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No non-Gaussianity from Planck

Is this the end of the story...?



Beyond fNL

However, there may be other types of non-Gaussianity

Planck analysis mainly focuses on the purely adiabatic 
perturbations at bispectrum level (except for τNL)

• Non-Gaussianity in isocurvature perturbations

• gNL (trispectrum)

• ...
→ Tightest constraints have been derived  from WMAP

��(�k1)�(�k2)�(�k3)� � fNL



WMAP 9yr constraints on gNL

Local-type non-Gaussian perturbations (higher-order)

Optimal constraints from WMAP 9yr (temperature V+W)
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from the WMAP 5-year data based on suboptimal estimators. On the other hand, in Ref.
[18], an optimal estimator of gNL is proposed. However, the estimator is computationally
demanding and several approximations are required in application to actual data, which
makes constraints less tight. The resultant constraint is gNL = (1.6 ± 7.0) ⇥ 105 at 1 �.
Thus, so far there has been no optimal constraints on gNL from CMB which take into ac-
count the inhomogeneity in noise levels of surveys and sky cuts for removal of foregrounds.
Meanwhile there are models with large gNL which may be observationally detected (See,
e.g., Refs. [14, 15]).#3 Therefore it is important to improve constraints on gNL and enable
an optimal estimation of it from CMB observations.

In this paper, we discuss a method to derive an optimal constraint on gNL from CMB
observations. In particular, we show that an optimal estimator of gNL can be computed
much more e�ciently in the real space than in the harmonic space. Organization of this
paper is as follows. In the next section, we discuss a CMB trispectrum generated from
gNL. In Section 3, we present a representation of the optimal estimator for gNL in the
real space, which we compute in this paper. In Section 4, after describing details of our
analysis, we present constraints on gNL from the WMAP 9-year data. We also compare
our results with a forecast based on the Fisher matrix analysis in Section 5. The final
section is devoted to summary.

Throughout this paper, we assume a concordance flat power-law ⇤CDM model, and
the cosmological parameters are fixed to the mean values from the WMAP 7-year data
alone [19],

(⌦b, ⌦c, H0, ⌧, ns, As) = (0.0448, 0.220, 71, 0.088, 0.963, 2.43⇥ 10�9). (2)

Here, ⌦b and ⌦c are respectively the density parameters for baryon and CDM, H0 is the
Hubble constant in units of km/sec/Mpc, ⌧ is the optical depth of reionization, and ns

and As are respectively the spectral index and amplitude of power spectrum of curvature
perturbations at a reference scale k⇤ = 0.002Mpc�1, i.e. P�(k) = 2⇡2

k3
25As

9
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k⇤
)ns�1.

2 CMB trispectrum from nonzero gNL

First let us consider correlation functions of primordial curvature perturbations � in the
local-type non-Gaussianity. A non-trivial e↵ect of gNL arises in the connected part of the
four-point correlation function of �(~x), or its Fourier dual, the trispectrum. If fNL = 0,
the connected trispectrum should be given by

h�(~k1)�(~k2)�(~k3)�(~k4)iconn = 6gNL [P�(k1)P�(k2)P�(k3) + (3 perms)] (2⇡)3�(3)(~k1234),
(3)

where ~ki1···in ⌘ ~ki1 + · · · + ~kin . For simplicity, we in this paper are to constrain gNL,
assuming fNL to be zero.

#3
We refer to Ref. [16] as a review of theoretical models which predict large local-type non-Gaussianities.
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1 Introduction

One of the most fundamental questions in cosmology is what is the origin of the primordial
fluctuations which seed the large scale structure in the observed Universe as well as the
anisotropies in the cosmic microwave background (CMB). Various cosmological observa-
tions consistently show that primordial fluctuations are adiabatic, nearly scale-invariant
and Gaussian, which is consistent with a prediction of simple single-field slow-roll inflation
models. On the other hand, there are a variety of models in which probability distribution
of primordial perturbations can significantly derivate from Gaussian ones.

Among an infinite number of possibilities for deviation from Gaussian distributions,
we in this paper focus on the local-type non-Gaussianity [1], in which the non-Gaussian
curvature perturbation �(~x) is given as a function of its Gaussian part �G(~x) only at the
same point, i.e.

�(~x) = �G(~x) + fNL

⇥
�G(~x)2 � h�G(~x)2i

⇤
+ gNL�G(~x)3 + · · · , (1)

where fNL and gNL are called non-linearity parameters. This type of non-Gaussianity is of
particular interest. In standard single-field slow-roll inflation models, amount of this type
of non-Gaussianity is too small to be observed at least in the near future. On the other
hand, a range of theoretical models based on the inflationary Universe, in which multiple
degrees of freedom during inflation contribute to primordial perturbations, can generate
a large local-type non-Gaussianity [2]. Among them, typical examples are the curvaton
scenario [3, 4, 5] and the modulated reheating scenario [6, 7]. Therefore the local-type
non-Gaussianity is a unique probe for these models which may manifest only at the very
early Universe and very high energy scales.

So far many attempts have been made to detect fNL. Current constraints come from
largely two types of observations. One is the bispectrum of the temperature anisotropy in
CMB. Current data from the WMAP 9-year observation gives a constraint �3 < fNL <
77 at 95% confidence level (C.L.) [8].#1 Another probe is the scale-dependent bias in
correlation functions of massive objects. At present the best constraint from the scale-
dependent bias gives �37 < fNL < 25 at 95% C.L. [13], where angular correlation functions
of galaxies and quasars are used.

While fNL, which parameterizes the leading-order non-Gaussian term in Eq.(1), have al-
ready begun to be constrained by various data, there are higher-order terms, which remain
to be explored more deeply. Regarding gNL, which is the coe�cient of the next-to-leading
order term in Eq. (1), so far only a few groups [17, 18] have presented CMB constraints on
it.#2 In Ref. [17], the authors present a constraint �7.4⇥105 < gNL < 8.2⇥105 (95% C.L.)

#1
While primordial perturbations are consistent with adiabatic ones and non-Gaussianity in curvature

perturbations is discussed in the most literature, some theoretical models predict isocurvature perturba-

tions which can have a local-type non-Gaussianity, e.g., Refs. [9, 10]. Current constraints on isocurvature

non-Gaussianities are presented in Refs. [11, 12].

#2 gNL can be also constrained from the scale-dependent biases. For current constraints, we refer to

Ref. [13].
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cf. Planck forecast (Fisher matrix): ∆gNL= 6.7x104

Primordial trispectrum

gNL = (�3.3± 2.2)� 105
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Figure 3. The CMB temperature power spectrum (CTT
! ) for the AD, CI and NID modes.

in the power spectrum of SDSS galaxies [55] and the direct measurement of the Hubble
constant (H0) [56]. Hereafter, we will refer to sets of combined datasets of WMAP+ACT
and WMAP+ACT+BAO+H0 as “CMB” and “ALL”, respectively.

