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Motivation & Outline 
 Dark Energy pushes us to measure the 

cosmic distance scale and the behavior of 
gravity to high precision. 
 

 I will introduce baryon acoustic oscillations 
as a standard ruler. 
 Linear theory pedagogy. 
 Non-linear structure formation. 

 Reconstruction & BAO in SDSS-II DR7. 
 Cosmology results from SDSS-III DR9. 

 BAO and growth of structure measurements  
in the BOSS galaxy sample. 

 BAO in the Lyman α forest. 
 A path to 1% distances and better. 



Sound Waves in the Early Universe 
 Each initial overdensity  

(in DM & gas) is an 
overpressure that 
launches a spherical 
sound wave. 

 This wave travels 
outwards at 57% of the 
speed of light. 

 Pressure-providing 
photons decouple at 
recombination.  We see 
this as the CMB. 

 Sound speed plummets.  
Wave stalls at a radius 
of 150 Mpc. 

 Overdensity in shell (gas) and in 
the original center (DM) both 
seed the formation of galaxies.  
Preferred separation of 150 Mpc. 



A Standard Ruler 
 The acoustic oscillation scale 

depends on the sound speed 
and the propagation time.  
 These depend on the matter-to-

radiation ratio (Ωmh2) and the 
baryon-to-photon ratio (Ωbh2). 

 The CMB anisotropies 
measure these and fix the 
oscillation scale. 

 In a redshift survey, we can 
measure this along and 
across the line of sight. 

 Yields H(z) and DA(z)! 
Observer 

δr = (c/H)δz δr = DAδθ 



Galaxy Redshift Surveys 
 Redshift surveys are a popular way to measure the  

three-dimensional clustering of matter. 
 But there are complications from:   

 Non-linear structure formation 
 Bias (light ≠ mass) 
 Redshift distortions 

 Partially degrade 
the BAO peak, but 
systematics are small 
because this is a 
very large preferred 
scale. SDSS 



Non-linear Structure Formation 
 The acoustic signature is carried by pairs of galaxies 

separated by 150 Mpc. 
 Nonlinearities push galaxies around by 3-10 Mpc.  

Broadens peak, making it hard to measure the scale. 
 Non-linearities are increasingly negligible at z>1.  Linear theory 

peak width dominates. 
 Moving the scale requires  

net infall on 150 Mpc scale. 
 This depends on the over- 

density inside the sphere,  
which is or order1%. 

 Over- and underdensities  
partially cancel, so mean  
shift is <0.5%. 

Seo & DJE (2005); DJE, Seo, & White (2007) 



BAO in Simulations 
 N-body simulations show the acoustic peak to be preserved. 

 Shifts of 0.3% at z=0, highly predictable. 

 Halo-based galaxy bias yields an additional shift, of order 
0.5% for high biases. 

 Effect is well matched  
to 2nd-order perturbation  
theory calculation of  
Padmanabhan & White  
(2009). 

 These shifts can be  
predicted and removed,  
but we’ll see a better  
way next. 

Seo et al. (2010); Mehta et al. (2011)  



Improving the Acoustic Peak 
 Most of the non-linear degradation is due to large-scale 

flows.  These are produced by the same large-scale 
structure that we are measuring for the BAO signature. 

 Map of galaxies tells us where the mass is that sources 
the gravitational forces that create the bulk flows. 

 Can run this backwards and undo most non-linearity. 
 Restore the statistic precision available per unit volume! 

DJE, Seo, Sirko, & Spergel (2007) 



Reconstruction Illustrated 

Padmanabhan et al. (2012)  



Reconstruction in Simulations 
 In large sets of simulations, both 

periodic box and with a survey 
mask, reconstruction improves 
the precision of the measurement 
of the acoustic scale. 

 But it also reduces the shift due 
to non-linear structure formation 
and galaxy bias. 
 Less than 0.02% in the matter case! 
 0.1% for galaxy bias models. 
 Xu et al. (2012) finds 0.1±0.15% on 

SDSS-II N-body mock catalogs. 

 We are correcting for the large-
scale flows that create the shifts. 

Seo et al. (2010); Mehta et al. (2011)  



Observing the BAO 
 Study of observational systematic errors in the clustering 

analysis of galaxy surveys is an old topic.   
 Extensive work over the last several decades, with many methods 

for diagnosing, removing, and avoiding systematic effects. 

