

The detectability of Extragalactic Globular Clusters in the Euclid survey

Karina Voggel, Ariane Lançon, Søren Larsen Michele Cantiello, Pierre-Alain Duc, Annette Ferguson, Patrick Hudelot, Pratik Lonare, Francine Marleau, Achille Nucita, Marina Rejkuba, Erik Romelli, Teymoor Saifollahi, Rubén Sanchez-Janssen, Jenny Sorce, Crescenzo Tortora + all of EGC WP8 team

GLOBULAR CLUSTERS (GCS)

- 1. Formed in a single stellar burst
- 2. 10⁴-10⁷ solar massespacked into a couplepc of volume
- Exist in virtually all galaxies

M54 - Nucleus of Sagittarius

M15 - star cluster

GLOBULAR CLUSTERS AS RELICS OF ACCRETION

Globular Clusters origins: insitu formation and ex-situ through accretion from external galaxies

Tracing galaxy evolution:

- 1. Dark Matter distribution
- 2. Tracking substructure & tails

Understanding GC formation & evolution itself

Saifollahi et al. 2021 Fornax galaxy with GC & nuclei candidates

EUCLID FOOTPRINT + VIS RESOLUTION

M101 at 7Mpc ~ Halo 150kpc Halo is 1+ degree on sky

- HST & JWST have small FOV
 and can only study galaxy
 centers for GCs
- EUCLID'S large footprint +
 high spatial resolution of VIS
 enables detection of GCs in
 local Galaxies way beyond any
 current capabilities

DEEP AND HOMOGENOUS EUCLID PHOTOMETRY

- Currently: Ground based
 photometry is inhomogeneous,
 has large errors and unknown
 systematics
- Effect of ages & abundances in color-colors diagrams are larger
- Euclid: offers possibility to
 recalibrate and improve our
 population models of GCs as
 legacy science with VIS & NISP
 photometry

WHAT LOCAL GALAXIES ARE IN THE FOOTPRINT?

Scaramella et al. 2021

Distance (Mpc)

THEORETICAL NUMBER OF GCS

=

LUNE galaxy catalogue (Crescenzo Tortora) has ~4000galaxies with magnitudes and distances <100Mpc in footprint +

Average Nr of GCs for galaxy luminosity

Total Nr of predicted GCs for each galaxy in

the LUNE catalogue.

THEORETICAL NUMBER OF GCS

- Drawing for each galaxy the magnitude of every GC from a typical Gaussian GC luminosity function (Mv=-7.5)
- Putting absolute GC magnitude to their correct apparent magnitude
- -> distribution of all theoretical
 GC magnitudes in all footprint galaxies

THEORETICAL NUMBER OF GCS

- Drawing for each galaxy the magnitude of every GC from a typical Gaussian GC luminosity function (Mv=-7.5)
- Putting absolute GC magnitude to their correct apparent magnitude
- -> distribution of all theoretical
 GC magnitudes in all footprint galaxies
- ~1 Million GCs in local galaxies in footprint
- Of these ~400.000 or around 40% are brighter than mv=26.0 and thus in theory detectable
- 235 000 are brighter than mv=25 and thus 25% -> bright enough to get Y, J, H photometry for these

DETECTABILITY AS A FUNCTION OF DISTANCE

Based on LUNE galaxies & theoretical GC numbers, 50% of all GCs detectable at 50Mpc

SIMULATIONS OF GCS IN EUCLID

- Simulations from OU-SIM
 of VIS tile (P. Hudelot, E.
 Jullo)
- After OU-VIS we get one
 OU-MER tile per distance
- Testing GC detectability

 as function of distance,
 magnitude, color and
 separation to host galaxy

SIMULATIONS OF GCS IN EUCLID

-33 -32 2 -29 2 -17 31 7 -25 6 -25 -22 5 -12 7 26 6 -31 9 -31 3 -28 7 -18 5 22 1

CANDIDATE GC SELECTION

- Based on OU-MER output catalogue criteria that are sensitive to size and compactness (quick but less accurate)
- Based on our own re-analysis of Euclid images (time consuming but more accurate)

Both will be prepared but the second option needs a lot of computing power and e.g. very accurate psf.

Recovering 70-80% of GCs that were put into the simulations

Recovering most GCs outside 1arcmin of the galaxy center

HOW FAR OUT CAN WE MEASURE STRUCTURAL PARAMETERS?

First example results from **Søren Larsen** with Ishape on the sizes of recovered from the simulated images with artificial Globular Clusters

- Radii slightly too large but able to measuring GCs as extended sources until out to 20Mpc at least
- Limiting: having the accurate PSF for every field

EXTRAGALACTIC GCS WITH EUCLID

- Detectability paper is in preparation and advancing
- We expect ~400.000
 detectable GCs in Euclid
 imaging from theoretical
 predictions
- We have set of simulation of
 VIS imaging with artificial GCs
 on which we base our analysis
 - Purity and completeness estimates
 - Detailed structural parameters

EXTRAGALACTIC GCS WITH EUCLID

- Detectability paper is in preparation and advancing
- We expect ~400.000
 detectable GCs in Euclid
 imaging from theoretical
 predictions
- We have set of simulation of
 VIS imaging with artificial GCs
 on which we base our analysis
 - Purity and completeness estimates
 - Detailed structural parameters

Future:

- Prepare catalogues of known
 GCs as training samples from first year science.
- Machine learning pipelines that automate candidate selection
- Plan systematic spectroscopic
 follow-up of the candidates to
 make them useful for
 dynamical studies