The initial condition for structure formation in our model is a mixture of the AD and
NID modes and these two initial modes can be in general correlated. Correlation functions
of the initial modes, or equivalently the primordial perturbation spectra, form a symmetric
matrix. We assume that the primordial perturbation spectra can be represented by power-
law with same spectral indices. Then the primordial power spectra can be parametrized as
follows, which is widely seen in literatures:

(

Pζζ(k) PζSDR
(k)

PSDRζ(k) PSDRSDR
(k)

)

= As

(

k

k0

)ns−1(
1− α γ

√

α(1− α)
γ
√

α(1− α) α

)

, (4.1)

where PAB is the (cross-)power spectrum of initial perturbations A and B defined in
eq. (2.14), and γ denotes the correlation parameter given in (2.13).

In a most general case, the parameter space we explore consists of nine primary cos-
mological parameters (ωb, ωc, θs, τ, Neff , ns, As, α, γ). Definitions of these parameters
and top-hat priors we adopt in the parameter estimation are listed in table 2. In particular,
we take Neff ≥ 3.046 since our model assumes that there are always the Standard Model
neutrinos which are fully thermalized in the early Universe. In order to take account of
foregrounds, we also include three nuisance parameters ASZ , Ap, Acl, which measure the
amplitudes of power spectra from the Sunyaev-Zel’dovich (SZ) effect, point source, and clus-
tered dust, respectively. We adopt the same template power spectra for these foregrounds
as in the cosmological parameter estimation of ref. [2]. In particular, templates for the SZ
effect and clustered dust are based on ref. [57].

There are several works where constraints on the NID mode are investigated [58–60, 62,
63]. Neff is however fixed to the standard value 3.04 in these analyses, so that our analysis
explore a new parameter space which has not been investigated so far.

Parameter estimation is performed using a modified version of the publicly available
CosmoMC code [64]. Convergence of a Markov chain Monte Carlo (MCMC) analysis is
diagnosed by the Gelman-Rubin test R− 1 < 0.1.
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included in the summary Table 12. The power spectra PRR(k),
PRI(k), and PII(k) are normalized according to the primordial
values of the fields R(x) and I(x) defined above. It is interest-
ing to consider how much isocurvature is allowed expressed as a
fraction of the power in three bands spanning the CMB temper-
ature spectrum observed by Planck. To this end, we define the
following derived quantities

↵RR(`min, `max) =
(�T )2

RR(`min, `max)
(�T )2

tot(`min, `max)
, (68)

↵II(`min, `max) =
(�T )2

II(`min, `max)
(�T )2

tot(`min, `max)
, (69)

↵RI(`min, `max) =
(�T )2

RI(`min, `max)
(�T )2

tot(`min, `max)
, (70)

where

(�T )2
X(`min, `max) =

`max
X

`=`min

(2` + 1)CTT
X,` . (71)

The 95% confidence limits from the one-dimensional posterior
distributions for these fractional contributions in the full range
(`min, `max) = (2, 2500) are shown in Table 12. The range of al-
lowed values for ↵RR(2, 2500) is a measure of the adiabaticity of
fluctuations in the CMB. The posterior distributions of the frac-
tions ↵II, ↵RI in three multipole ranges are shown in Fig. 23.
We also report the primordial isocurvature fraction, defined as

�iso(k) =
PII(k)

PRR(k) + PII(k)
(72)

at three values of k. Table 12 also shows the effective �2 =
�2 lnLmax for all models, compared to the minimal six-
parameter⇤CDM model. In Fig. 24 we show the ratio of temper-
ature spectra for the best-fit mixed model to the adiabatic model.

Fig. 22. Two dimensional distributions for power in isocurvature
modes, using Planck+WP data.

Fig. 23. Fractional contribution of isocurvature modes to the
spectrum. We show the distributions ↵II(2, 20), ↵RI(2, 20),
↵II(21, 200), ↵RI(21, 200), ↵II(201, 2500), ↵RI(201, 2500) de-
fined in Eq. 70 for the CDI, NDI, NVI modes, constrained with
Planck+WP data.
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Fig. 24. Temperature spectrum of best-fit models with a mix-
ture of adiabatic and isocurvature modes. Top: spectrum of the
best-fit mixed models relative to that of the pure adiabatic model.
Bottom: zoom on the Sachs-Wolfe plateau of the best-fit temper-
ature spectrum D` = [`(`+1)/2⇡]CTT

` , for each of the three cases
plus the pure adiabatic model, shown together with Planck low-`
data points.

The results for ↵RR(2, 2500) show that the nonadiabatic con-
tribution to the temperature variance can be as large as 7% (9%,
5%) in the CDI (NDI, NVI) model (95% CL). These results are
driven by the fact that on large scales, for l  40, the Planck
data points on average have a slightly smaller amplitude than
the best-fitting ⇤CDM model. Hence the data prefer a signifi-

Hints from low-ell power suppression?



Non-Gaussianity in isocurvature 
perturbations

Primordial bispectrum  

Curvaton type (totally correlated)

Axion type (uncorrelated with Φ)
�S(�k1)S(�k2)S(�k3)� � 2f (ISO)

NL [PS(k1)PS(k2) + (2 perms.)]

� �2f (ISO)
NL [P�(k1)P�(k2) + (2 perms.)]

�S(�k1)�(�k2)�(�k3)� � �f (ISO)
NL

e.g., Linde & Mukhanov 1997

Langlois, Vernizzi & Wands 2008; 
Kawasaki TS+ 2009

Kawasaki, TS+ 2008; Hikage+ 2009

Extension of local-type NG to non-adiabatic perturbations

�(�x) = �G(�x) + fNL(�2
G(�x) � ��2

G�)

S(�x) = SG(�x) + f (ISO)
NL (S2

G(�x)2 � �S2
G�)

cf. general case: six distinct bispectra (Langlois & Tent 2011)



Studies on isocurvature NG

curvaton scenario: Linde & Mukhanov 1996; Boubekeur & Lyth 2005; Langlois, 
Vernizzi & Wands 2008; Kawasaki+ 2009; Moroi & Takahashi 2009, Kobayashi 
Mukohyama 2009; ...
axion model: Kawasaki+ 2008; Hikage+ 2009; ...
Affleck-Dine mechanism: Kawasaki+ 2009
multi-field inflation: Langlois+ 2008,...
modulated reheating: Boubekeur & Creminelli 2006; Takahashi, Yamaguchi, 
Yokoyama 2009
neutrino isocurvature: Kawasaki 2012; Kawakami+ 2012
....

Theoretical models

Observational constraints
Fisher matrix forecast: Hikage+ 2009; Langlois & Tent 2011, 2012; Kawakami+ 2012
Minkowski functionals: Hikage+ 2009
Optimal bispectrum estimator: NONE!