 The BAO application is much easier than general P(k) 
because the BAO signature is oscillatory and hence 
strongly differential in scale. 
 Observational effects are nearly always  

broadband, and we simply marginalize 
 against general broadband terms. 

 Length scale is tied directly to  
measurement of angles and redshifts,  
which are much better than 10–3.  



The Sloan Digital Sky Survey 
 The SDSS is the world’s 

largest galaxy redshift survey. 
 Wide-field imaging and 

spectroscopy of galaxies, 
quasars, and stars. 

 Data Release 7: full data set 
from the original Legacy 
survey, including galaxies to 
z~0.5. 

 Data Release 9: latest release 
from SDSS-III, including 
galaxies to z~0.7. 



BAO in SDSS-II DR7 
 SDSS-I and II produced several 

analyses of the BAO, culminating in 
Percival et al. (2009) and Reid et al. 
(2009) analysis of the power 
spectrum of the final SDSS-II 
(LRG+MAIN) and 2dF GRS. 

 Average signal produced a 2.7% 
measurement of the distance to 
z=0.275. 

 Good agreement with LCDM model.  
WMAP5+BAO+SN yields:  
 H0 = 68 ± 2 km/s/Mpc and 
 Ωm = 0.29 ± 0.02  

in both LCDM and owCDM. 
Percival et al. (2009) 



New BAO Detections 
 Two new surveys published 

BAO detections in 2011. 
 WiggleZ on the Anglo-

Australian Telescope 
 200k galaxies over 800 sq deg. 
 3.8% measurement at z=0.6. 
 Blake et al. (2011) 

 6dF Galaxy Survey 
 75k galaxies over 17,000 sq deg. 
 4.5% measurement at z=0.1. 
 Beutler et al. (2011) 

 We now have a BAO Hubble 
diagram! 
 Excellent agreement with SNe. 

Blake et al. (2011) 



DR7 with Reconstruction 

 Padmanabhan et al., Xu et al., and Mehta 
et al. (2012) present a new analysis of the 
SDSS-II DR7 Luminous Red Galaxy 
sample. 
 106k galaxies over 7200 sq deg. 

 First analysis to include reconstruction. 
 Improves errors as if we were tripling the 

survey volume.  



Real-space Clustering 

DR7 Mock Catalogs  Padmanabhan et al. (2012)  

r2ξ(r) 



Redshift-space Clustering 

DR7 Mock Catalogs  Padmanabhan et al. (2012)  

r2ξ(r) 



Redshift-Space Clustering 
after Reconstruction 

DR7 Mock Catalogs  Padmanabhan et al. (2012)  

r2ξ(r) 



Before Reconstruction 

 Large-scale correlation function and 
measurement of the acoustic scale. 

 

Pamanabhan et al. (2012); Xu et al. (2012)  

Correlated Errors! 



After Reconstruction 

 Reconstruction sharpens the errors from 3.5% to 
1.9%, equivalent to tripling the survey volume. 

Pamanabhan et al. (2012); Xu et al. (2012)  

Correlated Errors! 
 



SDSS-III 
 SDSS-III is the next phase of the SDSS project,  

operating from summer 2008 to summer 2014. 
 SDSS-III has 4 surveys on 3 major themes. 

 BOSS: Largest yet redshift survey for large-scale structure. 
 SEGUE-2: Optical spectroscopic survey of stars, aimed at 

structure and nucleosynthetic enrichment of the outer Milky Way. 
 APOGEE: Infrared spectroscopic survey of stars, to study the 

enrichment and dynamics of the whole Milky Way. 
 MARVELS: Multi-object radial velocity planet search. 

 Extensive re-use of existing facility and software. 
 Strong commitment to public data releases. 
 Support from Sloan Foundation, Dept of Energy, 

National Science Foundation, and over 50 member 
institutions from around the world. 
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SDSS-III Collaboration 
 Univ. of Arizona 
 Brazilian Participation Group  

(ON and 4 universities)  
 Brookhaven National Lab  
 Cambridge Univ. 
 Carnegie-Mellon Univ.  
 Case Western Univ. 
 Fermilab  
 Univ. of Florida 
 French Participation Group  

(APC, CEA, IAP, LAM, Besancon) 
 German Participation Group  

(AIP, MPIA, ZAH) 
 Harvard University 
 Instituto de Astrofisica de Canarias  
 Instituto de Astrofisica de Andalucia, 

