycles  $\rightarrow$  2k generated lenses total



Pourrahmani et al. 2020

## HSC Results

| Lens | Right Ascension<br>(deg)     | Declination<br>(deg)      | Einstein Radius<br>(arcsec) | Grade<br>A/B/C |
|------|------------------------------|---------------------------|-----------------------------|----------------|
| 1    | 1.016.0042                   | 00.8804                   | 2.05                        | A              |
| 1    | +210.2045<br>+215.2654       | -00.8894<br>$\pm 00.3720$ | 0.20                        | A              |
| 2 2  | +210.2004                    | +00.3720                  | 2.20                        | A              |
| 3    | +340.3696<br>+310.4564       | +00.1957                  | 2.44                        | A              |
| 4 5  | +219.4004<br>+225.1725       | +00.4944<br>+00.8201      | 2.40                        | A              |
| 6    | +330.1720<br>+332.5700       | +00.8201                  | 2.99                        | A              |
| 7    | +333.3790<br>+317.8070       | +01.1709                  | 2.04                        | A              |
| 8    | +217.0079<br>+218.7266       | -00.1037                  | 2.20                        | A              |
| 0    | +210.7200<br>+222.1764       | -00.9490                  | 2.71                        | A              |
| 10   | +333.1704<br>+122.6042       | +00.1692                  | 2.30                        | A              |
| 10   | +132.0942<br>$\pm 0.25.2041$ | +00.0515<br>04.4119       | 1.09                        | A              |
| 10   | +191.0202                    | -04.4112                  | 2.60                        | A              |
| 12   | +101.9302<br>+216.0515       | -01.0055                  | 2.21                        | A              |
| 10   | +210.9010<br>+015.0277       | +00.1003                  | 2.10                        | A              |
| 14   | +210.0077                    | -00.2429                  | 2.00                        | A              |
| 10   | +218.8290<br>+125.7026       | -01.1101                  | 2.08                        | A<br>P         |
| 10   | +130.7230                    | +00.8084                  | 3.31                        | B              |
| 10   | +178.9889                    | -00.2107                  | 1.75                        | B              |
| 18   | +215.0287                    | +00.3112                  | 4.09                        | B              |
| 19   | +215.7009                    | -00.5532                  | 1.95                        | B              |
| 20   | +214.2848                    | +00.9822                  | 2.35                        | B              |
| 21   | +030.0038                    | -03.7738                  | 2.05                        | B              |
| 22   | +178.8300                    | +00.8846                  | 3.94                        | B              |
| 23   | +333.8429                    | +01.0912                  | 1.27                        | B              |
| 24   | +338.1010                    | -00.4261                  | 2.29                        | B              |
| 25   | +130.0180                    | +01.4212                  | 7.49                        | B              |
| 26   | +218.5273                    | -00.4848                  | 1.83                        | B              |
| 27   | +132.0146                    | +02.0579                  | 3.13                        | B              |
| 28   | +334.5879                    | -00.0316                  | 2.41                        | C              |
| 29   | +220.1407                    | -00.6051                  | 2.30                        | $C_{\alpha}$   |
| 30   | +132.0751                    | +02.0876                  | 1.79                        | C              |
| 31   | +035.2166                    | -04.5833                  | 2.65                        | $C_{\alpha}$   |
| 32   | +215.1524                    | -00.1260                  | 3.88                        | C              |
| 33   | +136.6667                    | +01.0630                  | 1.25                        | C              |
| 34   | +131.9165                    | +01.9710                  | 2.06                        | $C_{\alpha}$   |
| 35   | +032.1952                    | -03.4577                  | 1.45                        | $C_{\alpha}$   |
| 36   | +337.4952                    | +00.1038                  | 2.18                        | C              |
| 37   | +135.8591                    | -00.1686                  | 3.18                        | C              |
| 38   | +333.6634                    | +01.2666                  | 2.89                        | $C_{\alpha}$   |
| 39   | +178.7919                    | -01.3283                  | 2.52                        | C              |
| 40   | +216.4902                    | +00.9385                  | 2.19                        | C              |
| 41   | +218.2470                    | -00.5127                  | 1.86                        | C              |
| 42   | +337.1984                    | +01.0535                  | 1.35                        | C              |

|    | ø  |          | 0     |    | 10           | à. |
|----|----|----------|-------|----|--------------|----|
| 1  | 2  | 3        | 4     | 5  | 6            | 7  |
| 2. |    | <b>*</b> | (@* · | ۲  | •            |    |
| 8  | 9  | 10       | 11    | 12 | 13           | 14 |
|    |    | •        |       | Ø  |              |    |
| 15 | 16 | 17       | 18    | 19 | 20           | 21 |
|    | -  | Ó        | 1     | •  | : <b>•</b> • |    |
| 22 | 23 | 24       | 25    | 26 | 27           | 28 |
| Ø. | 0  |          | 0     |    | ۲            |    |
| 29 | 30 | 31       | 32    | 33 | 34           | 35 |
| ٠  | •  | Ċ.       |       | 6  | 2            | ø. |
| 36 | 37 | 38       | 39    | 40 | 41           | 42 |