Data & Analysis

Optimal estimator

• full inverse-covariance filtering of maps Smith+ 2007

• normalization determined by exact NG CMB simulation for local-type

Komatsu, Spergel, Wandelt 2005; Creminelli+ 2006; 
Yadav+ 2007, 2008 

 Elsner & Wandelt 2009

Data: WMAP 7yr 
• Temperature maps at V+W bands

• KQ75y7 conservative sky cut (fsky=72%)
• Template marginalization of Galactic foregrounds 
   (synch, free-free, thermal dust)

Haslam 408MHz

 Jarosik+ 2011; Gold+ 2011

X, Y = Φ, Sãlm = (C�1a)lm

f̂ (X)
NL =

�

Y

N�1
(XY )

�

{l,m}

B(Y )m1m2m3
l1l2l3

[ãl1m1 ãl2m2 ãl3m3 � 3�ãl1m1 ãl2m2�ãl3m3 ]



Correlated case (curvaton type)

fNL =37± 25

�f (ISO)
NL =� 26± 144

(1 sigma)

(for                                ) 

Result: CDM isocurvature
C. Hikage, M. Kawasaki, TS, T.Takahashi, arXiv:1211.1095, 1202.6001
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Result: neutrino density isocurvature
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Application: axion model

• Axion field σ has a nearly-quadratic potential  

• The amplitude of coherent oscillation is 
determined on the total uniform-density 
at maxion = H(t).

with 

• Uncorrelated isocurvature perturbations

• Energy density on the uniform density slice

M. Kawasaki, K. Nakayama, TS, T. Suyama, F. Takahashi 2008

→ NG is local-type

: axion decay constant
: initial misalignment angle
: Hubble rate at inflation

��� �

Hinf

Fa

�

Hinf

�
Fa

V (�) � �4
QCD

�2

F 2
a

�i = Fa�,
�
���2� � Hinf/2�

�axion(�x) � [�i + ��(�x)]2

SCDM(�x) � S�(�x) � 2�i��(�x) + ��(�x)2

�SCDM(�x)�(�x)� = 0



Application: axion model (cont’d)

• NG in isocurvature perturbation marginally improves the constraint on Hinf        
when the misalignment angle θ is small.

allowed allowed

��axion� � a2
i + ��a2� = (Fa�)2 + (Hinf/2�)2

• Parameter dependences differ by whether fluctuation or the classical field value 
dominates.
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Application: axion model (cont’d)
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Conclusion

• CMB constraints on two extensions of the local-type non-Gaussianity 
are  studied.

• Isocurvature perturbations (CDM/neutrino, correlation w/ Φ)

• gNL

• WMAP data is consistent with Gaussian primordial perturbations even 
these extensions are allowed. (Some of) the constraints will be 
upgraded by Planck data.

• Constraints give implications to particle physics models e.g. axion.



Thank you for your attention!



How to constrain fNL optimally

•NG is manifested in the CMB bispectrum.

•Estimator of fNL can be constructed from cubic product of CMB anisotropy with 
suitable weight (“matched filtering”) [Komatsu, Spergel, Wandelt (05), Yadav+ (07, 08)].

•Normalization can be determined from simulations.

Clm,l�m� = CS
lm,l�m� + CN

lm,l�m� : total (signal+noise) covariance

← off-diagonal due to 
inhomogeneous noise, sky cuts

�a(th)
l1m1

a(th)
l2m2

a(th)
l3m3

� � Bm1m2m3
l1l2l3

� fNL

f̂NL =
1
N

�

{l,m}

Bm1m2m3
l1l2l3

(C�1a(obs))l1m1(C
�1a(obs))l2m2(C

�1a(obs))l3m3

N =
�

{l,m}

Bm1m2m3
l1l2l3

�(C�1a(sim))l1m1(C
�1a(sim))l2m2(C

�1a(sim))l3m3�fNL=1



Single-field slow-roll inflation model

•Potential energy of a scalar field (inflaton) drives the accelerated expansion.

•Slow-roll: inflaton rolls down a flat potential during inflation.

•Initial perturbations are generated only from the fluctuations of inflaton field.

•Standard class of inflation models



Prediction of single-field slow-roll inflation

Initial perturbations should be ...

•Nearly scale-invariant in amplitude

•Gaussian

N=ln(a): e-folding number

→ match with current observations

�(�k) � ��(�k) � H

2�

•Adiabatic

photon

CDM

�(�x)

�x

�(�x) � ���(�x)
�̄�

curvature perturbations

�(�x) = N(�x)� N̄

=
dN

d�
��(�x) +

1
2

d2N

d�2
��(�x)2 + · · ·



Implications of deviation

•If non-Gaussianity is detected, 

•Single-field slow-roll inflation model is ruled out.

•Multiple degrees of freedom during inflation?

•Other mechanisms for perturbation generation than inflation?

→ Probe for not only beginning of our Universe, but also
     physics at very high energy scales

•Non-adiabatic (isocurvature) perturbation is another probe.



Signals of non-Gaussianity

•Non-zero n-point correlation functions (n>3)
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��(�k1)�(�k2)�(�k3)�(�k4)�connected��(�k1)�(�k2)�(�k3)�(�k4)�connected

k1

k2 k3

k4

•Enhancement in
   formation of rare objects Gaussian

non-Gaussian

object 
formation



Local-type non-Gaussianity

•A specific type of non-Gaussianity

•Large fNL is predicted by many theoretical models

•Single-field inflation models predict small undetectable non-Gaussianities.

k1

k2

k3

�(�x) = �G(�x) + fNL�G(�x)2

→ coupling btw. modes at very large & very short scales

curvaton scenarios[Enqvist & Sloth; Lyth & Wands; Moroi & Takahashi (01)], modulated 
reheating[Dvali, Gruzinov, Zaldarriaga; Kofman (03)], ...

fNL � (1� ns) = O(0.01)

→ large signal at squeezed configuration



Cosmic Microwave Background (CMB)

•Photons scattered when the Universe becomes neutral.

•Anisotropy in CMB carries an imprint of initial perturbations.

•Linear perturbation theory, well-understood physics!

T (n̂) =
�

lm

almYlm(n̂)

→ Easy to extract information of initial perturbations

alm �
�

�k

gl(k)�(�k)Y �
lm(k̂)

transfer function



CMB signatures of non-Gaussianity

•CMB bispectrum:  (indirect) measure of primordial bispectrum.

�al1m1al2m2al3m3� = bl1l2l3G
l1l2l3
m1m2m3

•reduced bispectrum

coupling of angular momenta

→ We can make template bispectrum for fNL.

bl1l2l3 �
�

�k1�k2�k3

gl1(k1)gl2(k2)gl3(k3)��(�k1)�(�k2)�(�k3)�

= fNLb̂l1l2l3

•From data, fNL can be optimally estimated from data by matched filtering.



Implications of isocurvature perturbations

•In inflationary universe

•Initial perturbations for structure formation are generated from 
vacuum fluctuations of light (scalar) fields.

•If a single field sources the perturbations, no isocurvature 
perturbations can be generated at super-horizon scales.

•Detection of nonzero isocurvature perturbations

•Single-field model is ruled out.
•Multiple degrees of freedom exist during inflation.

•Non-Gaussianity?

S(�x) = SG(�x) + f (ISO)
NL S2

G(�x)

Additional information beyond power 
spectrum.