Granada * 
 IFIC Valencia 
 ICREA Barcelona  
 INAF Treiste 
 Johns Hopkins Univ. 
 UC Irvine  

 Korean Institute for Advanced Study 
 Lawrence Berkeley National Lab 
 MPA Garching 
 MPE Garching 
 Michigan St Univ/Notre Dame/JINA  
 New Mexico State Univ. 
 New York Univ. 
 Ohio State Univ. 
 Penn State Univ. 
 Univ. of Pittsburgh 
 Univ. of Portsmouth 
 Princeton Univ. 
 UC Santa Cruz 
 Texas Christian University 
 Univ. of Tokyo  
 Univ. of Utah 
 Vanderbilt University  
 Univ. of Virginia  
 Univ. of Washington 
 University of Wisconsin 
 Yale University 
 Italics indicate smaller members 



SDSS-III Baryon Oscillation 
Spectroscopic Survey 

 BOSS is a comprehensive 
study of the low-redshift BAO 
and the best large-scale 
structure sample yet. 

 10,000 deg2 and 1.5 million 
spectra of massive galaxies out 
to z=0.75. 
 Plus z>2 quasars to look for BAO 

in the Lyman α forest. 
 Intends to achieve 1% distance to 

z=0.35 and z=0.6. 

 Survey is now 80+% complete, 
over 1 million spectra in hand. 



Data Release 9 
 In July 2012, we released 

the first 20 months of 
BOSS spectroscopic data! 
 700,000 BOSS spectra 
 Plus the previous 1.5M 

spectra from SDSS, and all 
of the imaging. 

 Our first BAO analysis uses 
only the higher redshift 
portion of the sample. 

 264k galaxies over 3275 deg2 
with a median redshift of 0.57. 

 



BAO in SDSS-III 
 We find a very clear 

detection of the acoustic 
peak. 

 Comprehensive analysis 
performed in both 
correlation function and 
power spectrum. 

 We measure the 
distance to z=0.57 to 
1.7% precision. 
 DV(0.57) = 2094 ± 34 

Mpc  Anderson et al. (2012) 



Comparison to z=0.35 

z = 0.35 

z = 0.57 
BOSS galaxies are 
less massive and 
have lower bias. 

Anderson et al. (2012) 



Detection Significance 
 The BOSS z=0.57 acoustic 

peak detection is itself over 
5σ, a first for a single dataset. 

 Combined with the SDSS-II 
z=0.35 result, detection is 
over 6.5σ. 

 However, with the strong 
detection in the CMB, the 
interesting question is not so 
much whether the BAO exists 
but rather what distance scale 
it implies. 
 

BOSS Alone 

BOSS + SDSS-II 

Anderson et al. (2012) 



BAO Hubble Diagram 

Blake et al. (2011) 

Beutler et al. (2011) 

Padmanabhan, Xu, 
Mehta et al. (2012) 

Anderson et al. (2012) 

WMAP curve is a 
Prediction, not a Fit! 

Anderson et al. (2012) 



Finer Comparison 

 WMAP+SDSS data sets consistent with flat, 
cosmological constant model. 

Anderson et al. (2012) 



Comparison to Planck 

 Planck error range is half the size.  Shifts in the 
direction of the BOSS measurement. 

Planck collab XVI (2013) 

BOSS 

WiggleZ 

SDSS-II 

6dFGS 



Consistency with SNe 

 BAO matches well to the SNe relative distance scale. 

Anderson et al. (2012) 



Cosmological Leverage 

Anderson et al. (2012) 

 Excellent agreement with flat LCDM cosmology. 
 



Measuring the Expansion and 
Density of the Universe 

 The combination of CMB,  
BAO, and Supernova produces 
a reverse distance ladder: 
 CMB calibrates z=1000. 
 BAO transfers to z=0.35. 
 SNe carries to z=0. 

 Get strong constraints on H0  
and Ωm independent of 
curvature and expansion 
history.  With WMAP-7: 
 H0 = 69.8 ± 1.8 km/s/Mpc 
 Ωm = 0.277 ± 0.014  

Mehta et al (2012) 



Anisotropic Clustering 
 Clustering should be 

isotropic in real space.  
Using the wrong 
cosmology creates 
anisotropy (Alcock-
Paczynski effect). 
 Measure F ~ DAH(z) 

 The BAO ring can be 
distorted. 

 But there is much 
more information on 
smaller scales, if one 
can model accurately. 