Pourrahmani et al. 2020

## Euclid high-z Training Data Generation



~60,000 images generated (half

with lensing event & half

## Examples (PSF and noise matched to Euclid VIS all-sky)

0 - non-lens 1 - lens



## **CNN** Architecture

| #  | Layers              | Output Size   |
|----|---------------------|---------------|
| 1  | Input               | 96 x 96 x 1   |
| 2  | Convolution (7 x 7) | 96 x 96 x 64  |
| 3  | Convolution (1 x 1) | 96 x 96 x 32  |
| 4  | Convolution (7 x 7) | 96 x 96 x 64  |
|    | Max Pooling (3 x 3) | 32 x 32 x 64  |
| 5  | Convolution (5 x 5) | 32 x 32 x 128 |
| 6  | Convolution (1 x 1) | 32 x 32 x 64  |
| 7  | Convolution (5 x 5) | 32 x 32 x 128 |
|    | Max Pooling (2 x 2) | 16 x 16 x 128 |
| 8  | Convolution (3 x 3) | 16 x 16 x 256 |
| 9  | Convolution (1 x 1) | 16 x 16 x 128 |
| 10 | Convolution (3 x 3) | 16 x 16 x 256 |
|    | Max Pooling (2 x 2) | 8 x 8 x 256   |

| #  | Layers              | Output Size |
|----|---------------------|-------------|
| 11 | Convolution (3 x 3) | 8 x 8 x 256 |
| 12 | Convolution (1 x 1) | 8 x 8 x 128 |
| 13 | Convolution (3 x 3) | 8 x 8 x 256 |
|    | Max Pooling (2 x 2) | 4 x 4 x 256 |
| 14 | Dense               | 256         |
|    | Dropout (0.5)       |             |
| 15 | Dense               | 256         |
|    | Dropout (0.5        |             |
| 16 | Dense               | 1           |

Trainable Parameters: 3,180,065

## **Training Curves**





## **CNN** Prediction

The ROC curve shows the True Positive Rate (TPR) and False Positive Rate (FPR) of the predictions at various thresholds



## Predicted Performance (assume 1 strong lens in 10,000 galaxies)

Optimum Threshold (balanced in maximizing TPR and minimizing FPR):

- Completeness: 92%, Purity: 0.11% (1 true positive in 900 positive detection)

Purity Favored Threshold (sacrifice TPR to get even lower FPR):

- Completeness: 66%, Purity: 1.6% (1 true positive in 65 positive detection)

Machine learning alone is not going to be enough; will need human supervision or some activity as a citizen type project.

## Effect of Morphological Features





## **SPHERE× SCIENCE OPPORTUNITIES**



#### **Designed to Explore**

- Origin of the Universe
- Origin and History of Galaxies
- Origin of Water in Planetary Systems

#### First All-Sky Near-IR Spectral Survey

- A Rich Legacy Archive for Astronomy with 100s of Millions of Stars and Galaxies
- Many opportunities outside of the planned core science program

#### **Testing and Integration Imminent!**

- Design Stable and Mature
- Critical Hardware Arriving
- Healthy Scientific Performance Margins

Anticipated launch readiness review Feb 2025

### SPHERE<sup>X</sup> IN A NUTSHELL





## SPHERE<sup>X</sup> CORE SCIENCE PROGRAM



#### E ~ 10<sup>16</sup> GeV



#### How did the Universe Begin?

SPHEREx observes the 3D distribution of galaxies, measuring 'Non-Gaussianity' to probe inflation physics



#### How did Galaxies Begin?

SPHEREx extragalactic background measurements determine the total light emitted by galaxies



#### What are the Conditions for Life?

SPHEREx will measure the  $H_2O$ , CO,  $CO_2$ ,  $CH_3OH$  ice content in clouds and disks, determining how ices are inherited from parent could vs. processed in disks



### CATALOG-BASED OPPORTUNITIES

#### Improving Exo-Planet Characterization

- → SPHERE<sup>x</sup> provides precise near-IR spectra of 100s of millions of stars
- Exo-planet characterization is often limited by knowledge of the host star!