�(�x) = �(�x) + fNL�(�x)2



Delta-N formalism

•Delta-N formalism

•For each fluid i, we can define its uniform-density hyper-surface      .

•curvature perturbation on      :  
Difference in e-folding numbers btw. the 
initially flat hyper-surface and     

•curvature and isocurvature perturbations 

�i

flat

e-folding # 

�x

Starobinsky (85), Salopek & Bond (90), Sasaki & Stewart (96)

This definition is fully nonlinear.
At linear order, 

�i

�i

•energy density in nonlinear formalism

Si =
�

1
(1 + wi)

��i

�̄i
� 4

3
���

�̄�

�
.

�i(�x) = �̄ie
3(1+wi)[�i(�x)��N(�x)]

�i(�x) = N�i(�x)�N�flat(�x)



Example(1): curvaton model

— Some fraction of CDM is generated when curvaton is subdominant.
    The rest of CDM is generated directly from the curvaton decay. 

•A spectator field during inflation (curvaton) decays into radiation (and 
matter) after inflation and contributes to primordial perturbations.

Kawasaki, Nakayama, TS, Suyama, Takahashi [arXiv:0905.2237]

Enqvist & Sloth, Lyth & Wands, Moroi & Takahashi (01)

•Setup: 

— During decay, the Universe is dominated by radiation and curvaton.
    (CDM energy density is negligible)

Linde & Mukhanov (96), Boubekeur & Lyth (05), 
Langlois, Vernizzi & Wands (08), Kawasaki+ (09), 
Moroi & Takahashi (09),..

— Curvaton mostly decays into radiation.
    However, curvaton also decays into CDM with nonzero branching ratio.



Schematic picture

energy 
density

radiation

time

CDM

curvaton

energy contribution of 
curvaton in radiation and CDM: 

curvaton decay

�CDM � �̄(�)
CDM

�̄CDM

�r �
�̄�

�̄r

�̄� � a�3

�̄r � a�4

�̄CDM � a�3



•At H=Γ, decay occurs synchronously on the uniform density hyper-
surface of total matter.

radiation: 

CDM: 
from inflaton from curvaton

— energy conservation (sudden decay approx.): 

1 = (1� �r)e4(����r) + �re
3(����r)

e3(�CDM��r) = (1� �CDM)e3(����r) + �CDMe3(����r)

curvaton model (cont’d)

•Even if fluctuations generated during  inflation (            ) are Gaussian, NG 
is induced from       . Induced NG is local-type.S�

��, S�

•correlated curvature and isocurvature perturbations 

induced NG 
SCDM � (�CDM � r)S� +

1
�CDM � r

{(�CDM � r)S�}2

� � �� +
rS�

3
+

3
2r

�
rS�

3

�2 (2nd order) r(� 3
4
�r), �CDM � 1



Application(2): curvaton model

•Correlated isocurvature perturbations are generated.

SCDM � (�CDM � r)S� +
1

�CDM � r
{(�CDM � r)S�}2

� � �� +
rS�

3
+

3
2r

�
rS�

3

�2

•amplitude of isocurvature power spectrum

•adiabatic non-Gaussianity

• isocurvature non-Gaussianity

fNL =
5A2

2r

� =
9A

r2
[�CDM � r]2

�f (ISO)
NL =

9A2

2r2
[�CDM � r]

r � 3
4

�̄�

�̄r
, �CDM � �̄(�)

CDM

�̄CDM

Parameters: 

A =
�(rS�/3)2�

��2�
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Figure 3: Constraints on curvaton scenario in r-εCDM plane with fixed values of A. From
top left to bottom right panels, A scales from 10 to 104. An arrow indicates the direction of
which region is allowed for each constraints. Shaded regions are allowed by the constraints
α, fNL and αf (ISO)

NL . For the case of A = 10, the region allowed by the constraints from α
is the one between two red lines. See text for more details.
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Extra radiation?

•Neutrino energy density

— In standard cosmology,                . 

�� = Ne�
7
8

�
4
11

�4/3

��

Ne� � 3

•Observational constraints

 [Izotov & Thuan (10)]

— abundance of light elements (2 sigma)
Ne� = 3.68+0.80

�0.70

— CMB power spectrum (1 sigma)
Ne� = 4.56± 0.75
Ne� = 3.86± 0.42

 WMAP+ACT [Dunkley+ (2010)]

WMAP+SPT [Keisler+ (2011)]

•Isocurvature perturbation in “dark radiation (active neutrinos+extra rad.)”

•Very weak interaction of extra rad. with SM particles
— Different origin & initial fluctuation? Never be in thermal equilibrium?

Kawasaki, Miyamoto, Nakayama, TS [arXiv: 1107.4962] 
Kawakami, Kawasaki, Miyamoto, Nakayama, TS [arXiv:1202.4890]

•Isocurvature perturbation in active neutrinos can be generated from 
the Affleck-Dine mechanism with large lepton asymmetry.



Extra radiation?

•Neutrino energy density

— In standard cosmology,                . 

�� = Ne�
7
8

�
4
11

�4/3

��

Ne� � 3

•Observational constraints

 [Izotov & Thuan (10)]

— abundance of light elements (2 sigma)
Ne� = 3.68+0.80

�0.70

— CMB power spectrum (1 sigma)
Ne� = 4.56± 0.75
Ne� = 3.86± 0.42

 WMAP+ACT [Dunkley+ (2010)]

WMAP+SPT [Keisler+ (2011)]

•Isocurvature perturbation in “dark radiation (active neutrinos+extra rad.)”

•Very weak interaction of extra rad. with SM particles
— Different origin & initial fluctuation? Never be in thermal equilibrium?

➡Can be tested by Planck
�Ne� = 0.1

[Ichikawa, TS, Takahashi (08)]

Kawasaki, Miyamoto, Nakayama, TS [arXiv: 1107.4962] 
Kawakami, Kawasaki, Miyamoto, Nakayama, TS [arXiv:1202.4890]

•Isocurvature perturbation in active neutrinos can be generated from 
the Affleck-Dine mechanism with large lepton asymmetry.



Simulation: method
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Figure 5. Averaged power spectra. Left panel: we display the power spectra CTT, CEE, and CTE of the linear part of the simulated CMB maps, averaged over 1000
simulations. We do not show the input power spectra here, as the lines cannot be discerned in this view. Right panels: the ratio of the power spectra divided by their
theoretical values for temperature (XX = TT, upper subpanel), polarization (XX = EE, middle subpanel), and cross-power spectrum (XX = TE, lower subpanel).
Oscillatory features in the latter are caused by roots of the denominator. The grayish area indicates the 2σ bounds of an ideal simulation code. Sub-percentage,
systematic deviations for the TT and EE spectra remain but are consistent with the precision goal.