SDSS-II DR7 Mock Catalogs   
Padmanabhan et al. (2012)  

r2ξ(r) 



Redshift Distortions 
 Peculiar velocities 

create redshift 
distortions in clustering. 

 This is an order unity 
anisotropy, compared 
to our 1% interest in 
the A-P effect. 

 Redshift distortions are 
of great interest: the 
large-scale velocity 
field is a test of gravity. 

 We want to separate 
the two! 

SDSS-II DR7 Mock Catalogs 
Padmanabhan et al. (2012)  

r2ξ(r) 



Anisotropic BAO in DR9 

 

Anderson et al. (2013), Kazin et al. (2013)  

Line-of-sight 

Transverse 

Monopole 

Quadrupole 



From Anisotropic to Isotropic 

 At low redshift, DV is a good compression of 
current data. 

Anderson et al. (2013) 



Broadband Anisotropies 
 Several analyses have 

used BOSS DR9 data 
to study the and the 
Alcock-Paczynski 
effect and the growth 
of structure from  
large-scale redshift 
distortions. 

 Variations in 
methodology; similar 
results obtained. 
 

 Figure from Reid et al. (2012). 
See also Tojeiro et al. (2012), 
Samushi et al. (2012), 
Sanchez et al. (2013),  
Chuang et al. (2012) 



Measuring Velocities over Cosmic Time 

 Constraints on fσ8 and σ8 
are nicely consistent with 
GR and the LCDM model. 

 Precision on σ8 is currently 
O(0.05). 

Tojeiro et al. (2012) 



BAO in the Lyman α Forest 
 Bucsa et al. (2012) reports a first detection of 

the acoustic peak in the Lyman α Forest. 
 This uses a set of 48,600 quasars at z>2.1. 
 Measures H at z=2.3 to <4%! 

Busca et al (2013) 



BAO in the Lyman α Forest 
 Slosar et al. (2013) & Kirkby et al. (2013) get 

similar results with different analysis.  First highly 
precise measurement of the Hubble parameter at 
z~2. 

Slosar et al (2013) 



Detection of Cosmic Decelleration 
from z=2.3 to z=0.6 

 

Busca et al (2013) 



Coming Soon.... 
 SDSS-III BOSS is 

underway. 
 Factor of 7 increase 

over SDSS-II. 
 First BAO results in 

2012.  More soon. 
 HETDEX survey will 

start: 800k galaxies 
at z>2. 

 Bold new surveys for the 
end of the decade. 
 eBOSS, MS-DESI, 4MOST, 

WEAVE, SUMIRE concepts. 
 Euclid mission will survey 

~50M galaxies at 0.7<z<2. 
 WFIRST to do deeper survey 

over smaller area. 
 21 cm instruments. 

 We have only scratched the surface of what is 
possible with the study of large-scale structure!  



Observing Dark Energy 

 Weinberg et al. (2012;  
arXiv:1201.2434) 
provides a review of 
the observational 
methods for the  
study of dark energy. 



Conclusions 
 Acoustic oscillations provide a robust way to 

measure H(z) and DA(z). 
 Clean signature in the clustering of galaxies. 
 Can probe high redshift; can probe H(z) directly. 
 Well protected from low redshift systematics.  

 SDSS uses the acoustic signature to measure 
the distance to z=0.35 to 1.9% and to z=0.57 to 
1.7%.  Plus a first detection at z=2.3. 
 Excellent consistency with flat ΛCDM. 

 Larger galaxy surveys such as SDSS-III/BOSS 
will push to 1% and below in this decade. 



 



Building the Distance Scale 

 SNe and BAO are highly complementary in z! 



Measuring Dark Energy at z>1 

 Precise H(z) at z>1 can achieve excellent 
constraints on dark energy. 



Assessing Reconstruction 

 Redshift-space, z = 1 

Reconstruction 
increases the range 

of the ‘linear regime’, 
even with halos. 

Mehta et al. (2012) 



Acoustic Oscillations in the CMB 

 Although there are fluctuations on all scales, 
there is a characteristic angular scale. 



Acoustic Oscillations in the CMB 

Planck Collaboration (2013) 



Response of a point perturbation 

Based on CMBfast outputs (Seljak & 
Zaldarriaga).  Green’s function view  
from Bashinsky & Bertschinger 2001. 

Remember: This is a tiny 
ripple on a big background. 
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