NAVAL RESEARCH LABORATORY SPACE SCIENCE DIVISION SOLAR AND HELIOSPHERIC PHYSICS BRANCH

Data Product Description Document and FITS Header Specification for the Solar Orbiter Heliospheric Imager (SoloHI)

SSD-SPC-SOLOHI-011 Rev. A

24 January 2022

Approvals

Nathan Rich (Electronically Approved)	January 24, 2022	
SoloHI Ground Systems Lead	Date	
Phil Hess (Electronically Approved)	January 24, 2022	
SoloHI Data Scientist	Date	
Robin Colaninno (Electronically Approved)	January 24, 2022	
SoloHI Principal Investigator	Date	

DISTRIBUTION STATEMENT C: Distribution authorized to U.S. Government Agencies and their contractors; Administrative or Operational Use. Other requests for this document shall be referred Commanding Officer, US Naval Research Laboratory, 4555 Overlook Avenue, S.W. Washington, D.C. 20375-5000.

4555 Overlook Avenue, S.W. Washington, D.C. 20375-5000

RECORD OF CHANGES

Revision Number	Date	Title or Brief Description	Entered By
-	2021 Nov. 22	Released Via ERN# SOLOHI-206.	D. Brooks
A	2022 January 24	Revised Per CCN# SSD-SPC-SOLOHI- 011-001.	D. Brooks

TABLE OF CONTENTS

1	INT	RODUCTION 1	L
	1.1	Purpose 1	L
	1.2	Applicable Documents 1	L
	1.3	Reference Documents 1	L
	1.4	Acronyms and Abbreviations)
2	Ove	rview ²	ł
	2.1	SoloHI Instrument Description	ł
	2.2	Science Objectives	5
	2.3	Data Generation Process5	5
	2.4	Baseline Science Observing Program in Detail	1
3	Scie	ntific Measurements)
	3.1	Coordinate System	L
4	DAT	TA PRODUCT DESCRIPTIONS 12	2
	4.1	Level-1 FITS	ł
	4.2	Level-2 FITS	ŀ
	4.2	.1 Level-2b FITS: First-Order Backgrounds	ł
	4.3	Level-3 Data Products	;
	4.3	.1 Level-3 FITS	5
	4.3	.2 Instrumental Artifacts Model	5
	4.3	.3 Level-3 PNG	5
	4.3	.4 Level-3 MPEG 16	5
	4.3	.5 Level-3 MVI	5
	4.4	Revision Management	5
5	FITS	S Header Definition	1
	5.1	Table Description 17	7

5.2	Implementation	17
5.3	Keyword Definition Table	18

TABLE OF FIGURES

Figure 2-1: SoloHI Instrument	4
Figure 2-2: SoloHI Concept of Operations	6
Figure 2-4: SoloHI Observing Regions	7
Figure 2-3: SoloHI Detector Mosaic	9
Figure 2-5: SoloHI Individual Region Example (Perihelion Shock Program)	10

1 INTRODUCTION

1.1 Purpose

This Data Product Description Document (DPDD) describes the format and content of the Solar Orbiter Heliospheric Imager (SoloHI) data. It includes descriptions of the data products and associated metadata, including the data format, content, and generation pipeline. These products will be stored and distributed from the Solar Orbiter Science Archive (SOAR) of ESA's Solar Orbiter Science Operations Center (SSOC).

The specifications described in this DPDD apply to all SoloHI Science products submitted to the SSOC. A similar document will be provided by the SOC, describing the SoloHI LL02 data that were generated at SOC after processing the LL01 data.

1.2 Applicable Documents

[METADATA] SOL-SGS-TN-0009, Rev2.2 Metadata Definition for Solar Orbiter Science Data

1.3 Reference Documents

[FITSchecksum] Checksum Keyword Convention,

	http://fits.gsfc.nasa.gov/registry/checksum/checksum.pdf					
[FITSDOC]	Definition of the Flexible Image Transport System,					
	http://fits.gsfc.nasa.gov/standard30/fits_standard30aa.pdf					
[FITSDICT] FITS Standard keyword definitions,						
	http://heasarc.gsfc.nasa.gov/docs/fcg/standard_dict.html					
[SODMP]	LWS-SO-PLAN-0008, RevB Solar Orbiter Project (NASA) Data Management Plan					
[SCEICD]	NCST-ICD-HI003 SoloHI Camera Electronics Command Telemetry and Data Handling ICD					
[TEMPLATE]	SOL-SGS-OTH-0004 Solar Orbiter Data Product Description Document template					
[SOAR]	SOL-SGS-PL-0009, Solar Orbiter Archive Plan					
[SOM]	SSD-DOC-SOLOHI-009, SoloHI Science Operations Manual (20161012)					
[IUM]	SSD-DOC-SOLOHI-013, Rev J SoloHI Instrument User Manual					
[LLDPDD]	SSD-DOC-SOLOHI-059, Rev B SoloHI Low Latency Data Product Description					
	Document					

SoloHI DPDD

1.4 Acronyms and Abbreviations

APS	Active Pixel Sensor
AU	Astronomical Unit
В	Brightness
BOL	Beginning of Life
CC	Camera Card
CCD	Charge Coupled Device
CCSDS	Consultative Committee for Space Data Systems
CME	Coronal Mass Ejection
CRS	Cosmic Ray Scrub in camera electronics
DIB	Detector Interface Board
DN	Digital Number
DPT	Data Processing Tool
DRB	Detector Readout Board
EDDS	EGOS Data Dissemination System
EID-A	Experiment Interface Document, Part A
EID-B	Experiment Interface Document, Part B
EOL	End of Life
FITS	Flexible Image Transport System for Astronomy
FOV	Field of View
FWHM	Full Width, Half Maximum
GSE	Ground Support Equipment
IGTAS	Instrument Ground Test Archival System
IRD	Instrument Requirements Document
LASCO	Large Angle and Spectrometric Coronagraph
LED	Light-emitting Diode
LL	Low Latency Data
LL01	Low Latency Level 1
LL02	Low Latency Level 2
MET	Mission Elapsed Time
MTF	Modulation Transfer Function
NIEL	Non-ionizing Energy Loss
NRL	Naval Research Laboratory
OPST	Observation Planning and Scheduling Tool
PC	Processor Card
PEC	Power Electronics Card