Figure 6. Examples for simulated curvature perturbations. Left panel: we visualize the linear gravitational potentials ΦL(r), generated on N = 70 shells from the
origin (center) to the last scattering surface (outermost shells). Right panel: the associated non-Gaussian potential, displayed at nonlinear scale.
(A color version of this figure is available in the online journal.)

of reconstruction techniques as we will show in the next section.
We visualize the three-dimensional gravitational potential ΦL(r)
and ΦNL(r) in Figure 6; long-distance correlations on large
scales are in evidence.

Our simulation algorithm is conceptually very similar to the
method proposed in Liguori et al. (2007), where the authors
generate the gravitational potential on 400 shells, requiring
800 spherical harmonic transforms to calculate a single non-
Gaussian CMB map, and report a runtime of 3 hr for "max = 500.
By applying our optimized quadrature scheme, we have demon-
strated that it is possible to reduce the number of transforms con-
siderably, resulting in an increase of computational efficiency.
Another, albeit more formal difference is the way the gravita-
tional potential is generated. We use the real space covariance
matrix to draw ΦL(r) directly, whereas the authors of Liguori
et al. (2007) compute the gravitational potential by perform-
ing an integral over uncorrelated random numbers weighted by
‘filter’ functions.

In Smith & Zaldarriaga (2006), where the authors focused
on a perturbative reproduction of the correct bispectrum in the
regime of weak non-Gaussianity, a runtime of about 3 minutes is
reported to simulate one non-Gaussian CMB temperature map
at an angular resolution of "max = 1000. Although slower by
an order of magnitude, and tuned for local non-Gaussianity, the
algorithm presented here is capable of simulating both tempera-
ture and polarization maps (i.e., three maps for the stokes param-
eter I, Q, and U) within the same framework and with nearly
the same computational cost compared to temperature alone.
Furthermore, as recently pointed out by Hanson et al. (2009),
in the case of local non-Gaussianity an additional modification
of the algorithm of Smith & Zaldarriaga (2006) is necessary to
suppress the power spectrum of the non-Gaussian part of a sim-
ulated map, found to be artificially enhanced by several orders
of magnitudes on large angular scales.

Notwithstanding the aforementioned higher computational
costs, we regard our method as useful for the study of local

Simulation procedure: 

• Set concentric spherical shells 
covering the observable Universe.

• Randomly realize              on the shells 
and square it to get             .

• Integrate along the line of sight with 
transfer function          .

initial perturbation
transfer function in real space

•NG CMB simulation (local type) [Liguori+(03), Elsner & Wandelt (09)]

XG(�r)

�l(r)

X(�r) = XG(�r) + fNLXG(�r)2

(c) Elsner & Wandelt (09)

XG(�x)� X2
G(�x)

XG(�r)2

alm =
�

dr̂ Y �
lm(r̂)

�

l.o.s
dr r2 �l(r)X(�r)



Gaussian non-Gaussian

AD

ISO

Non-Gaussian CMB simulation
X = {�, S}
X = XG + f (X)

NL X2
G

�2
G�G

SG S2
G



Gaussian non-Gaussian

AD

ISO
�c � �� � S2

G > 0

Non-Gaussian CMB simulation
X = {�, S}
X = XG + f (X)

NL X2
G

�2
G�G

SG S2
G



➡ Distinct in spectral shape from adiabatic bispectrum. 

l1 � l2

AD vs ISO: CMB bispectrum

•model: uncorrelated CDM isocurvature

•bispectrum in isosceles triangular configuration (            )

M. Kawasaki, K. Nakayama, TS, T. Suyama, F. Takahashi (08)
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➡ Distinct in spectral shape from adiabatic bispectrum. 

l1 � l2

large power 
at low ell

out-of-phase 
acoustic oscillation

AD vs ISO: CMB bispectrum

•model: uncorrelated CDM isocurvature

•bispectrum in isosceles triangular configuration (            )

M. Kawasaki, K. Nakayama, TS, T. Suyama, F. Takahashi (08)



➡ Distinct in spectral shape from adiabatic bispectrum. 

l1 � l2

small power 
at large ell

large power 
at low ell

out-of-phase 
acoustic oscillation

AD vs ISO: CMB bispectrum

•model: uncorrelated CDM isocurvature

•bispectrum in isosceles triangular configuration (            )

M. Kawasaki, K. Nakayama, TS, T. Suyama, F. Takahashi (08)



Simulation: check(1)

adiabatic isocurvature

• Variance of simulated a_lm: 1
2l + 1

l�

m=�l

|alm|2

→Simulation is OK
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Simulation: check(2)

• Skewness: 

→Simulation is OK.
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Inverse-variance weighting(1)

Need O(N_pix^3) arithmetics(!)

• Direct inversion is practically impossible in 
realistic time-scales

ã = [C + N ]�1d• Optimally weighted map: 

• Why (C+N)-1 weighting? Why not N-1?
cosmological model our Universe observed data

random 
realization

Cl N (i)(r̂)

noise

- Both variance should be taken into account
- Universally required in optimal estimation

- Our universe: random realization
- Large variance means less reliability.



Inverse variance weighting(2)

• Multi-grid preconditioning [Smith+(07)]

• Simple CG converges very slowly

Use (C+N)-1 coarsified to Nside/2 as 
pre-conditioner at Nside.

(C+N) is correlated at large 
angular scales (small l’s) 

← inhomogeneous noise + sky cuts

Good pre-conditioner close to (C+N)-1 is required.

1/(noise  power)

→ O(10) speedup

angular scales, which are slowest to converge but accu-
rately approximated at coarse resolution, while avoiding a
large increase in CPU time.

The performance of the multigrid preconditioner (! 14
CPU-min per Monte Carlo WMAP simulation) is sufficient
for purposes of this paper. However, we have also found
that none of the preconditioners described so far give
reasonable performance with a realistic sky cut and the
noise levels and resolution expected for the Planck satellite
mission. Therefore, the multigrid preconditioner is proba-
bly not the final word on this subject; additional improve-
ments are still needed for future data sets.

3. Template marginalization

So far, we have assumed a noise covariance Nmap
i for

each map which is diagonal in pixel space. Suppose that, in
addition, one wants to marginalize the amplitudes of Ntmpl

modes in the map. We have seen several examples in the
paper:

(1) In both WMAP and NVSS, we marginalize the
monopole and dipole (Ntmpl " 4).

(2) In NVSS, we remove systematic declination gra-
dients by marginalizing any mode which is constant
around each isolatitude ring in equatorial coordi-
nates (Sec. V). This leads to Ntmpl " Nring, where
Nring is the number of isolatitude rings in the
pixelization.

(3) In WMAP, one could use this formalism to margin-
alize any signal proportional to external foreground
templates, although we have not implemented this
because the effect of galactic foregrounds is small
(Sec. VI C).

Template marginalization, in this general form, is easy
to incorporate in our conjugate gradient framework. Let !
be anNtmpl-by-Npix matrix containing the templates. By the
Woodburry formula, template marginalization modifies the
map covariance as follows:

 #Npix
i $%1 % #Npix

i $%1!T&!#Npix
i $%1!T'%1!#Npix

i $%1: (A7)

Since the conjugate gradient method only requires a ‘‘black

box’’ procedure for multiplying a map by the inverse
covariance #Npix

i $%1, one simply includes the extra term
in Eq. (A7).

