Large Scale Polarization Explorer

Science goal and performance

Francesco Piacentini (Univ. Roma La Sapienza) – for the LSPE collaboration
LSPE is a balloon payload aimed at:

- Measure large scale CMB polarization and temperature anisotropies
 - Explore large scales anomalies measured by Planck

- Constrain the B-modes of polarization
 - ell range [2-100]

- Improve the limit on tensor to scalar ratio r
 - $r = 0.03$, at 99.7% confidence

- Test and validate technologies for space application
 - Large Cold Achromatic Half Wave Plate (50 cm)
 - ESA ITT approved to G. Pisano (Manchester)
Payload – mission

- The Large-Scale Polarization Explorer is
 - a spinning stratospheric balloon payload
 - 15 days duration fight, North hemisphere, from Svalbard
 - in the polar night (700 W, on batteries)
 - using polarization modulators to achieve high stability

- Frequency coverage: 40 – 250 GHz (5 channels)

- Two instruments:
 - SWIPE (95, 145, 245 GHz):
 - Multimode large throughput horns
 - bolometers at 300 mK
 - Rotating, 4 K cold half wave plate + wire grid polarizer
 - STRIP (43, 90 GHz),
 - HEMT coherent polarimeters at 20 K,
 - same polarimeters as in QUIET
 - 49 modules at 43 GHz, 7 modules at 95 GHz for crosscheck of systematic effects

- Angular resolution: 1.5 – 2.3 deg FWHM
- Combined sensitivity: 10 uK arcmin per flight
Instruments details are presented in a poster
Observation strategy

- Spin rate = 3 rpm
- Latitude = 78 N
- Longitude, variable
- Elevation range
 - independent for the two instruments
 - 30 - 40 degrees above horizon
Sky coverage

23% of the sky is observed using the WMAP polarization mask

The same sky is observed every day (depending on the elevation changes strategy)
Calibration

Sources
- S/N sampling at 60 Hz
- Signal is intensity
- S/N for one detector

Polarization angle and efficiency
- Crab
- Moon limb
- Ground based calibration

Beam mapping
- In black: one scan
- In white: one day
 - More than 2000 samples per day
 - Increase S/N by ~45
 - Increase S/N by ~160 in 13 days

<table>
<thead>
<tr>
<th>Source</th>
<th>Culmination (deg)</th>
<th>S/N per sample at 44 GHz</th>
<th>S/N per sample at 90 GHz</th>
<th>S/N per sample at 95 GHz</th>
<th>S/N per sample at 145 GHz</th>
<th>S/N per sample at 245 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moon</td>
<td>30</td>
<td>37500</td>
<td>200000</td>
<td>2000000</td>
<td>700000</td>
<td>2000000</td>
</tr>
<tr>
<td>Crab</td>
<td>34</td>
<td>20</td>
<td>18</td>
<td>22</td>
<td>23</td>
<td>28</td>
</tr>
<tr>
<td>Mars</td>
<td>0</td>
<td>0.30</td>
<td>1.6</td>
<td>2</td>
<td>5.6</td>
<td>18</td>
</tr>
<tr>
<td>Jupiter</td>
<td>27</td>
<td>15</td>
<td>80</td>
<td>100</td>
<td>275</td>
<td>850</td>
</tr>
<tr>
<td>Saturn</td>
<td>-6</td>
<td>1.4</td>
<td>7</td>
<td>9</td>
<td>24</td>
<td>70</td>
</tr>
<tr>
<td>Uranus</td>
<td>16</td>
<td>0.05</td>
<td>0.24</td>
<td>0.3</td>
<td>0.8</td>
<td>2.5</td>
</tr>
</tbody>
</table>
Expected performance – sensitivity

- STRIP - low frequency
Expected performance – sensitivity

- SWIPE – high frequency
Sensitivity – BB power spectrum

\(|(l+1)C_{l}/2\pi| (\mu K^2) \)

\(\Delta_{\text{bin}} = 3 \)

\(r = 0.1 \)

\(r = 0.03 \)

Multipole range: 10 to 100
Sensitivity – parameters ($r=0.03$)

- Ω_{de}^2 vs. r
- n_s vs. r
- Ω_Λ vs. r
- Age/Gyr vs. r

Legend:
- Black: Planck 143GHz
- Red: Spider
- Blue: LSPE
Sensitivity – parameters ($r=0.001$)

Francesco Piacentini

ESLAB 2013

Large Scale Polarization Explorer

$r=0.01$ green line

Planck 143GHz
Spider
LSPE
Component separation

- We plan to adopt a weighting scheme that minimizes foregrounds residuals
 - Bonaldi, A.; Ricciardi, S. 2011 MNRAS
 - Here is based on LSPE only. In combination with Planck can improve even more
Systematic effects

