Nucleosynthesis and Planck constraints

Luca Pagano
"Sapienza" University of Rome
on behalf of the Planck collaboration
Ferrara 12-4-2014

Outline

- Big Bang Nucleosynthesis as cosmological probe
 - Big Bang Nucleosynthesis
 - PArthENoPE
 - Astrophysical bounds
- Planck Data
- Results standard BBN (Y_PBBN and y_{DP})
 - Bounds fixing the radiation density
 - Varying N_{eff}
- Planck direct measurement
 - Standard radiation density
 - Varying N_{eff}
- Conclusions

Big Bang Nucleosynthesis

- BBN predicts the primordial abundance of light elements formed in the first minutes after the Big Bang
- Function of the baryon-to-photon density ratio η_b and the relativistic degrees of freedom parameterize as N_{eff}
- Fixing the photon temperature today (T_0 =2.7255 K) η_b can be related to ω_b
- Errors coming from uncertainties on the neutron lifetime and the nuclear reaction rates
- From the PDG 2014 (Olive et al. 2014) the neutron lifetime is τ_n =(880.3 \pm 1.1) s
- Only ⁴He, ²H, ³He, ⁷Li nuclei produced
- This talk is focused on the ⁴He and Deuterium abundances expressed respectively as
 - $Y_P^{BBN} = 4n_{He}/n_b$
 - $y_{DP} = 10^5 n_D/n_H$

Big Bang Nucleosynthesis

- BBN calculations based on PArthENoPE code (Pisanti et al.)
- Incorporates nuclear reaction rates, particle masses and fundamental constants
- Y_P^{BBN} and y_{DP} function of (ω_b, N_{eff})
- Theoretical uncertainties:
 - \Box $\sigma(Y_P^{BBN})=0.0003$, dominated by neutron lifetime
 - σ(y_{DP})=0.04, based on uncertainties in nuclear rates
 (Serpico et al. 2004)
- Predictions can be confronted with direct measurements and also with CMB data (η_b N_{eff} and Y_p)

Astrophysical bounds and Planck data

- Several observation data on primordial abundances
- From spectroscopic observations in metal-poor H_{II} regions
 - $Y_P^{BBN} = 0.2465 \pm 0.0097$ by Aver et al. 2013
 - Dominated by systematics
- Proto-Solar helium abundance more conservative upper bound
 - Y_PBBN <0.295 at 95% c.l. by Serenelli & Basu 2010
- Deuterium absorption line systems in quasar spectra, very metal-poor Lyman-α system at high redshift:
 - $y_{DP} = 2.53 \pm 0.04$ by Cooke and Pettini 2014
 - More conservative data collection by locco et al. 2009 y_{DP} = 2.87 ± 0.22
- For Planck we used combination of Temperature and Polarization data including in some analysis also BAO observations
 - lowP: Pixel-based TQU likelihood l=2-29
 - Planck TT: Spectra-based temperature likelihood l=30-2508
 - Planck TT TE EE: Spectra-based temperature and polarization likelihood l=30-2508
- Bounds on ω_b model-dependent but very stable with model extensions to the minimal Λ CDM.
- Largest degradation with free N_{eff}

Planck 2014 results and comparison with 2013

- Let's start with the radiation density fixed to its standard value N_{eff}=3.046
- Planck 2013 (95%CL)

Planck+WP+HighL

$$\Box \omega_{s} = 0.02207 \pm 0.00054$$

 $-Y_{s}^{BBN} = 0.24725 \pm 0.00064$
 $-y_{t}^{P} = 2.67 \pm 0.14$

Planck 2014 (95%CL)

Planck TT+lowP

 $\Box \omega_b = 0.02222 \pm 0.00046$ $-Y_p^{BBN} = 0.24665 \pm 0.00063$ $-Y_{DP} = 2.62 \pm 0.12$

Planck TT TE EE+lowP

 $\Box \omega_{s} = 0.02224 \pm 0.00030$ $-Y_{s}^{BBN} = 0.24666 \pm 0.00061$ $-y_{t}_{p} = 2.616 \pm 0.098$

Planck TT+lowP+BAO

$$\begin{split} &\square \omega_b \text{= } 0.02228 \pm 0.00039 \\ &-Y_P^{BBN} \text{=} 0.24668 \pm 0.00063 \\ &-y_{DP} \text{=} 2.61 \pm 0.11 \end{split}$$