POC	Payload Operations Center
PSP	Parker Solar Probe
REC	Relay Electronics Card
ROI	Region of Interest
R _{sun}	Solar Radius
SCE	SoloHI Camera Electronics
S/C	Spacecraft Bus
SECCHI	Sun Earth Connection Coronal and Heliospheric Investigation
SIM	SoloHI Instrument Module
SITD	Spacecraft and Instrument Telemetry Display
SNR	Signal to Noise Ratio
SOHO	Solar and Heliospheric Observatory
SoloHI	Solar Orbiter Heliospheric Imager
SOAR	Solar Orbiter Archive
SOOP	Solar Orbiter Observing Program
SPS	SoloHI Power System
SRD	Science Requirements Document
SSMM	Sold State Mass Memory
STEREO	Solar Terrestrial Relations Observatory
TID	Total Ionizing Dose
TDS	Telescope Development System
UFOV	Unobstructed Field of View
USB	Universal Serial Bus
WISPR	Wide-field Imager on Solar Probe

2 Overview

The Solar Orbiter Heliospheric Imager (SoloHI) instrument for the ESA/NASA Solar Orbiter mission will track density fluctuations in the inner heliosphere, by observing visible sunlight scattered by electrons in the solar wind. Fluctuations are associated with dynamic events such as coronal mass ejections, but also with the "quiescent" solar wind. SoloHI will provide the crucial link between the low corona observations from the Solar Orbiter instruments and the in-situ measurements on Solar Orbiter.

2.1 SoloHI Instrument Description

SoloHI is a visible-light telescope, based on the SECCHI/Heliospheric Imager (HI) on the STEREO mission. In SoloHI, a series of baffles reduce the scattered light from the solar disk and reflections from the spacecraft to levels below the scene brightness, typically by a factor of 10^{12} . The fluctuations are imposed against a much brighter signal produced by light scattered by dust particles (the zodiacal light/F-corona). SoloHI is a single telescope with a 48° optical field of view (FOV) beginning at approx. 5° from the Sun center.

Figure 2-1: SoloHI Instrument

2.2 Science Objectives

SoloHI will be able to image the solar wind as it travels away from the Sun and impinges on Solar Orbiter and other inner heliospheric probes including Earth-orbiting instruments. SoloHI will have twice the field of view of the earlier SECCHI/HI1 instrument with improved spatial resolution, and comparable signal-to-noise ratio. As Solar Orbiter approaches the Sun, the instrument resolution will increase and the FOV will decrease relative to 1 AU. At perihelion, the SoloHI will have the same effective resolution as the SOHO LASCO/C2 coronagraph, with the same FOV size as LASCO/C3, but still with the same excellent signal-to-noise ratio. This vantage point will enable SoloHI to address the following Solar Obiter scientific questions:

- What are the origins of the solar wind streams and the heliospheric magnetic field?
- What are the sources, acceleration mechanisms, and transport processes of solar energetic particles?
- How do coronal mass ejections evolve in the inner heliosphere?
- What is the three-dimensional structure of the heliosphere?

SoloHI builds on the experience from the SECCHI instruments, on the NASA STEREO mission, and WISPR on PSP.

2.3 Data Generation Process

SoloHI image data packets are retrieved from the Solar Orbiter MOC via EDDS. They are then played back using the ITOS ground system to generate image files. The image files are then processed with an IDL procedure to decompress them and generate Level 1 FITS files. Further data products are generated using these files.

The SoloHI data products are produced by the SoloHI team at the SoloHI Science Processing and Data Center (SPDC) at NRL. A copy of the FITS data products resides at the Solar Data Archive Center (SDAC) at GSFC, and at the ESA SOAR in Spain. NRL will provide an online database query of the header keywords and the ability to download data that is pointed to be the query result.

Figure 2-2: SoloHI Concept of Operations

Figure 2-2 identifies the interfaces and concept of operations between the SoloHI Science Planning and Data Center (SPDC) at NRL and the Solar Orbiter Science Ground Segment (SGS). All receipt of telemetry from and commanding of the SoloHI instrument is via the Solar Orbiter Science Operations Center (SSOC) at the European Space Astronomy Center (ESA/ESAC) near Madrid. The Solar Orbiter Mission Operations Center (SMOC) and the spacecraft communications infrastructure are provided by the European Space Operations Center (ESA/ESOC) in Darmstadt.

The [IUM] SSD-DOC-SOLOHI-013 SoloHI Instrument User Manual was provided to the ESA/ESOC. The IMU includes details on housekeeping operation of the instrument and on-orbit contingency and safety procedures. The SoloHI team supports Solar Orbiter spacecraft and science operations meetings and functions as required. The SPDC specifies instrument commands to the SSOC to be coordinated with other instruments' commands for submission to the SMOC as consolidated payload operations requests. The SMOC in turn processes and merges the submitted requests into a timeline to be uplinked to the spacecraft. The SPDC receives and archives all instrument telemetry from the SSOC and provides data products to the science community as well as to the Solar Orbiter Data Archive at ESAC.

2.4 Baseline Science Observing Program in Detail

The SoloHI baseline observing program is be designed to satisfy the observing program requirements in the SoloHI Baseline science measurement requirements and to satisfy the SoloHI telemetry allocation. Nominally, SoloHI will be operated during three separate 10-day periods during each approximately 150-day orbit (30 days per orbit). Data will be stored on the onboard recorder SSMM for transmission to the ground during the contact period. A highly compressed subsets of the science data is provided as a quick-look preview in the low latency data pipeline describe in [LLDPDD] SSD-DOC-SOLOHI-059, SoloHI Low Latency Data Product Description Document.

Figure 2-3: SoloHI Observing Regions

There are 8 orbits (LTP 05 – LTP 12) in the Baseline Science Nominal Mission Period (NMP) and an additional 8 orbits (LTP 13 – LTP 22) in the Extended Mission Period (EMP). If these 16 orbits are plotted as a function of the instrument distance from the sun and the solar latitude, as shown in Figure 2-4, it is apparent that there are only 4 unique orbits in the combined Solar Orbiter NMP and EMP. Specifically, there are 2 unique orbits for the Baseline science mission (Orbits I and II) and 2 unique orbits for the extended science mission (Orbits III and IV).

Nominally, the same set of synoptic observations will be taken during each orbit with similar characteristics. In addition to the synoptic observations, a number of critical periods have been identified during which we expect to increase the frequency and amount of SoloHI data above that contained in the baseline synoptic program.

Observations near perihelion will focus on science objectives that benefit from higher spatial or temporal resolution. Full resolution images will be obtained, and the FOV will be limited if necessary, by transmitting only a portion of each image to the onboard recorder.

The periods near maximum northern and southern heliolatitudes will be of particular interest for out-of-ecliptic observations of heliospheric structures. This will be particularly significant during the latter part of the NMP, and during the EMP, when the orbit inclination increases.