If Ntmpl is small (e.g. in the case of marginalizing the
monopole and dipole), one can simply keep the matrix ! in
dense form. In cases where Ntmpl is large, all that is needed
is a procedure for multiplying a map by the matrix !, i.e.
computing each template amplitude given a map. For
example, when marginalizing declination gradients in
NVSS, we implement ‘‘multiplication by !’’ by simply
averaging pixel values around each isolatitude ring in the
input map.

APPENDIX B: THREE-POINT ESTIMATORS

In Appendix A we have described in detail how the
filtered CMB map ~a‘m and filtered galaxy map ~g‘m are
computed in our pipeline. In order to completely describe
our implementation, there is one remaining loose end: in
this Appendix, we will give the details of how our qua-
dratic reconstructions ~"‘m, ~ ‘m, ~s‘m are computed. We
will also prove the statement, made throughout the paper,
that our bandpower estimators Ĉ"gb , Ĉ gb , Ĉsgb for lensing,
curl null test, and point sources are optimal. Our proof will
depend on the assumption of small deviations from
Gaussianity, and we discuss the conditions under which
this assumption applies.

1. Quadratic reconstruction

Here, we give the implementational details of how the
quadratic reconstuctions ~"‘m, ~ ‘m, ~s‘m are computed in
our pipeline. There is a small subtlety because the recon-
structions are defined by position-space equations, e.g.
~"‘m is defined by

 

X

‘m

~"‘mY‘m#x$ " ra###x$ra$#x$$ (B1)

but the maps ~a‘m, ~"‘m are defined in harmonic space. [The
quantities ##x$, $#x$ were defined in Eqs. (15) and (16).]

In principle, ~" can be evaluated as a brute force
harmonic-space sum:

 

~" (‘m "
X

‘1m1‘2m2

f‘1‘‘2
CTT‘2

G‘‘1‘2
mm1m2 ~a‘1m1

~a‘2m2
; (B2)

where f‘1‘2‘3
was defined previously in Eq. (7), and we

have introduced the notation
 

G‘1‘2‘3
m1m2m3 "

def

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
#2‘1 ) 1$#2‘2 ) 1$#2‘3 ) 1$

4%

s
‘1 ‘2 ‘3

0 0 0

 !

*
‘1 ‘2 ‘3

m1 m2 m3

 !
: (B3)

However, the harmonic-space sum has computational cost
O#‘5

max$ and so we introduce an optimized position-space
method.

FIG. 21. Sequence of coarsifying and decoarsifying operations
in an instance of the multigrid method with N#1$ " 3, N#2$ " 2,
showing the W-cycle structure. Each solid circle represents one
‘‘forward’’ operation of the operator X " #1) S1=2N%1S1=2$ at
the appropriate resolution.

DETECTION OF GRAVITATIONAL LENSING IN . . . PHYSICAL REVIEW D 76, 043510 (2007)

043510-23

• Conjugate gradient (CG) method [Oh, Spergel, Hinshaw(99)]

Solve a linear equation (C�1 + N�1)ã = C�1N�1d



• Wiener filtered map from WMAP V+W band

Filtered map

a = C[C + N ]�1d = Cã

C � N

C � N



Table of constraints: uncorrelated case

setups fNL α2f (ISO)
NL

CI, niso = 0.963 w/o template marginalization 43 ± 21 13 ± 66
(50 ± 23) (−51 ± 72)

w/ template marginalization 37 ± 21 22 ± 64
(41 ± 23) (−28 ± 71)

CI, niso = 1 w/o template marginalization 46 ± 21 26 ± 63
(51 ± 23) (−34 ± 69)

w/ template marginalization 33 ± 21 30 ± 66
(35 ± 23) (−15 ± 72)

NID, niso = 0.963 w/o template marginalization 43 ± 21 191 ± 140
(65 ± 39) (−173 ± 261)

w/ template marginalization 34 ± 21 164 ± 143
(48 ± 39) (−116 ± 266)

NID, niso = 1 w/o template marginalization 40 ± 21 178 ± 137
(57 ± 40) (−133 ± 257)

w/ template marginalization 36 ± 21 175 ± 137
(48 ± 40) (−87 ± 257)

Table 4: Constraints on fNL and α2f (ISO)
NL at 1σ level for the cases of uncorrelated isocur-

vature perturbations. A value with (without) parenthesis is a constraint on a nonlinearity
parameter without (with) marginalization of the other one.

errors for the NID model are substantially larger than the Fisher analysis, which may
result from the inhomogeneous noise and the sky cut. We found that fiducial values of the
spectral indices little affect the constraints. On the other hand, template marginalization
can bias the central values by as much as 0.5σ, in particular for CI model. However, as in
the uncorrelated case, the effects of residual foregrounds are regarded not to be severe at
all. We can conclude that the primordial perturbations are consistent with Gaussian ones
at around 2σ level also in the case of correlated CI and NID models.

Finally we comment on the contributions from the terms which are higher order with
O(

√
α) and O(α) such as the second and third terms in Eqs. (33) and (34). In the analysis

of correlated isocurvature models, we have neglected those terms since they are expected
to give little effects on the constraints. To check this, we have also made an analysis where
we included those terms. We have compared the constraints with and without those terms
for the case of α = 0.003. It is found that the errors are almost unchanged and the central
values change by no more than O(0.1)σ, which justifies ignoring higher order terms in α
in our analysis.
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Table of constraints: correlated case

setups fNL αf (ISO)
NL

CI, niso = nadi = 0.963 w/o template marginalization 41 ± 21 76 ± 114
(50 ± 25) (−82 ± 138)

w/ template marginalization 34 ± 21 90 ± 120
(37 ± 25) (−26 ± 144)

CI, niso = nadi = 1 w/o template marginalization 40 ± 21 70 ± 114
(48 ± 25) (−79 ± 138)

w/ template marginalization 37 ± 21 99 ± 117
(40 ± 25) (−25 ± 141)

NID, niso = nadi = 0.963 w/o template marginalization 45 ± 21 103 ± 55
(93 ± 86) (−126 ± 220)

w/ template marginalization 35 ± 21 82 ± 54
(55 ± 80) (−53 ± 203)

NID, niso = nadi = 1 w/o template marginalization 42 ± 21 99 ± 53
(72 ± 75) (−78 ± 191)

w/ template marginalization 36 ± 21 86 ± 53
(67 ± 80) (−80 ± 204)

Table 5: Constraints on fNL and αf (ISO)
NL for the cases of correlated isocurvature pertur-

bations.

5 Implications to the curvaton scenario

In this section, we demonstrate an application of our result to a model of the very early
Universe based on the curvaton scenario. We here focus on a model where inflaton and
curvaton fields source the primordial curvature and CDM isocurvature perturbations. In
addition, we assume that some fraction of CDM is generated before curvaton decay, and
the rest of CDM is generated directly from the curvaton decay. No CDM production
after curvaton decay is assumed. Here we briefly outline the model and its predictions
for the power spectrum and non-linearity parameters. For more details, we refer to e.g.
Refs. [18,20–22].