- The theoretical error dominates the total error on Y_P
- On Y_P^{BBN} the Planck prediction is in agreement with Aver et al. measurements
- For y_{DP} the Planck measurement lays in between Cooke et al. and locco et al. results

For more details see poster by L.Salvati: Planck constraints on Deuterium and comparison with direct observations

Joint CMB+BBN predictions on N_{eff}

- Relaxing the assumption on N_{eff}
- But stick to the hypothesis that electronic neutrinos have a standard distribution, with a negligible chemical potential
- Assuming standard BBN we can identify the region of N_{eff} ω_{b} parameter space that is compatible with direct measurement of the primordial Helium and Deuterium abundances
 - Planck 2013 (95%CL)

Planck+WP+HighL

$$-N_{sff} = 3.36 \pm 0.68$$

+Aver et al. (2012) (Helium prior)

$$-N_{\rm eff} = 3.41 \pm 0.60$$

+ Pettini & Cooke (2012) (Deuterium)

$$-N_{\text{eff}} = 3.02 \pm 0.54$$

$$\chi^2(\omega_{\rm b}, N_{\rm eff}) \equiv \frac{\left[y(\omega_{\rm b}, N_{\rm eff}) - y_{\rm obs}\right]^2}{\sigma_{\rm obs}^2 + \sigma_{\rm theory}^2}$$

Planck 2014 (95%CL)

Planck TT+lowP (Massimiliano's and Julien's Talks)

$$-N_{sf} = 3.13 \pm 0.64$$

$$-N_{\rm eff} = 3.11 \pm 0.57$$

$$-N_{\rm eff} = 2.92 \pm 0.48$$

Planck TT TE EE+lowP

$$-N_{sff} = 2.98 \pm 0.40$$

$$-N_{\rm eff} = 2.98 \pm 0.36$$

$$-N_{\rm eff} = 2.87 \pm 0.35$$

reliminary

Results standard BBN

- The region singled out by CMB observations lays at the intersection between all Helium and Deuterium 68% CL preferred regions, confirming great agreement between CMB and BBN
- The size of the allowed region does not increase significantly when other parameters are allowed to vary at the same time
- We checked that this conclusion applies to models with free neutrino masses, tensor fluctuations or running of the primordial spectrum tilt

Model-independent bounds on Helium fraction

Model-independent bounds on $Y_P - N_{eff} = 3.046$

Model-independent bounds on Helium fraction from Planck

- There is a well-known parameter degeneracy between Y_P and the radiation density
- Marginalizing over N_{eff}
- Planck 2013 $Y_P^{BBN} = 0.254 + 0.82 0.66$
- Planck 2014:

```
Preliminary
- Y_{P}^{BBN} = 0.248 + 0.060 - 0.066
                                      95%CL
                                                 (Planck TT + lowP)
- Y_{D}^{BBN} = 0.248 + 0.058 - 0.065
                                      95%CL
                                                 (Planck TT + lowP + BAO)
  Y<sub>P</sub>BBN=0.262+0.033-0.035
                                      95%CL
                                                 (Planck TT,TE,EE + lowP)
```

- The impact of polarisation data is important, and helps to reduce the degeneracy
- Well compatible with N_{eff}=3.046
- Relaxing priors on the Helium fraction does not offer the possibility to accommodate one extra thermalised species.

Model-independent bounds on Y_P – varying N_{eff}

Conclusions

- Planck 2014 BBN results consistent with the 2013 results
- Errorbars on ω_b halved thanks to high-ell polarization measurements
- Assuming Standard BBN:
 - No improvement on the Helium estimation, dominated by the neutron lifetime uncertainty
 - 30% improvement on primordial deuterium
 - Compatible with locco et al. and Cooke et al. measurements, there is no significant tension between CMB and primordial element results
 - N_{eff}=3.046 perfectly consistent
 - Astrophysical priors almost ineffective
- Helium directly from Planck data:
 - 40% improvement fixing the radiation density to its standard value
 - Almost at the same level of the direct measurements Aver et al.
 - 50% improvement Marginalizing over N_{eff}
 - Compatible with standard radiation content

planck

PLANCK