Special configurations of interest will occur at quadrature, and conjunction with Earth or other heliospheric probes such as STEREO, PSP or Bepi-Colombo. (Quadrature occurs when the probe lies on or near the Thomson surface.) Additional observations may be scheduled during these periods and during other periods of joint operations between multiple missions. The various types of observations may be coordinated with other Solar Orbiter instruments as part of a Solar Orbiter Observing Program (SOOP).

3 Scientific Measurements

SoloHI uses the new detector technology of Advanced Pixel Sensor (APS) developed by SRI. The SoloHI camera operates a mosaic of four 2048x1920 pixel detector tiles. The average plate scale is 35.5 arcsec/pixel. Each detector tile has 10 rows and 10 columns of opaque pixels, i.e. pixels shielded from light, which are used for measuring dark current and column-to-column variations. For each tile, multiple readouts are obtained over a period of several minutes and are summed onboard to create an image with increased the signal-to-noise ratio and to reduce the telemetry load.

Each corner of the mosaic has pixels that are not physically masked but also not fully illuminated by the optics. Figure 2-2 shows the position of the optical projection onto the detector mosaic, layout of each individual detector tile, and the masked rows and columns on the left and bottom edges. The size of the gap between detectors is 44 pixels.

Each detector tile is 2-side buttable, and is rotated 90° to keep the signal lines accessible to the perimeter. However, the 90° rotation also rotates the rows and columns and forces a different readout direction for each tile. The native origin of each image (lower left corner) as returned by the instrument is always the outer corner. As a result, re-assembly of the images into a full scene involves transposing as well as rotation.

The camera electronics have 256 MB of memory and are capable of doing simple image processing. The three functions provided in the camera FPGA are cosmic ray scrub, pixel binning

and image summing. Images are stored in the camera memory and then transferred to the LEON3FT processor for further image processing and image compression before being sent to the spacecraft. The LEON3FT manages the camera buffers in both the camera card and the processing card. The camera can read out regions of interest (ROI) on each detector depending upon the microcode and parameters loaded to its registers. Details of the onboard image process can be found in the [SOM] SSD-DOC-SOLOHI-009, SoloHI Science Operations Manual.

Scene readout is done by individual detector tiles, and more specifically by row. There are two readout chains so two readouts can be done at once, one using the outer detectors (top) and one using the inner (bottom) detectors. This also allows different settings for the outer and inner detectors. The readout is controlled by camera microcode that is uploaded to set the timing of each readout chain. The microcode reads register values to set parameters such as exposure time and image extent. Since the APS pixels are row and column addressed, they can be read out with different timing i.e. for a single detector tile one block of rows can be read out at a different rate than another, within the readout timing constraints of top or bottom and one row at a time.

To commence observing, the microcode is loaded to the camera along with settings of all of the registers. After being commanded to begin executing, individual exposures are sent to the camera electronics for initial processing. When a sum of exposures is finished, it is sent to the LEON3FT processor for further processing (such as compression) and packetization before being sent to the SSMM. The microcode runs in a continuous loop until commanded to stop.

Figure 2-2: SoloHI Individual Region Example (Perihelion Shock Program)

Figure 2-3 illustrates the various regions returned for a single observing program. A separate image file is generated for each region. The region numbers will correspond to the number of distinct regions in a given tile for each observing program, not specific ROIs defined by fixed pixel coordinates. For different observing sequences, the same region number in the same tile can correspond to different regions on the detector.

3.1 Coordinate System

SoloHI FITS files are annotated according the World Coordinate System [WCS]. Specifically, the SoloHI telescope relies on a zenith polynomial (ZPN) projection. These are described by nine keywords representing the distortion polynomial, PV1_j and PV2_j. The polynomial parameters in these keywords have been preliminarily derived from ground measurements and updated based on in-flight calibration data. In addition to the distortion, the other key parameters determined on the ground and since updated are the boresight pixel (CRPIXi) and the instrument roll matrix (PCi_j). The boresight pointing of the instrument (CRVALi) is determined from the SPICE kernel.

An image for a given tile from the mosaic is read out from the detector and must be rectified (rotated and/or transposed) to form the mosaic. The rectification is unique for each tile. Because the individual tiles form a single optical system, the distortion coefficients, roll matrix and boresight pointing are the same regardless of tile and rectification. The boresight pixel will be unique to each tile, based on its relative location within the mosaic.

Tile	Rotation (counter- clockwise)	Transposed?
1	90°	Yes
2	180°	Yes
3	270°	Yes
4	0°	No

Tile-Specific Rectification Operation:

4 DATA PRODUCT DESCRIPTIONS

The SoloHI filenames are defined by solo_L#_descriptor_YYYYMMDDHHMMSS_V#.fits where L# and V# refer to the processing level and version number of the file, respectively. The SoloHI data descriptor is defined as "solohi-XYZ", with each "XYZ" character encoding different information about the file. The possible values of 'X', 'Y' and 'Z' are:

Х		Y		Z	
Value	Definition	Value	Definition	Value	Definition
1	Tile 1	f	Full field without bias subtraction	b	Bias Image
2	Tile 2	g	Full field with bias subtraction	h	Header Only
3	Tile 3	u	Subfield without bias subtraction	S	Sum of multiple exposures, full resolution
4	Tile 4	v	Subfield with bias subtraction	t	Sum of multiple exposures, binned
m	Mosaic of all tiles			f Single exposure, resolution	
				g	Single exposure, binned

The SoloHI team distinguishes between "quick-look" and "released" data products. The quick-look products are generated as soon as they are received and may be reprocessed several times until the released product is produced. A "released" data product is produced on a per-orbit basis, about 3 months after the data for a full orbit has been received.

Data Level	Product Title	Contents	Volume (GB/orbit)	Format	Latency	Frequency
L1	Level-1 quick- look	uncalibrated image data	23	FITS	7 days	as received; track- dependent
L1	Level-1 released	uncalibrated image data	23	FITS	T₀+ 7 days	per orbit
L2	Level-2 quick-look *	calibrated image data	23	FITS	T₀+ 7 days	as received; track- dependent
L2	Level-2 released	calibrated L1 images	23	FITS	T ₀ + 3 months	per orbit

L2b	Level-2b released	calibrated backgrounds	15	FITS	T₀+ 1 orbit	per orbit
L3	Background- subtracted quick-look	calibrated images with background removed	23	FITS	T ₀ + 14 days	per orbit
L3	Background- subtracted released	calibrated images with background removed	23	FITS	T ₀ + 1 orbit	per orbit
L3	Browse images (quick-look and released)	uncalibrated binned images with background removed, and compressed	2	PNG, JPG	varies with level	per orbit
L3	Browse movies	browse images	15	MPG, MVI	varies with level	per orbit
L3	Jmaps	time-elongation plots, uncalibrated	1.5	PNG	TBD	per orbit
L3	syncronic or Carrington maps	heliospheric brightness at selected elongation angles	0.15	FITS, PNG	TBD	per orbit
L4	CME masses		2	FITS	T₀+ years	annually

In the following table T_0 represents the time after the last data from a given orbit have been received at NRL.