Combining SPHEREx and Gaia data and improve the uncertainty of exo-planet radii by a factor of ~10

#### Low-Mass Star & Brown Dwarf Survey

- → SPHERE<sup>x</sup> provides spectra of the nearest 10,000 brown dwarfs and low-mass stars
- → Near-IR spectra are ideal for studying temperatures and atmospheric features

New understanding of composition, age and evolution

#### **Galaxy Cluster Survey**

→ SPHERE<sup>×</sup> spectra will provide redshifts for a large fraction of the ~100,000 clusters expected from eROSITA, Euclid, Rubin, Simon's Observatory, SPT and CMB-S4 Cluster abundance, mass, and redshifts enable sensitive tests of cosmological parameters

#### Solar System Objects Survey

→ SPHERE<sup>x</sup> provides an unbiased spectral survey of 100,000 asteroids and comets (Zeljko et al. 2022)

Vital information on origin and migration of solar system bodies



#### Brown Dwarf Atmospheric Spectra



SPHEREx Wavelength Coverage

Sun

SPHERE

## How SPHEREx Determines z



Detected galaxies Galaxies  $\Delta z/1+z < 10\%$ Galaxies  $\Delta z/1+z < 0.3\%$  > 1 billion> 450 million> 10 million

- We extract the spectra of *known* sources using the fullsky catalogs from <u>PanSTARRS/DES</u>.
- Controls blending and confusion
- We compare this spectra to a template library (robust for *z* < 1.5 sources).
- ➡ For each galaxy: redshift & type
- The 1.6 µm bump is a well established universal photometric indicator, see Simpson & Eisenhardt 99.
- We simulate this process using the COSMOS data set (similar to Euclid/WFIRST assessments; Stickley et al.)



### CURRENT CMB POLARIZATION CONSTRAINTS





#### **BICEP-Keck Continues to Lead the Field**

|                 | arXiv      | $\sigma(r) BB$ |
|-----------------|------------|----------------|
| DASI            | 0409357    | 7.5            |
| BICEP1 2yr      | 0906.1181  | 0.28           |
| WMAP 7yr        | 1001.4538  | 1.1            |
| QUIET-Q         | 1012.3191  | 0.97           |
| QUIET-W         | 1207.5034  | 0.85           |
| BICEP1 3yr      | 1310.1422  | 0.25           |
| BICEP2          | 1403.3985  | 0.10           |
| BK13/Planck     | 1502.00612 | 0.034          |
| BK14/WP         | 1510.09217 | 0.024          |
| ABS             | 1801.01218 | 0.7            |
| Planck          | 1807.06209 | $\sim 0.2$     |
| BK15            | 1810.05216 | 0.020          |
| POLARBEAR       | 1910.02608 | 0.3            |
| SPTPOL          | 1910.05748 | 0.22           |
| Planck/Tristram | 2010.01139 | 0.07           |
| Spider          | 2103.13334 | 0.13           |
| BK18            | 2110.00483 | 0.009          |
| BK + SPT        | c 2024     | 0.006          |
| BICEP Array     | c 2029     | 0.003          |
| CMB-S4          | c. 2038    | 0.0005         |



### SPHERE<sup>X</sup> TESTS INFLATIONARY NON-GAUSSIANITY



- Single-field models
   predict f<sub>NL</sub> < 0.01</li>
- Multi-field models predict f<sub>NL</sub>
- Non-inflationary models
   (Steinhardt *et al.*) predict f<sub>NL</sub> ~ 1

SPHEREx improves accuracy to  $\sigma$ (fNL) < 0.5

 >10x improvement on cosmic-variancelimited CMB f<sub>NL</sub> measurements



## SPHEREx Deep Fields + Euclid Deep







Methods

- Generate a synthetic catalog of high redshift quasars.
- Use catalog to inject quasars into SPHEREx Sky Simulator and generate a mosaic for each band and channel.
- Use photometric detection algorithms to recover quasars in mosaics.
- Future: Compare with actual SPHEREx/Euclid data.



Brandan Buschmann

## Generating composite high redshift quasar spectra at z = 5 - 8



Composite quasar spectrum from Sloan Digital Sky Survey [1] in rest-frame, labeled with emission lines.

Flux-calibrated spectrum between wavelengths 0.75 – 5 microns.

[1] D.E. Vanden Berk, et al., Astron. J. **122**, 549 (2001).
[2] D. Mortlock, et al., Nature **474** (2011).