Adopting the sudden decay approximation, the curvaton decays synchronously on the
uniform-density hypersurface of the total matter. On this hypersurface, the energy con-
servation of the total matter and CDM should be given by

ρ̄r = ρ̄(φ)
r e4(ζ(φ)−ζ) + ρ̄σe

3(ζσ−ζ), (43)

ρ̄CDMe3(ζCDM−ζ) = ρ̄(φ)
CDMe3(ζ(φ)−ζ) + ρ̄(σ)

CDMe3(ζσ−ζ), (44)

where ρ(φ)
r and ρσ are respectively energy densities of radiation and curvaton just before

decay. The subscript φ for ρ(φ)
r is put to emphasize that the radiation originates from the

inflaton decay (or decay products). ρr and ρCDM are respectively ones for radiation and

14



[Hikage, Komatsu, Matsubara (06), Hikage+ (08)]

— Topology of excursion set depends on skewness

[Hikage, Koyama, Matsubara & Takahashi (09)]

area fraction, 
circumference,...

(1 sigma)

threshold

•Minkowski functional method

S �
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bl1l2l3Wl1(�)Wl1(�)Wl1(�)

Limits on isocurvature non-Gaussianity 2195

Figure 4. Skewness parameters S(k) (left-hand panel: k = 0, centre: k = 1, right-hand panel: k = 2) of each component in the Quadratic Model plotted as a
function of θ s. The skewness values for a pure isocurvature component are plotted in upper panels, while those for a mixed component are plotted in lower
panels. The parameters of isocurvature perturbation are nσ = 1 with α = 0.067 (long-dashed), nσ = 1.5 with α = 0.008 (short-dashed) and nσ = 2 with α =
0.001 (dotted). For comparison, the adiabatic skewness with nφ = 0.96 and f NL = 50 is plotted with solid lines in all panels.

Figure 5. Non-Gaussian term of Minkowski Functionals %vk (equation 64) from isocurvature bispectrum in Quadratic Model (left-hand panel: k = 0, centre:
k = 1, right-hand panel: k = 2). The isocurvature perturbation has a spectral index nσ = 1 and the fraction α is 0.067. The smoothing scales are shown by
different lines: θ s = 10 (solid), θ s = 20 (long-dashed), θ s = 40 (short-dashed), θ s = 70 (dotted) and θ s = 100 (dot–dashed) arcmin.

important. The other correlation term of (ζ ζS) (equation A.7) dom-
inates when the correlation is strong (cos θφη ! 1). In these three
cases, we set the parameter x to be α2f

(ISO)
NL , α3/2 cos θφηf

(ISO)
NL and

α cos2θφηf
(ISO)
NL . In the Quadratic Model, the pure isocurvature term

(equation 48) dominates at cos θφσ " 1. Then we set x to be α (not
α3/2). When the correlation between φ and σ is strong, the correla-
tion term (equation 57) is dominant and then x is α1/2 cos2θφσ . We
assume a flat prior for all x. We furthermore impose a non-negative
constraint on the parameters in the Quadratic Model, α and α1/2

cos2θφσ by definition of α (equation 10).
The likelihood function is computed by

−2 lnL(%v(obs)|x) ∝
∑

ij

[
%v

(obs)
i − %v

(theory)
i (x)

]
C−1

ij

×
[
%v

(obs)
j − %v

(theory)
j (x)

]
, (69)

where i and j denote the binning number of threshold values ν,
different kinds of Minkowski Functional k and smoothing scales
parametrized with θ s. We choose 18 threshold values at an equal
spacing in the range of ν from -3.6 to 3.6. The full covariance matrix
C ij is estimated from 1000 Gaussian simulation maps from purely
adiabatic perturbations. They include the pixel and beam window

function, Kq75 survey mask and inhomogeneous noise for WMAP
5-year maps. Applying our procedure to limit the non-Gaussianity
from curvature perturbations by putting x as f NL, we obtain −63 <

f NL < 76 at 95 per cent CL (Hikage et al. in preparation).
Table 1 lists the mean and 1σ error of the isocurvature non-

Gaussianity in the Linear Model characterized by α cos2θφηf
(ISO)
NL ,

α3/2 cos θφηf
(ISO)
NL and α2f

(ISO)
NL . Significant isocurvature non-

Gaussian signals are not found. If isocurvature perturbations exist
and there is no correlation between φ and η, the non-linear param-
eter f

(ISO)
NL is constrained from isocurvature non-Gaussianity for a

fixed α to be

f
(ISO)

NL = (−3300 ± 13000)(α/0.067)−2. (70)

If there is a strong correlation between φ and η represented by
curvaton-type isocurvature perturbations (cos θφη = −1), the corre-
lated term (ζ ζS) becomes important and then its non-Gaussianity
is limited as

f
(ISO)

NL = (4900 ± 43000)(α/0.0037)−1. (71)

Table 2 lists the maximum likelihood value αML, at which P(α)
has a maximum value, and the 95 per cent confidence limit of α

when the pure isocurvature term in the Quadratic Model dominates.

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 398, 2188–2198

are fraction circumference Euler characteristic
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NL �2
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[Hikage+(09)]

•WMAP5 constraint (uncorrelated isocurvature model)

Previous observational constraint



What’s new in our analysis?

•Optimal constraints based on bispectrum

•Joint constraint on fNL and fNL(ISO)

•Other types of isocurvature models than uncorrelated CDM one 

— correlated isocurvature models

— neutrino density isocurvature



Analysis and validity check

•Analysis

- Data: WMAP 7-year V+W temperature maps.

- Fiducial cosmological parameters: WMAP 7-year mean
- Conservative KQ75y7 mask (fsky=72%)

- Template marginalization of Galactic foregrounds

•validity check: purely adiabatic case (fNL(ISO)=0): 

➡ Consistent with the WMAP group.

(1 sigma) cf. WMAP result  [Komatsu+(11)]

The Astrophysical Journal Supplement Series, 192:18 (47pp), 2011 February Komatsu et al.

Forthog(k1, k2, k3) = 6A2f
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NL
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This form approximates the forms that arise from a linear
combination of higher-derivative scalar-field interaction
terms, each of which yields forms similar to the equilateral
shape. Senatore et al. (2010) found that, using the “effective
field theory of inflation” approach (Cheung et al. 2008), a
certain linear combination of similarly equilateral shapes
can yield a distinct shape which is orthogonal to both the
local and equilateral forms.

Note that these are not the most general forms one can write
down, and there are other forms which would probe different
aspects of the physics of inflation (Moss & Xiong 2007; Moss &
Graham 2007; Chen et al. 2007; Holman & Tolley 2008; Chen
& Wang 2010; Chen & Wang 2010).