Table 1: Summary of SoloHI Data Products

* The SoloHI L2 quick-look data is an interim product providing an initial look at the observations before complete processing and calibration. The L2 "Released" data set will supersede the quick-look L2. When the calibration is updated (infrequently), the SoloHI team will regenerate the Level-2 data. A best and final Level-2 dataset will be provided after end of mission (Phase F).

4.1 Level-1 FITS

The SoloHI Level-1 FITS data are de-compressed uncalibrated image data with no correction applied, except for rectification so that solar north is (approximately) up. Each detector tile is a separate file using the detector number from Figure 1 to specify tile. Data units are DN. Individual sub-fields are separate files.

Files are organized by date. In addition, there is a sub-category called "highcadence" for high cadence subfields.

4.2 Level-2 FITS

The Level-2 data are calibrated Level-1 files in units of Mean Solar Brightness (MSB). Every pixel is multiplied by a correction factor determined on the ground as a function of intensity in the pixel to account for the non-linearity of the detector, particularly at high intensities. If a bias image has not been subtracted onboard, a bias based on the masked pixels of the detector is subtracted. Any additional offset term applied for on-board bias subtraction to prevent negative values is determined from the remnant signal in the masked pixels and removed. If the image was binned to reduce size by combining pixels, the image is divided by the number of original pixels that make up each binned pixel. If the image has been truncated onboard (divided by 2ⁿ) the array is multiplied by the same. Next, the image is divided by the exposure time to convert the data from DN to DN/s. A vignetting correction function is applied to the image. Lastly, a calibration factor determined from Solar Brightness (MSB).

Files are organized as in L1. There is a 1-1 relationship between L1 and L2 FITS files.

Software is provided to combine the individual Level 1 and Level 2 images into a detector mosaic.

4.2.1 Level-2b FITS: First-Order Backgrounds

An individual background model is created for each individual Level-2 single tile image. The first of three steps in the process is aimed at determining a pseudo-noise average level of each individual image as a function of image column, hereafter the σ -level of the image. (For computational purposes, each image is resized to 960x1024 regardless of the original size). In this way, the noise of each individual image is characterized by an array of 960 elements (σ^i_j ; where *i* represents the image processed and *j* the column number). To minimize the detrimental effect of image to image variation resulting from the statistical nature of the algorithm (if uncorrected it would introduce a flickering in the time evolution of the overall background intensity), as many images as possible must be processed to allow for the large-scale homogenization of the pseudo-noise model.

The second step is a 2-stage statistical modeling of the individual column profile brightness of each image that exploits the smooth variation of the F corona and the known break in spatial scales

between K-coronal features of interest and the broad contributions from F and stray light elements of the background (hereafter B^{i}_{j}).

Finally, the third step is the determination of the base brightness level of each individual model computed in step 2. This is done by subtracting 3 times σ^{i}_{j} to each B^{i}_{j} . The resulting products (hereafter L2b) are the first-order background models for the corresponding individual L2 images.

4.3 Level-3 Data Products

Further processing (e.g., background subtracted images corrected by instrumental artifacts) and user-friendly sets for easy visualization are Level-3 (they may or may not have calibrated units). The latter includes, e.g. browse images, movies (of browse images), height-time maps/plots (Jmaps), Carrington maps, etc. Format may be FITS, PNG, MPEG, etc. as appropriate.

4.3.1 Level-3 FITS

This section provides a general outline of the Level-3 FITS processing. The procedure is in continuous development as we increase our understanding of the factors involved.

The purpose of the L3 data products is to reveal the dynamics of the faint K-corona signal. This is achieved by removing the background brightness from the L2 data (i.e., calibrated data in mean solar brightness units --MSB). Here we are defining background signal as everything but the K-corona. Because of the orbital characteristic of the Solar Orbiter mission (eccentric orbits with large changes in latitude), the background removal is a complex process. Briefly, this process involves the construction of a first-order background for each individual SoloHI image (L2b images) and the subsequent computation of a "grand minimum model" to account for the instrumental artifacts.

Once the individual first-order background models are computed, the corresponding background difference images are created. These difference images clearly show the faint K-corona signal. However, since the L2b background models do not include any artifact of an instrumental nature, the procedure enhances the relative contribution of this unwanted signal. But, the F-corona signal in the difference images is now absent, the creation of an instrumental artifacts model is possible by exploiting the time-domain.

These difference images corrected by the instrumental artifacts model will constitute the SoloHI Level-3 FITS data product. The files are organized by orbit, detector, and then date.

The process to generate the L3 FITS data product requires regular cadence of a given type of observation over a long period. As a result, some observations appearing in L1 and L2 may not have a L3 product. These include intermittent partial-frame subfields and high cadence data.

Full FOV mosaic images are provided as a Level-3 data product. There is a 4-1 relationship between L1 and L2 FITS files.

4.3.2 Instrumental Artifacts Model

To create the instrumental artifact model (one per interval per tile per bin size set), we follow the well-known and already established technique of computing the models as the 10-percentile signal over the time period. (We use a 10-percentile rather than the minimum to exclude the effect of outliers.)

A well-known problem of this approach is the remnant signal in the model that could arise from pseudo-stationary K-corona features (e.g., a long-lived streamer) in the time period considered. Near co-rotation of the S/C with the Sun (about $\pm 7^{\circ}$) during the time period of the observations make this problematic. To date, we have not found a way to fully circumvent this issue. However, we did implement a procedure to mitigate the artifacts introduced by the presence of a remnant coronal signal in this model.

The use of the 10-percentile can introduce a difference between orbits, due to the varying distance from the Sun. The brightness distribution falls off with heliocentric distance, so images that are furthest from the Sun will contribute the most to the 10-percentile. If the observations don't all have the same range of heliocentric distances, then the 10-percentile level will be different between windows.

4.3.3 Level-3 PNG

These are browse images to allow quick viewing of the contents of the FITS files. There is a 1-1 correspondence between a file in the rel/fits/ directory and PNG files. File names (and path) match the FITS filenames except for the suffix. The images are byte-scaled to best illustrate the content of the image. Each level of FITS is scaled somewhat differently:

• L3: Data is scaled so the median is around 1.0 and corrected for sun distance.