<table>
<thead>
<tr>
<th>Systematic effect</th>
<th>Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>All listed (except pointing)</td>
<td>Combination of two instruments with 90 GHz channel</td>
</tr>
<tr>
<td>Polarization</td>
<td></td>
</tr>
<tr>
<td>HWP emission</td>
<td>Scan with HWP steady, Low temperature HWP</td>
</tr>
<tr>
<td>Wire grid emission, reflected by HWP</td>
<td>Low temperature WG, antireflection coating on HWP</td>
</tr>
<tr>
<td>Differential transmission of HWP</td>
<td>Scan with HWP steady</td>
</tr>
<tr>
<td>Differential reflection of HWP</td>
<td>Scan with HWP steady, antireflection coating on HWP</td>
</tr>
<tr>
<td>Differential phase shift by HWP</td>
<td>Scan with HWP steady, Spectral bandwidth optimization</td>
</tr>
<tr>
<td>Slant incidence of rays on HWP</td>
<td>Scan with HWP steady</td>
</tr>
<tr>
<td>Cross polar leakage</td>
<td>Lab. Calibration</td>
</tr>
<tr>
<td>Absolute polar angles calibration</td>
<td>Lab Calibration / Moon / Crab</td>
</tr>
<tr>
<td>Thermal fluctuations of HWP</td>
<td>Scan with HWP steady, thermal link HWP – cryogen</td>
</tr>
<tr>
<td>Optics</td>
<td></td>
</tr>
<tr>
<td>Main beam uncertainty</td>
<td>Laboratory calibration / observation of planets</td>
</tr>
<tr>
<td>Main beam ellipticity</td>
<td>Reduced in multimode system; lab. and flight calibration</td>
</tr>
<tr>
<td>Sidelobes pickup of sky signal</td>
<td>Large shields, cold stop</td>
</tr>
<tr>
<td>Sidelobes pickup of Earth and Balloon</td>
<td>Large shields, cold stop</td>
</tr>
<tr>
<td>Pointing</td>
<td></td>
</tr>
<tr>
<td>Pointing error</td>
<td>ACS Sensors</td>
</tr>
<tr>
<td>Pendulation and atmospheric emission</td>
<td>Not polarized / orthogonal detectors</td>
</tr>
<tr>
<td>Detectors</td>
<td></td>
</tr>
<tr>
<td>Gain uncertainty</td>
<td>Calibration on anisotropy</td>
</tr>
<tr>
<td>Gain stability</td>
<td>Calibration on anisotropy</td>
</tr>
<tr>
<td>1/f noise</td>
<td>AC bias / T stabilization</td>
</tr>
<tr>
<td>Correlated thermal drift</td>
<td>TES</td>
</tr>
<tr>
<td>Non linearities</td>
<td>Compensation on scans</td>
</tr>
</tbody>
</table>

Francesco Piacentini
ESLAB 2013
Large Scale Polarization Explorer
Half Wave Plate strategy: spin/step

- The HWP non-idealities such as:
 - Differential emission
 - Differential reflection
 - Differential phase shift
 - Slant incidence of radiation into HWP
 - Thermal fluctuations of HWP

- In the spinning case, this can generate a spurious signal,
 - angular dependent
 - With components at 4 times the angle
 - Systematic effect in the recovered polarization

- In the stepping case, this is step dependent offset
 - The offset is removed in any case
 - Signal modulation is provided by the scanning
 - Polarization is extracted by combing signals from the SAME detector at different time, with different HWP angles, same beam, same sidelobes
 - 1/f noise is treated by ML iterative mapmaking
Conclusion

- LSPE is exploring large scales, where Planck detected “anomalies”
- Night time polar balloon flight
- Designed for polarization purity
- Deep measure of polarized foreground
- Two 90 GHz channels with different technologies (HEMT, bolometers) for crosscheck of systematic effects
- Low frequency channel for optimal control of synchrotron polarized foregrounds
- Technology development for next generation space mission
- The $r=0.03$ at 99.7 confidence level is achievable
- Upper limit at $r=0.01$
- Timescale: launch on Winter 2014/15
Collaboration

- Dipartimento di Fisica, Sapienza Università di Roma, Italy
- Dipartimento di Fisica, Università degli Studi di Milano, Italy
- Dipartimento di Fisica, Università di Milano Bicocca, Italy
- IASF-INAF Via Gobetti 101, Bologna, Italy
- IASF-INAF, Milano, Italy
- OAT-INAF, Trieste, Italy
- Physics Department, University of Trieste, Italy
- IFAC-CNR, Firenze, Italy
- Dip. Meccanica e Tecnologie Industriali, Univ. di Firenze, Italy
- Cavendish Laboratory, University of Cambridge, UK
- Jodrell Bank Centre for Astrophysics, University of Manchester, UK
- IEIIT-CNR, Torino, Italy
- Istituto Nazionale di Geofisica e Vulcanologia, Roma, Italy
- Agenzia Spaziale Italiana, Roma, Italy
References

- The LSPE collaboration et al., *The Large-Scale Polarization Explorer (LSPE)*, Proc. SPIE 8446, Ground-based and Airborne Instrumentation for Astronomy IV, 84467A (September 24, 2012)

Half Wave Plate for SWIPE

- Dielectric embedded metal mesh

- Metallic grids with sub-wavelength anisotropic geometries able to mimic the behaviour of natural birefringent materials

- The current mesh HWP has measured performance, across a 20% bandwidth (78-100 GHz)
 - Transmission 0.9
 - differential phase-shift flatness and 180.4 ± 2.9 degrees
 - Cross-polarisation -35 dB

- ESA ITT grant to G. Pisano (Manchester) for large prototype development
STRIP-43 GHz – effect of $I \rightarrow Q/U$ leakage

Leakage > 0.1% can affect measurements significantly

This is the 0.1% limit
STRIP-43 GHz – effect of polarization angle uncertainty

EE Power Spectra (error on polarization angle) BB Power Spectra (error on polarization angle)
STRIP-43 GHz – effect of cross-polarization

Effect of cross-polarization on BB power spectra

ℓ
SWIPE – polar angle
SWIPE – HWP phase shift error