Of these forms, the local form bispectrum has special signif-
icance. Creminelli & Zaldarriaga (2004) showed that not only
models with the canonical kinetic term, but all single-inflation
models predict the bispectrum in the squeezed limit given by
Equation (62), regardless of the form of potential, kinetic term,
slow-roll, or initial vacuum state (also see Seery & Lidsey 2005;
Chen et al. 2007; Cheung et al. 2008). This means that a convinc-
ing detection of f local

NL would rule out all single-field inflation
models.

6.2. Analysis Method and Results

The first limit on f local
NL was obtained from the COBE

4-year data (Bennett et al. 1996) by Komatsu et al. (2002),
using the angular bispectrum. The limit was improved by an
order of magnitude when the WMAP first year data were used
to constrain f local

NL (Komatsu et al. 2003). Since then the limits
have improved steadily as WMAP collect more years of data
and the bispectrum method for estimating f local

NL has improved
(Komatsu et al. 2005; Creminelli et al. 2006, 2007; Spergel et al.
2007; Yadav & Wandelt 2008; Komatsu et al. 2009a; Smith et al.
2009).34

In this paper, we shall adopt the optimal estimator (devel-
oped by Babich 2005; Creminelli et al. 2006, 2007; Smith &
Zaldarriaga 2006; Yadav et al. 2008), which builds on and sig-
nificantly improves the original bispectrum estimator proposed
by Komatsu et al. (2005), especially when the spatial distri-
bution of instrumental noise is not uniform. For details of the
method, see Appendix A of Smith et al. (2009) for f local

NL , and
Section 4.1 of Senatore et al. (2010) for f

equil
NL and f

orthog
NL . To

construct the optimal estimators, we need to specify the cos-
mological parameters. We use the five-year ΛCDM parameters
from WMAP+BAO+SN, for which ns = 0.96.
34 For references to other methods for estimating f local

NL , which do not use the
bispectrum directly, see Section 3.5 of Komatsu et al. (2009a). Recently, the
“skewness power spectrum” has been proposed as a new way to measure f local

NL
and other non-Gaussian components such as the secondary anisotropies and
point sources (Munshi & Heavens 2010; Smidt et al. 2009; Munshi et al. 2009;
Calabrese et al. 2010). In the limit that noise is uniform, their estimator is
equivalent to that of Komatsu et al. (2005), which also allows for simultaneous
estimations of multiple sources of non-Gaussianity (see Appendix A of
Komatsu et al. 2009a). The skewness power spectrum method provides a
means to visualize the shape of various bispectra as a function of multipoles.

Table 11
Estimatesa and the Corresponding 68% Intervals of the Primordial

non-Gaussianity Parameters (f local
NL , f

equil
NL , f

orthog
NL ) and the Point-source

Bispectrum Amplitude, bsrc (in units of 10−5µK3sr2), from the WMAP
Seven-year Temperature Maps

Band Foregroundb f local
NL f

equil
NL f

orthog
NL bsrc

V + W Raw 59 ± 21 33 ± 140 −199 ± 104 N/A
V + W Clean 42 ± 21 29 ± 140 −198 ± 104 N/A
V + W Marg.c 32 ± 21 26 ± 140 −202 ± 104 −0.08 ± 0.12
V Marg. 43 ± 24 64 ± 150 −98 ± 115 0.32 ± 0.23
W Marg. 39 ± 24 36 ± 154 −257 ± 117 −0.13 ± 0.19

Notes.
a The values quoted for “V + W” and “Marg.” are our best estimates from the
WMAP seven-year data. In all cases, the full-resolution temperature maps at
HEALPix Nside = 1024 are used.
b In all cases, the KQ75y7 mask is used.
c “Marg.” means that the foreground templates (synchrotron, free–free, and dust)
have been marginalized over. When the foreground templates are marginalized
over, the raw and clean maps yield the same fNL values.

We also constrain the bispectrum due to residual (unresolved)
point sources, bsrc. The optimal estimator for bsrc is constructed
by replacing alm/Cl in Equation (A24) of Komatsu et al. (2009a)
with (C−1a)lm, and using their Equations (A17) and (A5). The
C−1 matrix is computed by the multigrid-based algorithm of
Smith et al. (2007).

We use the V- and W-band maps at the HEALPix resolution
Nside = 1024. As the optimal estimator weights the data
optimally at all multipoles, we no longer need to choose the
maximum multipole used in the analysis, i.e., we use all the
data. We use both the raw maps (before cleaning foreground)
and foreground-reduced (clean) maps to quantify the foreground
contamination of fNL parameters. For all cases, we find the
best limits on fNL parameters by combining the V- and W-band
maps, and marginalizing over the synchrotron, free–free, and
dust foreground templates (Gold et al. 2011). As for the mask,
we always use the KQ75y7 mask (Gold et al. 2011).

In Table 11, we summarize our results.

1. Local form results. The seven-year best estimate of f local
NL

is
f local

NL = 32 ± 21(68% CL).

The 95% limit is −10 < f local
NL < 74. When the raw maps

are used, we find f local
NL = 59 ± 21 (68% CL). When

the clean maps are used, but foreground templates are
not marginalized over, we find f local

NL = 42 ± 21 (68%
CL). These results (in particular the clean-map versus
the foreground marginalized) indicate that the foreground
emission makes a difference at the level of ∆f local

NL ∼ 10.35

We find that the V + W result is lower than the V-band
or W-band results. This is possible, as the V + W result
contains contributions from the cross-correlations of V and
W such as 〈VVW〉 and 〈VWW〉.

2. Equilateral form results. The seven-year best estimate of
f

equil
NL is

f
equil
NL = 26 ± 140(68% CL).

35 The effect of the foreground marginalization depends on an estimator.
Using the needlet bispectrum, Cabella et al. (2010) found f local

NL = 35 ± 42 and
38 ± 47 (68% CL) with and without the foreground marginalization,
respectively.
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Local-type non-Gaussianity

•Local in real space

�(�x) = �G(�x) + fNL�G(�x)2 + gNL�G(�x)3 + · · ·

•Signals are largest at squeezed configurations

•Single-field inflation models predict small undetectable non-Gaussianities.

fNL � (1� ns) = O(0.01), gNL = O(10�4)

k1

k2

k3

k1

k2 k3

k4
fNL �= 0 gNL �= 0



CMB Constraints on gNL

• N-point pdf (Vielva & Sanz 2010): gNL/105=0.4±3.0

• Kurtosis (Smidt+ 2010): gNL/105=0.5±3.9

• Trispectrum (Fergusson+ 2010): gNL/105=1.6±7.0

• Minkowski functionals (Hikage & Matsubara 2012): gNL/105=−1.9±6.4

• Trispectrum+exact filtering (TS & Sugiyama 2013): gNL/105=−3.3±2.2

WMAP constraints



Estimator of gNL

Optimal estimator of gNL Regan+ 2010; Fergusson+ 2010

ãlm = (C�1a)lm

ĝNL =
1
N

�

{l,m}

Tm1m2m3m4
l1l2l3l4

[ãl1m1 ãl2m2 ãl3m3 ãl4m4
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