4.3.4 Level-3 MPEG

MPEG format animations from the L3 FITS combine the 4 tiles and maps them onto an ARC projection. They are scaled in a manner similar to the L3 PNGs.

4.3.5 Level-3 MVI

The MVI format was internally developed at NRL as a simple method for storing image data along with metadata for each frame. They are not compressed.

4.4 Revision Management

The data product version number indicates how many times the product has been regenerated. Modifications to processing software, changes to calibration or other input files, and header (metadata) changes are all examples that would cause the version number to increase. Data entry

errors, transmission problems or other types of failures may also cause a product to be re-released and thus have the data product version number incremented. The data product version is tracked by the VERSION keyword in the FITS header and also indicated in the filename. Version zero (V0) in the filename indicates a quicklook data product; it's VERSION number in the header may increment but the quicklook filename will not change.

5 FITS Header Definition

5.1 Table Description

The following table has 6 columns: KEYWORD, TYPE, VALUES/UNIT, DESCRIPTION, and SOURCE:

KEYWORD gives the name of the FITS keyword and may be up to 8 characters.

TYPE refers to the data type of the header value:

- S String (max 68 chars)
- I Integer
- R Real
- L Logical (ASCII char, T or F)

The size of the data depends upon the data type. For example, S2 is a 2-character string, whereas I2 is a 2 byte integer (16 bits).

VALUES: shows the range of values that the KEYWORD can take. If they values is a physical quantity then the unit are given.

DESCRIPTION: gives a short description of the keyword.

SOURCE: gives information about where the keyword value comes from.

- "BSF" implies the value is read directly from the command and put in the image header
- "FSW" implies the value is computed by FSW or read from a camera register

5.2 Implementation

This document is implemented in the SolarSoft procedures define_solohi_hdr.pro,v 1.62 and make_solohi_hdr.pro.

5.3 Keyword Definition Table

KEYWORD	TYPE	VALUES	DESCRIPTION	SOURCE
APID	I*2	Any	Integer Application ID for the telemetry from which this image is generated.	FSW shdr.FILE_RAW
ΒΙΤΡΙΧ	I*2	16, 32, - 32, -64	Number of bits per pixel (multiple of 8)	FITS
BLANK	I*16	-32768, 0	-32768 for UINT, 0 for LONG, otherwise ignored	Pipeline
BSCALE	R*4	Any	For FITS use only. If missing, then assumed to be 1: output data = FITS data * BSCALE + BZERO	Constant
BUNIT	S*20	DN DN/s UNITLES S MSB etc.	Physical unit of array values (after BZERO and BSCALE, if present, are applied)	Definition
BZERO	R*4	Any	For FITS use only. Physical value for the array value 0. If missing, then assumed to be zero.	Pipeline
CAMERA	S*5	FM	Version of SoloHI Camera Electronics	Constant
CAR_ROT	I*2	Num	Carrington Rotation number	Sunspice
CC2_i	I*2	Any	Group 2 Bias	FSW basehdr.CC2_i
CC6_i	I*2	Any	Group 6 Bias	FSW basehdr.CC6_i
CCBOTUCO	I*2	Any	Version ID of Readout ucode used on Bottom	FSW basehdr.CCbotUcode
CCEXPCTL	I*2	Any	CC Parameters	FSW basehdr.CCexpctrl
CCIMGCNT	I*2	Any	Counter of images sent from camera to SDRAM	FSW basehdr.CCImgCntr
CCISUCOD	I*2	Any	Version ID of Sequencer ucode used	FSW basehdr.CCisUcode

SoloHI DPDD

KEYWORD	TYPE	VALUES	DESCRIPTION	SOURCE
CCREPEAT	I*2	Any	Num of images for CC task to take of this type	FSW basehdr.numPerROI
CCSEQTIM	I*2	Any	Current value of sequence timer in microcode.	FSW basehdr.CCSeqTime
ССТОРИСО	I*2	Any	Version ID of ucode used on Top	FSW basehdr.CCtopUcode
CCUCODE	S*3	Any	Subscript of Readout Microcode from ucdtbldt.img or isreadout.cpp for this image (5 LSB of ccTopUcode or ccBotUcode)	FSW basehdr.CCtopUcode or basehdr.CCbotUcode
CDELT1	R*4	Deg	Coordinate increment at reference point (platescale) for horizontal axis	Calibration
CDELT1A	R*4	Deg	Coordinate increment at reference point (platescale) for horizontal axis	Calibration
CDELT2	R*4	Deg	Coordinate increment at reference point (platescale) for vertical axis	Calibration
CDELT2A	R*4	Deg	Coordinate increment at reference point (platescale) for vertical axis	Calibration
CHECKSUM	S		String whose value forces the 32-bit 1's complement checksum accumulated over the entire FITS HDU to equal negative 0	Pipeline
COMMENT	S*71	Any	Comment. Can be repeated.	Varies
COMP_RAT	R*4	≥1.0	Uncompressed/compressed quality ratio. Nominally, the compressed information content divided by the uncompressed information content, expressed as a percentage. The aim of a numeric value is to have a sortable item, so that users/programs can pick the best observation that satisfies any other (search) criteria.	Pipeline, XFBYTES

SoloHI DPDD

KEYWORD	TYPE	VALUES	DESCRIPTION	SOURCE
COMPRESS	S*19	Type of compres sion	Lossless' - Data compression quality choice among 5 possible words, see description String A cross-instrument description of the data compression quality None - no compression applied Lossless - lossless compression, Lossy-high quality - lossy compression applied. Data quality is mostly unaffected. Lossy-strong - strong lossy compression applied. Analysis of data should take into account frequent compression artefacts. Lossy-extreme - extreme lossy compression applied. Data quality is visibly affected	Derived from basehdr.ipcmdlog
COSMICR	L	F(T)	Cosmic Ray Removal was enabled.	FSW basehdr.cccrs
COSMICS	I*4	Any	Number of pixels changed by Cosimic Ray Removal	FSW basehdr.CRSreport
CREATOR	S*3	>	<software +="" name="" version=""> / FITS creation software & version</software>	Pipeline
CRLN_OBS	R*8	Deg	S/C Carrington longitude	Sunspice
CRLT_OBS	R*8	Deg	S/C Carrington latitude	Sunspice
CRPIX1	R*4	Any	Pixel coordinate of reference point on horizontal axis	Calibration
CRPIX1A	R*4	Any	Pixel coordinate of reference point on horizontal axis	Calibration
CRPIX2	R*4	Any	Pixel coordinate of reference point on vertical axis	Calibration
CRPIX2A	R*4	Any	Pixel coordinate of reference point on vertical axis	Calibration
CRVAL1	R*4	Deg	Coordinate of reference point, reference frame horizontal axis	SPICE

