QUIJOTE : a CMB Polarization experiment

(R. Rebolo Instituto de Astrofísica de

Canarias

https://www.iac.es/project/cmb/qu

<u>Outline</u>

- . QUIJOTE
 - Basic features
 - Science goals
- Telescopes and Instruments
- Polarized source subtractor
- QUIJOTE Data processing
 - Beam reconstruction
 - MFI Noise estimation
 - Photometric calibration
 - Map making
- Preliminary maps
- Science Prospects

The QUIJOTE collaboration

Instituto de Astrofísica de Canarias (IAC)

R. Rebolo (PI), J.A. Rubiño-Martín (PS), M. Aguiar, R. Génova-Santos, F. Gómez-Reñasco, A. Pérez (PM), R. Hoyland (InstS), C.H. López-Caraballo, A. Peláez, V. Sánchez, A. Vega, T. Viera, R. Vignaga C. Gutiérrez

Instituto de Física de Cantabria

E. Martínez-González, B. Barreiro, F.J. Casas, J.M. Diego, R. Fernández-Cobos, D. Herranz, M. López-Caniego, D. Ortiz, P. Vielva

DICOM - Universidad de Cantabria

E. Artal, B. Aja, J. Cagigas, J.L. Cano, L. de la Fuente, A. Mediavilla, J.P. Pascual, J.V. Terán, E. Villa

* JBO - University of Manchester

Vizcargiienaga

L. Piccirillo, R. Battye, E. Blackhurst, M. Brown, R.D. Davies, R.J. Davis, C. Dickinson, S. Harper, B. Maffei, M. McCulloch, S. Melhuish, G. Pisano, R.A. Watson

Output: University of Cambridge

K. Grainge, M.P. Hobson, A. Challinor, A.N. Lasenby, R.D.E. Saunders, P.F. Scott, D. Titterington

* IDOM

J. Ariño, B. Etxeita, A. Gómez, C. Gómez, G. Murga, J. Pan, R. Sanquirce, A.

QUIJOTE (Q-U-I Joint Tenerife Experiment)

The main goal is to obtain six polarization maps in the frequency range 10-40 GHz with sufficient sensitivity to correct the 30 and 40 GHz maps from foreground emission and detect the imprint of B modes if r > 0.05.

QUIJOTE: Project basic features

- Site: Teide Observatory (2400 m altitude, Tenerife)
- ▶ Frequencies: 11, 13, 17, 19, 30 and 40 GHz.
- Angular resolution: 54 arcmin @ 11 GHz
- **<u> Telescopes and instruments:</u>**
 - ➢ 2.3 meter off axis microwave telescope.
 - Equipped with a multifrequency 11-20 GHz instrument (MFI) providing (started operation November 2012). <u>Polarization</u> <u>detection</u>: modulation
 - Second instrument with 32 polarimeters @ 30 GHz (currently under construction, it shall be completed at the end of 2013).
 - Polarized Source Subractor (30 GHz): 2 antenna interferometer

Phase II (funded)

- Second telescope (in construction, shall be ready end of 2013)
- Third instrument with 40 polarimeters at 40 GHz (shall be completed by end 2014).
- Scientific operation plan: 2012-2018

First QUIJOTE Telescope (QT1)

Installed at Teide Observatory on May 3rd, 2012.

Observing modes:

- 1. Nominal: fast spinning at fixed elevation. Earth rotation provides daily s of several thousand sq degrees.
- 2. Raster and Tracking observations are also possible.

QUIJOTE EXPERIMENT QT1 MFI

observing modes

OBSERVATORIO DEL TEIDE. MARZO 2013

POLAR MODULATOR

QUIJOTE first instrument

- 2 horns providing 8 channels at 11 and 13 GHz
- 2 horns providing 8 channels at 17 and 19 GHz

Polar Modulators

Spinning polar modulators

OMT and motor

• MFI integration tests on the QT1 at the AIV room. March 2012

• Currently undergoing scientific commissioning

	MFI			TGI	FGI	
Frequency (GHz)	11	13	17	19	30	40
Bandwidth (GHz)	2	2	2	2	8	10
Number of horns	2		2		31	40
Channels per horn	1	1	1	1	4	4
Beam FWHM (deg)	0.92	0.92	0.60	0.60	0.37	0.28
T _{sys} (K)	25	25	25	25	35	45
NEP per channel (µK s ^{1/2})	456	370	663	1019	557	632
Sensitivity per channel (Jy s ^{1/2})	0.49	0.55	0.73	1.40	0.66	0.76

