### 47th ESLAB Symposium The Universe as seen by Planck

2-5 April 2013

ESA/ESTEC, Noordwijk (The Netherlands)





Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY

MNRAS 429, 1309-1323 (2013)

doi:10.1093/mnras/sts417

#### The local luminosity function of star-forming galaxies derived from the *Planck* Early Release Compact Source Catalogue

M. Negrello,<sup>1\*</sup> M. Clemens,<sup>1</sup> J. Gonzalez-Nuevo,<sup>2</sup> G. De Zotti,<sup>1,3</sup> L. Bonavera,<sup>2</sup>
G. Cosco,<sup>4</sup> G. Guarese,<sup>4</sup> L. Boaretto,<sup>4</sup> S. Serjeant,<sup>5</sup> L. Toffolatti,<sup>6</sup> A. Lapi,<sup>3,7</sup>
M. Bethermin,<sup>8</sup> G. Castex,<sup>9</sup> D. L. Clements,<sup>10</sup> J. Delabrouille,<sup>9</sup> H. Dole,<sup>11,12</sup>
A. Franceschini,<sup>13</sup> N. Mandolesi,<sup>14,15</sup> L. Marchetti,<sup>13</sup> B. Partridge<sup>16</sup> and A. Sajina<sup>17</sup>

# Outline

- Introduction
- Selection of local dusty galaxies in the ERCSC
- Luminosity function
- Conclusions

# The *local* luminosity function

Provides a benchmark for *galaxy-evolution* models



# The *local* luminosity function

Provides a benchmark for *galaxy-evolution* models



### The sub-mm/mm source populations

The extragalactic sources detectable by Planck are

- Low redshift spiral/starburst galaxies
- z~1 AGN-powered radio sources







# The Planck ERCSC

### **Planck Early Release Compact Source Catalogue**

(ERCSC; Planck Collaboration VII 2011):

- 857 GHz (=350μm)
- 545 GHz (=550μm)
- 353 GHz (=850μm)
- **217 GHz** (=1.328mm)
- 143 GHz (=2.1mm)
- 100 GHz (=3mm)

- 70 GHz (=4.3mm)
- 44 GHz (=6.8mm)
- 30 GHz (=10mm)

Low Frequency Instrument (LFI)

We only consider these channels

# Local LF from the Planck ERCSC

### Warnings!

- 1. Large number of **galactic objects**
- 2. Contamination from **radio-sources**
- 3. 4 **flux density estimates** provided
- 4. Focus on **reliability**, not **completeness**

# 1. Galactic mask

Pixels in the upper intensity quartile of the **100µm map of Schlegel, Finkbeiner & Davis (1998)** are discarded as being heavily affected by Galactic emission.

29.1% of the sky is masked. Area left = **29 250 deg<sup>2</sup>** 



**217 GHz** 1. @ 217GHz remove galaxies with  $F_{100GHz}/F_{217GHz} > 1$ 

#### 217 GHz

- 1. @ 217GHz remove galaxies with  $F_{100GHz}/F_{217GHz} > 1$
- Inspect available optical to far-infrared imaging data + query the NED database in *Aladin* to reject sources showing:
  - > A clump or a filamentary structure in IRAS maps
  - A nearby bright (F<sub>1.4GHz</sub>>~0.1Jy) radio-source
  - A group/cluster of galaxies (e.g. Abell2218)

- **217 GHz** 1. @ 217GHz remove galaxies with F<sub>100GHz</sub>/F<sub>217GHz</sub> >1
  - Inspect available optical to far-infrared imaging data + query the NED database in *Aladin* to reject sources showing:
    - > A clump or a filamentary structure in IRAS maps
    - A nearby bright (F<sub>1.4GHz</sub>>~0.1Jy) radio-source
    - A group/cluster of galaxies (e.g. Abell2218)

857 GHz

353 GHz

545 GHz

3. @ higher frequencies remove previously identified contaminants and then repeat step 2

### Comparison with *Herschel* data @ 350µm/857GHz



#### References:

- Herschel Reference Survey (HRS; Boselli et al. 2010)
- Key Insights on Nearby Galaxies Survey (KINGFISH; Dale et al. 2012)
- Herschel Virgo Cluster Survey (HeViCS; Davies et al. 2012)
- Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS; Herranz et al. 2012)