KEYWORD	ТҮРЕ	VALUES	DESCRIPTION	SOURCE
CRVAL1A	R*4	Deg	Coordinate of reference point, reference frame horizontal axis	SPICE
CRVAL2	R*4	Deg	Coordinate of reference point, reference frame vertical axis	SPICE
CRVAL2A	R*4	Deg	Coordinate of reference point, reference frame vertical axis	SPICE
CTYPE1	S*8	HPLN-ZPN	WCS axis X	Constant
CTYPE1A	S*8	RAZPN	WCS axis X P	Constant
CTYPE2	S*8	HPLT-ZPN	WCS axis Y	Constant
CTYPE2A	S*8	DECZPN	WCS axis Y P	Constant
CUNIT1	S*3	Deg	Units of coordinate increment and value	Constant
CUNIT1A	S*3	Deg	Units of coordinate increment and value	Constant
CUNIT2	S*3	Deg	Units of coordinate increment and value	Constant
CUNIT2A	S*3	Deg	Units of coordinate increment and value	Constant
DATAAVG	R*4	Any	Average pixel value of non-zero pixels	Derived
DATAMAX	R*4	Any	Maximum value of the image (< DSATVAL).	Derived
DATAMDN	R*4	Any	Median pixel value of non-zero pixels	Derived
DATAMIN	R*4	Any	Minimum value of the image.	Derived
DATAP01	R*4	Any	Value at 1% of histogram	Derived
DATAP10	R*4	Any	Value at 10% of histogram	Derived

KEYWORD	ТҮРЕ	VALUES	DESCRIPTION	SOURCE
DATAP25	R*4	Any	Value at 25% of histogram	Derived
DATAP50	R*4	Any	Value at 50% of histogram	Derived
DATAP75	R*4	Any	Value at 75% of histogram	Derived
DATAP90	R*4	Any	Value at 90% of histogram	Derived
DATAP95	R*4	Any	Value at 95% of histogram	Derived
DATAP98	R*4	Any	Value at 98% of histogram	Derived
DATAP99	R*4	Any	Value at 99% of histogram	Derived
DATASAT	I*4	Any	Number of pixels saturated	Derived
DATASIG	R*4	Any	Standard deviation of pixel values of non- zero pixels	Derived
DATASUM	S		unsigned integer value of the 32-bit 1's complement checksum of the data	Pipeline
DATAZER	I*4	Any	Number of pixels = 0	Derived
DATE	S*23	Any	<yyyy-mm-ddthh:mm:ss[.sss]> [UTC] time of FITS file creation</yyyy-mm-ddthh:mm:ss[.sss]>	Pipeline
DATE_AVG	S*23	Any	<yyyy-mm-ddthh:mm:ss[.sss]> [UTC] midpoint of observation</yyyy-mm-ddthh:mm:ss[.sss]>	Derived
DATE_BEG	S*23	Any	<yyyy-mm-ddthh:mm:ss[.sss]> [UTC] start time of exposure for observation</yyyy-mm-ddthh:mm:ss[.sss]>	FSW basehdr.actexptimecoarse, basehdr.actexptimefine
DATE_EAR	S*23	Any	<yyyy-mm-ddthh:mm:ss[.sss]> Start time of observation, corrected to Earth</yyyy-mm-ddthh:mm:ss[.sss]>	Derived
DATE_END	S*23	Any	<yyyy-mm-ddthh:mm:ss[.sss]> [UTC] end of readout of last image of the observation</yyyy-mm-ddthh:mm:ss[.sss]>	TELAPSE

KEYWORD	ТҮРЕ	VALUES	DESCRIPTION	SOURCE
DATE_OBS	S*23	Any	DATE_BEG	FSW basehdr.actexptimecoarse, basehdr.actexptimefine
DATE_SUN	S*23	Any	<yyyy-mm-ddthh:mm:ss[.sss]> Start time of observation, corrected to Sun</yyyy-mm-ddthh:mm:ss[.sss]>	Derived
DETECT_T	R*4	Any	Detector Temperature	Instrument HK
DETECTOR	I*2	1-4	Detector tile number	BSF basehdr.detector
DOORPOS	I*1	0,1,2	Telescope door state (0=Closed, 1=In Transit, 2=Open)	FSW basehdr.actualdoorposition
DRB_T	R*4	Any	DRB Temperature	Instrument HK
DSATVAL	I*4	Any	Value used as saturated	Derived
DSTART1	I*2	1	First column of image area on data array	Pipeline
DSTART2	I*2	1	First row of image area	Pipeline
DSTOP1	I*2	Any	Last column of image area	Pipeline
DSTOP2	I*2	Any	Last row of image area	Pipeline
DSUN_OBS	R*8	m	S/C distance from Sun	Sunspice
EAR_TDEL	R*8	sec	Time(Sun to Earth) - Time(Sun to S/C)	Sunspice
EXTEND	L	T(F)	Indicates that there is (not) an extension	Pipeline
FILE_RAW	S*12	Any	Downloaded image filename	FSW basehdr.filename

SoloHI DPDD

KEYWORD	TYPE	VALUES	DESCRIPTION	SOURCE
FILENAME	S*42	>	Name of the FITS file: solo_ <level>_<descriptor>_<datetime>_Vxx.fi ts; descriptor contains information on tile and image specification (see Section 4 for details); datetime is from MET and fixed epoch, Example: solo_L1_solohi- 1ff_20201012T045612_V00.fits</datetime></descriptor></level>	Derived
FINAL	L	F(T)	T if Released version, F if quicklook	Pipeline
GAINCMD	S*2	АВ	Commanded Gain values used in camera where A=PGA_LEV1 and B=PGA_LEV0	BSF basehdr.gain
GAINMODE	S*6	low, high, simadc	Gain mode of microcode used, or simulated image	Derived from basehdr.gainmode and shdr.ccucode
GSEX_OBS	R*8	m	S/C Geocentric Solar Ecliptic X	Sunspice
GSEY_OBS	R*8	m	S/C Geocentric Solar Ecliptic Y	Sunspice
GSEZ_OBS	R*8	m	S/C Geocentric Solar Ecliptic Z	Sunspice
HAEX_OBS	R*8	m	S/C Heliocentric Aries Ecliptic X P	Sunspice
HAEY_OBS	R*8	m	S/C Heliocentric Aries Ecliptic Y P	Sunspice
HAEZ_OBS	R*8	m	S/C Heliocentric Aries Ecliptic Z P	Sunspice
HCIX_OBS	R*8	m	S/C Heliocentric Inertial X P	Sunspice
HCIX_VOB	R*8	m/s	S/C Heliocentric Inertial X Velocity P	Sunspice
HCIY_OBS	R*8	m	S/C Heliocentric Inertial Y P	Sunspice
HCIY_VOB	R*8	m/s	S/C Heliocentric Inertial Y Velocity	Sunspice
HCIZ_OBS	R*8	m/s	S/C Heliocentric Inertial Z P	Sunspice

