Doppler boosting the CMB

Based on "Planck 2013 Results. XXVII. Doppler boosting of the CMB"

Douglas Scott on behalf of the Planck Collaboration

Doppler boosting the CMB

Based on "Planck 2013 Results. XXVII. Doppler boosting of the CMB"

Douglas Scott on behalf of the Planck Collaboration

CMB dipole is well known

e.g. first COBE results - Smoot et al. (1991)

• CMB last-scattering surface defines a rest frame

- Monopole: T₀=(2.7255±0.0006)K
- CMB last-scattering surface defines a rest frame
- It's the frame with no observable dipole

- Monopole: T₀=(2.7255±0.0006)K
- CMB last-scattering surface defines a rest frame
- It's the frame with no observable dipole
- Relative to that frame we're moving at ≈ 370km/s

- Monopole: T₀=(2.7255±0.0006)K
- CMB last-scattering surface defines a rest frame
- It's the frame with no observable dipole
- Relative to that frame we're moving at ≈ 370km/s
- β=0.00123 towards the constellation Crater

- Monopole: T₀=(2.7255±0.0006)K
- CMB last-scattering surface defines a rest frame
- It's the frame with no observable dipole
- Relative to that frame we're moving at ≈ 370km/s
- β=0.00123 towards the constellation Crater
- And there are other effects...

• Dipole-modulate monopole → CMB dipole

- Dipole-modulate monopole → CMB dipole
- Dipole-modulation of all other multipoles

- Dipole-modulate monopole → CMB dipole
- Dipole-modulation of all other multipoles
- Aberration of anisotropies

- Dipole-modulate monopole → CMB dipole
- Dipole-modulation of all other multipoles
- Aberration of anisotropies
- Increase in monopole by $\beta^2/6$

- Dipole-modulate monopole → CMB dipole
- Dipole-modulation of all other multipoles
- Aberration of anisotropies
- Increase in monopole by $\beta^2/6$
- Generation of O(β²) quadrupole

- Dipole-modulate monopole → CMB dipole
- Dipole-modulation of all other multipoles
- Aberration of anisotropies
- Increase in monopole by $\beta^2/6$
- Generation of O(β²) quadrupole

Well known! This talk This talk Unmeasurable Too hard!

Simulated CMB

Aberration for β =0.85

Modulation for β=0.85

Aberration

Aberration

Aberration

Now
$$T(\hat{\boldsymbol{n}}) = \frac{T'(\hat{\boldsymbol{n}}')}{\gamma(1 - \hat{\boldsymbol{n}} \cdot \boldsymbol{\beta})}$$

CMB frame

To 1st order in β :

 $T'(\hat{\boldsymbol{n}}') = T'(\hat{\boldsymbol{n}} - \nabla(\hat{\boldsymbol{n}} \cdot \boldsymbol{\beta})) \equiv T_0 + \delta T'(\hat{\boldsymbol{n}} - \nabla(\hat{\boldsymbol{n}} \cdot \boldsymbol{\beta}))$

To 1st order in β :

 $T'(\hat{n}') = T'(\hat{n} - \nabla(\hat{n} \cdot \beta)) \equiv T_0 + \delta T'(\hat{n} - \nabla(\hat{n} \cdot \beta))$ So finally:

 $\delta T(\hat{\boldsymbol{n}}) = T_0 \hat{\boldsymbol{n}} \cdot \boldsymbol{\beta} + \delta T'(\hat{\boldsymbol{n}} - \nabla(\hat{\boldsymbol{n}} \cdot \boldsymbol{\beta}))(1 + \hat{\boldsymbol{n}} \cdot \boldsymbol{\beta})$

To 1st order in β :

 $T'(\hat{\boldsymbol{n}}') = T'(\hat{\boldsymbol{n}} - \nabla(\hat{\boldsymbol{n}} \cdot \boldsymbol{\beta})) \equiv T_0 + \delta T'(\hat{\boldsymbol{n}} - \nabla(\hat{\boldsymbol{n}} \cdot \boldsymbol{\beta}))$

To 1st order in β :

 $T'(\hat{\boldsymbol{n}}') = T'(\hat{\boldsymbol{n}} - \nabla(\hat{\boldsymbol{n}} \cdot \boldsymbol{\beta})) \equiv T_0 + \delta T'(\hat{\boldsymbol{n}} - \nabla(\hat{\boldsymbol{n}} \cdot \boldsymbol{\beta}))$

To 1st order in β :

 $T'(\hat{\boldsymbol{n}}') = T'(\hat{\boldsymbol{n}} - \nabla(\hat{\boldsymbol{n}} \cdot \boldsymbol{\beta})) \equiv T_0 + \delta T'(\hat{\boldsymbol{n}} - \nabla(\hat{\boldsymbol{n}} \cdot \boldsymbol{\beta}))$

With Planck we can try to measure <u>both</u> the aberration and boosting effects

With Planck we can try to measure <u>both</u> the aberration and boosting effects

This could be done either in map space or harmonic space

With Planck we can try to measure <u>both</u> the aberration and boosting effects

This could be done either in map space or harmonic space

Harmonic space is more efficient and uses machinery of $\langle T_1T_2T_3T_4 \rangle$

<u>Or</u> can consider this as an effect which couples harmonics

• We use quadratic estimators

- We use quadratic estimators
- Summing over covariance matrix

- We use quadratic estimators
- Summing over covariance matrix
- With weights designed for β

- We use quadratic estimators
- Summing over covariance matrix
- With weights designed for β
- And repeat for simulations (with and without velocity effects)

- We use quadratic estimators
- Summing over covariance matrix
- With weights designed for β
- And repeat for simulations (with and without velocity effects)
- For several data combinations from 143GHz and 217GHz (857 subtracted)

Results

- ▲: 217x217
- ×:143x217
- +:143+217

Results

Results

Total

Aberration

Modulation

Total

Aberration

Modulation

Grey histogram: <u>without</u> Pink histogram: <u>with</u> β effects Vertical lines are different data combinations

Velocity Measured at 4-5σ

- Velocity Measured at 4-5σ
- Complication with hemispheric asymmetry

- Velocity Measured at 4–5σ
- Complication with hemispheric asymmetry
- Note: spectrum of velocity-induced modulation

- Velocity Measured at 4–5σ
- Complication with hemispheric asymmetry
- Note: spectrum of velocity-induced modulation
 - is d²B/dT² not dB/dT

- Velocity Measured at 4–5σ
- Complication with hemispheric asymmetry
- Note: spectrum of velocity-induced modulation is d²B/dT² not dB/dT
- Masking means velocity effects are ≈25% of θ error
 that's how well Planck constrains anisotropies
Concluding remarks

- Velocity Measured at 4–5σ
- Complication with hemispheric asymmetry
- Note: spectrum of velocity-induced modulation is d²B/dT² not dB/dT
- Masking means velocity effects are ≈25% of θ error
 that's how well Planck constrains anisotropies
- Only possible to measure velocity with Planck!

The scientific results that we present today are a product of the Planck Collaboration, including individuals from more than 100 scientific institutes in Europe, the USA and Canada

Planck is a project of the European Space Agency, with instruments provided by two scientific Consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific Consortium led and funded by Denmark.