#### Comparison with *Herschel* data @ 350µm/857GHz



#### **FLUX** = adopted *Planck* flux density measurement @ 857GHz

### Comparison with *Herschel* data @ 550µm/545GHz



#### References:

- Herschel Reference Survey (HRS; Boselli et al. 2010)
- Key Insights on Nearby Galaxies Survey (KINGFISH; Dale et al. 2012)
- Herschel Virgo Cluster Survey (HeViCS; Davies et al. 2012)
- Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS; Herranz et al. 2012)

500μm ---> 550μm assuming  $F_{\nu}$  = A  $\nu$  <sup>+2.7</sup>

#### Comparison with *Herschel* data @ 550µm/545GHz



**GAUFLUX** = adopted *Planck* flux density measurement @ 545GHz

### Comparison with *Herschel* data @ 550µm/545GHz



GAUFLUX = adopted *Planck* flux density measurement @ 545GHz @ 353GHz @ 217GHz

### 4. Number counts and completeness

dN/dlogF = const × F<sup>-1.5</sup> at bright flux densities



### 4. Number counts and completeness

dN/dlogF = const × F<sup>-1.5</sup> at bright flux densities



Down-turn at faint flux densities due to incompleteness

### 4. Number counts and completeness

### dN/dlogF = const × F<sup>-1.5</sup> at bright flux densities



Down-turn at faint flux densities due to incompleteness

### Luminosity and redshift distributions



### Local sub-mm luminosity function

### Here it is ... finally!



## Local sub-mm luminosity function

### Here it is ... finally!



**SLUGS** (Dunne et 2000, Vlahakis et al. 2005) LF of the *IRAS* PSCz catalogue rescaled using the sub-mm/far-IR colors of the IRAS-selected + optically-selected samples

### Conclusions

The *Planck* ERCSC has provided the first samples of **truly local** galaxies blindly **selected at sub-mm/mm wavelengths** 

### Conclusions

The *Planck* ERCSC has provided the first samples of **truly local** galaxies blindly **selected at sub-mm/mm wavelengths** 



Fig. 11.— Local luminosity functions at (sub-)mm wavelengths. As in the other figures the short-dashed blue lines refer to "warm" galaxies, the dotted red lines to "cold" galaxies, the long-dashed pink lines to type-2 AGNs and the long-dashed light-blue lines to type-1 AGNs. Data are from Dunne et al. (2000, orange open squares), Vaccari et al. (2010, light-blue stars), and Negrello et al. (2012, red open circles).

Cai et al. 2013, ApJ in press, astro-ph/1303.2335

### Conclusions

The *Planck* ERCSC has provided the first samples of **truly local** galaxies blindly **selected at sub-mm/mm wavelengths** 





Fig. 11.— Local luminosity functions at (sub-)mm wavelengths. As in the other figures the short-dashed blue lines refer to "warm" galaxies, the dotted red lines to "cold" galaxies, the long-dashed pink lines to type-2 AGNs and the long-dashed light-blue lines to type-1 AGNs. Data are from Dunne et al. (2000, orange open squares), Vaccari et al. (2010, light-blue stars), and Negrello et al. (2012, red open circles).

Cai et al. 2013, ApJ in press, astro-ph/1303.2335

### Luminosity and redshift distributions



Galaxies without a redshift-independent measure of the distance

### Large scale structure effects

V/V<sub>max</sub> test

Homogeneous distribution





Average over the whole sample

### Large scale structure effects

#### Parametric maximum-likelihood luminosity function



Comparison with SCUBA data @ 850µm/353GHz



- 217 GHz 353 GHz 545 GHz
- 1. @ 217GHz remove galaxies with  $F_{100GHz}/F_{217GHz} > 1$ 
  - 2. Inspect available optical to far-infrared imaging data + query the **NED database** in *Aladin* to reject sources showing:
    - A clump or a filamentary structure in IRAS maps
    - A nearby bright (F<sub>1.4GHz</sub>>0.1Jy) radio-source
    - A group/cluster of galaxies (e.g. Abell2218)
    - No detection in IRAS maps ۲



3. @ higher frequencies remove previousl contaminants and then repeat step 2