KEYWORD	ТҮРЕ	VALUES	DESCRIPTION	SOURCE
HCIZ_VOB	R*8	m/s	S/C Heliocentric Inertial Z Velocity	Sunspice
HEEX_OBS	R*8	m	S/C Heliocentric Earth Ecliptic X	Sunspice
HEEY_OBS	R*8	m	S/C Heliocentric Earth Ecliptic Y	Sunspice
HEEZ_OBS	R*8	m	S/C Heliocentric Earth Ecliptic Z	Sunspice
HEQX_OBS	R*8	m	S/C Heliocentric Earth Equatorial P	Sunspice
HEQY_OBS	R*8	m	S/C Heliocentric Earth Equatorial P	Sunspice
HEQZ_OBS	R*8	m	S/C Heliocentric Earth Equatorial Z	Sunspice
HGLN_OBS	R*8	Deg	S/C heliographic longitude	Sunspice
HGLT_OBS	R*8	Deg	S/C heliographic latitude	Sunspice
HISTORY	S*71	Any	Comments of processing history. Can be repeated.	Varies
IMGCTR	I*2	Any	Overall image counter	FSW basehdr.imgCtr
IMGSEQ	I*2	Any	Image sequence counter e.g. nth in sequence	FSW basehdr.imgseq
IMGTYPE	S		enum elmageTypeCodes { OP_NORMAL = 0 // readout, OP_32NORM = 1 // 32 bit readout, OP_32HIGH = 2 // 32 bit high byte, OP_32LOW = 3 // 32 bit low byte, OP_ISTAKE = 4 // Diagnostic , OP_IPTEST = 5 // Diagnostic (IPTESTBUFFER) (ISTAKEIMAGE) , OP_LOWLAT = 6 // Low latency 16 bit pix , NOP_INIT = 7 //NOP INIT , NOP_BEGIN = 8 //NOP Begin , NOP_EOF = 9 , NOP_CMD1 = 17 //NOP Read Script , NOP_NONE = 18 , OP_DEFAULT = 19}	FSW basehdr.imageType
INSTRUME	S*6	SoloHI	Instrument name	Definition

KEYWORD	ТҮРЕ	VALUES	DESCRIPTION	SOURCE
IP_00_19	S*60	numeral chars	Function codes of values 0 - 19 in ipCmd (commanded); ref ipcodes.h	FSW basehdr.ipCmd
IP_FUNC	I*2	Any	Row from image processing table used	BSF basehdr.ipfunction
IP_PROG	S*?	Any	String representation of ipCmdLog (actual)	FSW basehdr.ipCmdLog
IP_TIMEH	R	Any	MET at start of IP (from header)	FSW basehdr.ipprocessingtime
IP_TIMET	I*2	Any	Duration, start of IP to end of IP (from trailer)	Derived from trailer.ipprocessingtime
IPCMDCNT	I*2		Number of IP functions executed	FSW basehdr.ipCmdCnt
IPTRUNC	I*2	Any	Truncation exponent (data is divided by 2^IPTRUNC)	FSW basehdr.ccLastSUM
LATPOLE	R*8	Deg	Native longitude of the celestial pole	Constant
LATPOLEA	R*8	Deg	Native longitude of the celestial pole	Constant
LED1	I*2		Commanded setting of LED1	BSF basehdr.cmdled1
LED2	I*2		Commanded setting of LED2	BSF basehdr.cmdled2
LENS_T	R*4	Any	Lens Temperature	Instrument HK
LEVEL	S*3	CAL, L1, L1b	Data processing level	Pipeline
LONPOLE	R*8	Deg	Native longitude of the celestial pole	Constant
LONPOLEA	R*8	Deg	Native longitude of the celestial pole	Constant
NAXIS	I*2	0,2,3	Number of axes in the image (0 indicates header only)	FITS

KEYWORD	ТҮРЕ	VALUES	DESCRIPTION	SOURCE
NAXIS1	I*2	Positive	Length of the first axis (columns,x)	FITS
NAXIS2	I*2	Positive	Length of the second axis (rows,y)	FITS
NBIN	R*4	n^2	Number of pixels binned; this will change to reflect any correction to the data. = NBIN1 * NBIN2	Derived
NBIN1	R*4	n^2	Number of pixels binned along axis1; this will change to reflect changes in dimension.	FSW basehdr.SUMCOL, basehdr.SEBXSUM
NBIN2	R*4	n^2	Number of pixels binned along axis2; this will change to reflect changes in dimension.	FSW basehdr.SUMROW, basehdr.SEBYSUM
NSUMEXP	I*2	Any	Number of exposures added together	BSF basehdr.numsum
NUMINSEQ	I*2	Any	Number of readouts in 1 cycle - from ucode	FSW basehdr.numinseq
OBJECT	S	LLDP, more TBD	Full Frame, Subfield (TBD)	Pipeline
OBS_ID	s	Any	Unique ID of the individual observation	JSON file
OBS_MODE	S	LED, more TBD	Description of the observation mode or 'study' that has been used to acquire this image	JSON file
OBS_TYPE	s	Any	Encoded version of obsmode	JSON file
OBS_VR	R*8	Any	[m/s] Radial velocity of spacecraft relative to Sun	Sunspice
OBSRVTRY	S*18	Solar Orbiter	Satellite name	Definition
OBT_BEG	R*8	Any	MET start first exposure	FSW basehdr.actexptimecoarse, basehdr.actexptimefine