## Generating composite high redshift quasar spectra at z = 5 - 8 continued

• The flux-calibrated spectrum was adjusted for redshift to generate 13 quasar spectra between z = 5 - 8 with Lyman break.



All Quasar Spectra from z = 5 - 8

## Creating a synthetic high redshift quasar catalog

• Integrated a double power law quasar luminosity function [3] to calculate number counts at each redshift.



- Error bars were generated by 1000 trials of random sampling the QLF parameters ( $\alpha$ ,  $\beta$ ,  $M^*$ , etc.) within their uncertainty ranges.
- By randomly assigning an RA and Dec to each quasar, these locations were combined with the spectra on the previous slide to generate a synthetic catalog of 90790 high redshift quasars.

[3] I.D. McGreer, et al., Astrophys. J. 768, 105 (2013).

## Injecting quasars into the SPHEREx Sky Simulator to generate mosaics

- The catalog was used to inject high redshift quasars into the Sky Simulator, which generates mosaics of the sky.
- SPHEREx has 6 bands with 17 channels in each, for a total of 6 x 17 = 102 mosaics.



Mosaic for array 1, channel 6 (0.88 – 0.9 microns).

## Using photometric detection algorithms to recover quasars in the mosaics

- Currently using the DAOStarFinder algorithm from the Python package Photutils to locate the quasars in the mosaics.
- Quasar recovery in the mosaic for array 1, channel 6 is shown to the right.
  - 13 of the 44 quasars at z = 7 were recovered within 1 pixel of their known locations, for a recovery rate of 30%.
- Currently refining the algorithm's parameters, such as the detection threshold, to increase the recovery rate.
- May resort to machine learning if this photometric detection method is ineffective at recovering most of the quasars.
- To improve detection will be adding Euclid photometry in overlapping SEP/NEP deep fields.



Detection of z = 7 quasars in the mosaic for array 1, channel 6. The green X's are the known positions of quasars, and the blue circles are the recovered quasars.

### SPHERE<sup>X</sup> LINE INTENSITY MAPPING

#### How Does Line Intensity Mapping Work?

- → Maps large scale-structure using the collective light from galaxies -- not from individual galaxy detections
- → Line emission uniquely gives the redshift A powerful 3-D map of galaxy and star formation!

#### What Does SPHEREx Provide?

- → The core SPHERE<sup>x</sup> program is 2-D and does not use line spectroscopy
- $\rightarrow\,$  However all of the deep field maps will be readybuilt for spectroscopic analysis
- → Line emission maps can detect H $\alpha$ , H $\beta$ , OII and OIII lines with high SNR
- $\rightarrow$  Ly $\alpha$  line accessible at high redshifts z > 5.2

#### **Scientific Opportunity**

- → Map the entire History of Galaxy and Star Formation in multiple lines (H $\alpha$ , H $\beta$ , OII and OIII)
- $\rightarrow$  Offer new insights on the Epoch of Reionization through Ly $\alpha$  and OIII
- $\rightarrow$  Provide unique measurements on the Geometry of the Universe at High Redshift (z ~ 4-5)



#### Emission Lines Observable by SPHERE<sup>x</sup>



## Intensity Mapping with SPHEREx





Auto-correlations in R=41.5 bands internal to SPHEREx. Cross-correlations w/ galaxy catalogs (e.g., Euclid-Deep, Rubin/LSST etc) map history of emission in galaxies.

## LINE-INTENSITY MAPPING WITH GALAXY CROSS-CORRELATIONS







Rubin/Euclid

Rubin/Euclid

Rubin/Euclid

Roman/Euclid

\*There are 102 spectral channels in total

1

1

1

1

4

5

6

7

15 – 30

5 – 20

3 - 10

0.2 - 2

 $H\alpha$ , OIII,  $H\beta$ , OII

 $H\alpha$ , OIII,  $H\beta$ , OII

H $\alpha$ , OIII, H $\beta$ , OII, Ly $\alpha$ 

OIII, H $\beta$ , OII, Ly $\alpha$ 

## **SPHERE<sup>X</sup> IN SUMMARY**



#### **SPHEREX Core Science**

- Origin of the Universe
- Origin and History of Galaxies
- Origin of Water in Planetary Systems

#### **Exciting Potential Opportunities**

- Exo-Planet Host Stars
- Low-Mass Star & Brown Dwarf Survey
- Galaxy Cluster Survey
- Solar System Objects Survey
- Line Intensity Mapping (and X-Correlations)
- Joint Cosmology with CMB-S4
- You May Have More Ideas!

#### **Project is Entering a Critical Phase**

Starting Hardware Test and Integration