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Falcon-9 launch 
Q3 2023 agreed
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LISA ATHENA
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Revision of the SCI Long-Term Plan
The CM22 LoR settlement, together with the current inflation means an 
approximately constant purchsing power since 2017, i.e. a loss of about 700 Meuro 
from the previous more optimistic Long-Term (10yrs) Plan. We have to work for a 
restoration of buying power in CM25. 
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Multi-Messenger Quest for the first Black Holes
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IMBH & 
SMBH in GC

CXB

Is Dark Matter made up by Primordial Black Holes?



Crosscorrelation Euclid with eROSITA and Athena

A. Kashlinsky LIBRAE-TEAM                        
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where q% is the bin-width over which the power at the given
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fluctuations leads to an improved signal-to-noise ratio (S/N)
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improvements are made when the total background is more
strongly influenced by the cosmological component in the IR
emission than in the X-ray emission, and as long as a low
coherence does not counteract the benefit of using cleaner IR
data: the method identifies the new CXB contributing popula-
tions if (1) they are strongly coherent with the CIB sources,
(2) the CIB power of the new sources is isolated, but (3) their
CXB contributions are drowned in the noise and other X-ray
sources. Furthermore, a given S/N Gaussian-distributed cross-
power corresponds to higher confidence levels than the

2D -distributed auto-power.
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Section 3; this last expression being appropriate when analysis
of a large area of sky is performed after dividing it into smaller
patches. W Ar when the terms inside the sum for W are
q-independent.

3. CXB–CIB Cross-power Uncertainties

To evaluate the S/N one needs the ratios of the cosmic
background to total powers in each of the IR and X-ray bands.
For CIB, we adopt a theoretical model based on the IMF500
model from Helgason et al. (2016), which fits the Spitzer
excess CIB measurements as discussed in Kashlinsky et al.
(2015) with the mean formation efficiency per halo of
f 0.04� � ending at z 10end � . This model, shown in
Figure 2, has negligible CIB contributions in the NISP Y
filter, but dominates remaining known galaxy contributions at
J and H. Strictly speaking it corresponds to stellar emissions
from very massive stars ( M500 : each), but, because those
radiate at the Eddington limit with L Mr as do BHs, they can
be straightforwardly rescaled to BH emissions.
In deep IR images, source subtraction removes Galactic stars

and resolved extragalactic sources. At small angular scales
(e.g., 20� ´) or for relatively shallow observations, the shot
noise of the remaining faint galaxies of known populations will
still contribute to the overall IR background power. Emission
from the Galactic ISM will also remain, and provide a
potentially dominant foreground to the CIB. The power
spectrum of Galactic ISM emission has been measured at
100 μm (e.g., Gautier et al. 1992; Wright 1998; Miville-
Deschênes et al. 2002; Kiss et al. 2003; Lagache et al. 2007;
Bracco et al. 2011; Pénin et al. 2012). These studies were in
regions of various ISM brightness, but we empirically find
using the data from these studies that P I100 100

2.7a r � §( ) , and
renormalize all the reported power spectra to a mean ISM
100 μm intensity of 0.6 MJy sr−1. We rescaled the power
spectra from 100 μm to near-IR using a typical 2–300 μm
spectrum of the ISM,12 extended to shorter wavelengths using
the diffuse Galactic light measurements of Brandt & Draine
(2012), and adjusting at 4� μm to match the redder 3.6/
100 μm color (Arendt & Dwek 2003). The resultant ISM power
spectra at different Euclid wavelengths are shown in Figure 2,
along with the nominal P q2 3Qr ( ) power law that we use to
represent the ISM in further calculations, i.e., P q I3

100
2.7r � §� .

Figure 2. Normalized cirrus power spectra (gray power laws) from various published studies translated to the Euclid wavelengths. Legend marks IR components
adopted in subsequent S/N estimates: (1) the contribution from remaining known galaxies, (2) the Galactic ISM/cirrus, and (3) the ΛCDM power spectrum of the
modeled high-z CIB normalized to Spitzer CIB data.

12 https://irsa.ipac.caltech.edu/data/SPITZER/docs/files/spitzer/
background.pdf
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Diving into the early Universe
First deep JWST image released by president Joe Biden!

It may well contain a glimpse of early star formation induced
by primordial black holes.
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Preliminary JWST Medium-Deep K-Band galaxy counts

First glimpse of a 
new high-redshift 
population?

Can’t wait to see 
the Deep Survey 
results!



Thank you 
very much!


