Planck likelihood and power spectrum

S. Prunet

Institut d'Astrophysique de Paris

On behalf of the Planck collaboration

ESLAB, April 2^d, 2013

Methodology

- Hybrid multi-frequency likelihood approach
 - Large scales (LL): Gaussian likelihood on maps
 - Small scales (HL): Gaussian likelihood approx. on spectra
- Foregrounds:
 - LL: Parametrised at the map level, Gibbs marginalisation
 - HL: Parametrised at the spectral level
- Validation:
 - Data selection & technical choices
 - Null tests
 - Simulations
 - Foreground cleaned CMB maps, LFI 70 GHz (HL)

- Mask and beam deconvolved power spectra (Master/Spice) for 56 detector pairs in the 100-217 GHz range
- Data compression into 4 combined cross-spectra:
 - 100x100, 143x143, 143x217, 217x217 GHz
 - Re-calibrate cross-spectra within a given frequency pair
 - Optimally combine cross-spectra within a frequency pair
 - Produce inter-frequency calibration priors
 - Galactic dust residual correction
- Parametrised foreground power spectrum templates:
 - CIB clustered: 4 parameters (3 amplitudes, one spectral index)
 - Poisson from unresolved sources: 4 parameters (amplitudes)
 - tSZ, kSZ: 2 parameters (amplitudes)
 - tSZxCIB correlation: 1 parameter
- Fiducial gaussian approximation, covariance includes:
 - CMB + noise (correlated, anisotropic) + foregrounds
 - Beam errors marginalisation (using priors on error eigenmodes)

- Minimise foreground impact
 - Spatially
 - In multipole space
 - Keeping low cosmic variance
- Galaxy: 353 GHz thresholding
- Sources: 100-353 GHz catalog

Spectrum	Multipole range	Mask
$100 \times 100 \ldots \ldots$	50 - 1200	CL49
$143 \times 143 \ldots$	50 - 2000	CL31
$143 \times 217 \ldots$	500 - 2500	CL31
$217 \times 217 \ldots \ldots$	500 - 2500	CL31
Combined	50 - 2500	CL31/49

Galactic and sources apodised masks

Using here a simplified HL likelihood on binned spectra

HL: internal consistency

- CMB-induced cosmic variance removed
- Compatible with expected levels of CMB-FG chance correlations

HL posterior correlations

HL posterior correlations

HL: validation test suite

Median, mean, box=68%, line=95%

Using simplified, binned HL likelihood, and PICO

Comparison to foreground-cleaned maps

- 4 component separation methods
- 4 Foreground cleaned maps
- Fiducial gaussian likelihood
- 2 parameters for extragalactic FGs
- Multipoles: [2,2000]

HL: tests on simulated data

- Full focal plane simulation
- Instrumental complexity:
 - Beam asymmetry
 - Correlated noise
 - Scanning
- Signal complexity:
 - Galactic emissions
 - Extragalactic FGs, resolved and unresolved

Recalibration < 0.2% in line with dipole based calibrations Using simplified, binned HL likelihood

S. Prunet

LL specific methodology

- 30-353 GHz frequency maps at low resolution (40')
- Multipole range: [2,49], sharp transition with HL
- Signal model (maps):
 - CMB (1 map)
 - Single low-frequency Galactic component (2 maps)
 - 1 CO component (1 map)
 - 1 dust component (2+ maps)
- Gibbs sampling marginalisation of foreground intensity and spectral parameters maps
- Blackwell-Rao estimate of posterior on individual TT Cls
- Approx. separation of temperature and polarisation:
 - Assume negligible noise in TT, TQ, TU, vanishing B modes
 - Use of WMAP 9 years likelihood, with Planck CMB T map
- Extensive tests on FFP simulations

LL mask design and validation

(a) Low-frequency component residual at 30 GHz

- Thresholding on:
 - Foreground components
 - Residual χ² map
- 87% sky coverage (L87)
- Validated on FFP simulations

- Based on the CS U78 union mask
- Same features as in the WMAP-9 spectrum
- Robustness with component separation method

Planck best fit model, with extra amplitude and tilt

A selection of foreground-subtracted spectra

Examples of simulated spectra, using HL covariance