KEYWORD	ТҮРЕ	VALUES	DESCRIPTION	SOURCE
OBT_END	R	Any	MET end last exposure	Derived from TELAPSE
OFFSET	I*2	Any	Commanded offset value used in camera	BSF basehdr.offset
ORIGIN	S*3	NRL	SSOC, Solar Orbiter Science Operations Centre	Pipeline
PARENT	S	Any	XML packet filename, or name of previous level file	Pipeline
PC1_1	R*8	Rad	Coordinate transformation matrix element (roll)	Sunspice
PC1_1A	R*8	Rad	Coordinate transformation matrix element (roll)	Sunspice
PC1_2	R*8	Rad	Coordinate transformation matrix element (roll)	Sunspice
PC1_2A	R*8	Rad	Coordinate transformation matrix element (roll)	Sunspice
PC2_1	R*8	Rad	Coordinate transformation matrix element (roll)	Sunspice
PC2_1A	R*8	Rad	Coordinate transformation matrix element (roll)	Sunspice
PC2_2	R*8	Rad	Coordinate transformation matrix element (roll)	Sunspice
PC2_2A	R*8	Rad	Coordinate transformation matrix element (roll)	Sunspice
PV1_1	R*8	Deg	Native longitude of the reference point	Constant
PV1_1A	R*8	Deg	Native longitude of the reference point	Constant

KEYWORD	TYPE	VALUES	DESCRIPTION	SOURCE
PV1_2	R*8	Deg	Native latitude of the reference point	Constant
PV1_2A	R*8	Deg	Native latitude of the reference point	Constant
PV1_3	R*8	Deg	Alias for LONPOLE (has precedence)	Constant
PV1_3A	R*8	Deg	Alias for LONPOLE (has precedence)	Constant
PV2_0	R*8	Any	ZPN projection parameter	Constant
PV2_0A	R*8	Any	ZPN projection parameter	Constant
PV2_1	R*8	Any	ZPN projection parameter	Constant
PV2_1A	R*8	Any	ZPN projection parameter	Constant
PV2_2	R*8	Any	ZPN projection parameter	Constant
PV2_2A	R*8	Any	ZPN projection parameter	Constant
PV2_3	R*8	Any	ZPN projection parameter	Constant
PV2_3A	R*8	Any	ZPN projection parameter	Constant
PV2_4	R*8	Any	ZPN projection parameter	Constant
PV2_4A	R*8	Any	ZPN projection parameter	Constant
PV2_5	R*8	Any	ZPN projection parameter	Constant
PV2_5A	R*8	Any	ZPN projection parameter	Constant
PXBEG1	R*4	Any	First read-out detector column in unrectified detector coordinates	BSF basehdr.p1col

KEYWORD	ТҮРЕ	VALUES	DESCRIPTION	SOURCE
PXBEG2	R*6	Any	First read-out detector row in unrectified detector coordinates	BSF basehdr.p1row
PXEND1	R*5	Any	Last read-out detector column in unrectified detector coordinates	BSF basehdr.p2col
PXEND2	R*7	Any	Last read-out detector row	BSF basehdr.p2row
R1COL	I*2	1-2048	Rectified position of 1st column of image on detector (starting at 1)	Derived
R1ROW	I*2	1-2048	rectified Position of 1st row of image on detector	Derived
R2COL	I*2	1-2048	rectified Position of last column of image on detector	Derived
R2ROW	I*2	1-2048	rectified Position of last row of image on detector	Derived
READTIME	I*16	Any	Time to readout raw image from camera in usec	Derived
RECTIFY	L	F(T)	Put ecliptic north to the top of the image	Pipeline
RECTROTA	I*1	0-7	Argument for rotate.pro to put ecliptic north at top of image	Pipeline
REGION	I*1	1-4	Subfield region of tile based on number of regions from a given tile in a specific sequence	BSF basehdr.region
RSUN_ARC	R*8	Arcesec	Photospheric solar radius	Sunspice
RSUN_REF	R*8	m	Assumed physical solar radius	Sunspice
SA_ROTYP	R*4	Any	Solar array rotation angle +Y	s/с нк

KEYWORD	TYPE	VALUES	DESCRIPTION	SOURCE
SA_ROTYM	R*4	Any	Solar array rotation angle -Y	S/С НК
SC_PITCH	R*4	Deg	S/C pitch at DATE-AVG	Sunspice
SC_ROLL	R*4	Deg	S/C roll at DATE-AVG	Sunspice
SC_YAW	R*4	Deg	S/C yaw at DATE-AVG	Sunspice
SEBXSUM	I*2	Any	18 Number columns being summed in IP	FSW basehdr.sebxsum
SEBYSUM	I*2	Any	19 Number rows being summed in IP	FSW basehdr.sebysum
SEQUCODE	S*3	Any	Subscript of Sequencer Microcode from ucdtbldt.img or isreadout.cpp for this image (5 LSB of ccIsUcode)	FSW basehdr.ccisucode
SIMPLE	L	т	Conforms to FITS standard	FITS
SOLAR_EP	R*8	Deg	S/C ecliptic North to solar North angle	Sunspice
SOOPNAME	S*23	Any	Name of the SOOP Campaign that the data belong to	JSON file
SOOPTYPE	S	Any	Encoded identification of the SOOP(s) that this observation belongs to.	JSON file
SUMCOL		uint16,	Number colums being summed in CC	BSF basehdr.sumrow
SUMROW		uint16,	Number rows being summed in CC	BSF basehdr.sumrow
SUN_TIME	R*8	Sec	Time(Sun to S/C)	Sunspice
TARGET	S	Any	'AR' Type of target from planning (TBD)	Pipeline
TELAPSE	R	Sec	Elapsed time between beginning and end of observation	FSW basehdr.totalexpduration

KEYWORD	ТҮРЕ	VALUES	DESCRIPTION	SOURCE
TELESCOP	S	SOLO/Sol oHI/[1234]	ID of data source	Pipeline
TIMESYS	S*3	UTC	system used for time keywords	Pipeline
TIMGCTR	I*2	Any	Counter from load ucode for each ROI(?)	FSW basehdr.telescopeImgCnt
VERS_CAL	S*8	HHSSS	L1/CAL: hex representation of HH: header version, SSS: make_solohi_hdr.pro version.	Pipeline
VERS_SW	S*8	Any	CVS version of solohi_reduce.pro	Pipeline
VERSION	S*2	01,02	FITS File version number (same as filename if Released) or date and time for LL	Pipeline
WAVEBAND	s	VISIBLE	ID of the spectral line list	Constant
WAVELNTH	R*4	5400.0	Bandpass peak response (Angstroms)	Calibration
WCSAXES	I*2	2	Number of coordinate axes	Definition
WCSNAME	S*25	Helioproje ctive Zenith Polynomi al',	Coordinate System	Definition
XFBYTES	I*4	Any	Number of bytes sent	Pipeline derived
XPOSURE	R*4	Sec	Effective exposure time	Pipeline derived