Science with TGI and FGI

Thirty Gigahertz instrument (TGI)

- 31 polarimeters at 30 GHz (4 channels each)
- Expected sensitivity: 50 µK s^{1/2}

- MFI design (rotating polar modulator) not appropriate for the long-term operations required for the TGI
- Alternative design based on a fixed polarizer
- Fixed polarizer combined with two 90° and 180° phase switches to generate the four polarization states in each branch, to minimize the 1/f noise and other systematics
- To be commissioned early 2014
- The TGI (40 polarimeters at 40 GHz will have the same design)

Technical First Light:the Microwave Moon through clouds

QUIJOTE focal plane

Detector

pointing
reconstruction
can be
determined with
an error of ~1
arcmin

Beams (deg)

Horn	Frequency	FWHM (Az)	FWHM (El)
1	11	0.89	0.88
1	13	0.89	0.89
2	19	0.66	0.67
3	11	0.81	0.85
3	13	0.82	0.88
4	19	0.63	0.66

Fit ch 8

MFI: Beam Horn 1 (11 GHz)

MFI - Noise properties

O Noise power spectrum is measured using long observations of blanck fields. • There is a 2Hz signal + harmonics which could be caused by the cooler system frequency. It is also present a 50Hz signal. • The anti-aliasing filter cuts off at >400Hz.

• The 1/f noise knee frequency (in intensity) is generally < 10-20Hz.

• When subtracting correlated channels instantaneously, the knee frequency is effectively reduced.

Photometric Calibrators: Crab and Cass A

Typical integration on source: 10 s

P = 7%

P = 0.7%

• Crab observations on 15/11/2012:

Modulators fixed at 0°

 $<Q/I> = 0.0579 \pm 0.002$

• Crab observations on 15/11/2012:

Modulators fixed at 22.5°

$<U/I> = -0.0360\pm0.004$

<P/l> = 6.8±0.8 % at 11 GHz

(Consistent with WMAP 23 GHz, 7.08±0.25%)

Spectrum of Crab (Weylan et al.)

Fan maps

QUIJOTE Observations of 3C 58

Jupiter @ 11 GHz

Jupiter - Horn 1 - 5/Dec/2012

10 times fainter than Crab

LOCAL interference maps

- Uses nominal mode, and it represents local coordinates centred at zenith (N is bottom, E is left).
- A full map is produced in 3hrs, covering from EL=30° to 90° with steps of 0.2°, and telescope velocity of 4deg/s.
- This example was taken on Dec 27th 2012, during the morning (the Sun is visible).
- Stripe of geo-stationary satellites at declination 0° is seen in the 10-12GHz band.

Moon model

Dielectric sphere of refractive index n_i=1.8 at uniform temperature (see Davies & Gardner 1966; Bischoff 2010).

Moon Maps at 17 GHz of Stokes I, Q and U (integration time of 1 min on source)

• Moon observations on 22/11/2012 (continuous movement of the modulators):

QUIJOTE: first science observations

★ Large observation programme (~100 hours, from december 2012, still ongoing), on an area covering ~200 deg² around the Perseus molecular complex. One of the brightest AME regions on the sky (Watson et al. 2005, Planck collaboration 2011)

★ Also covering the California nebula (HII region - null polarization control region)

Final integration time of ~ 2500 s/beam, yielding a sensitivity of ~ 40 mJy/beam in Q and U

Quijote 11 GHz

Preliminary

Horn 2 17 GHz

Horn 2 19 GHz

LFI 44 GHz

Project overview : Telescope and instruments : Core science : Non-core science : First observations : Summary

Science with the MFI

• Contamination introduced by synchrotron and AME at 30 GHz:

- Maps of the MFI deep survey at will be used to determine the synchrotron spectrum at 10-20 GHz
- Extrapolation to higher frequencies. Pixel-by-pixel correction of the TGI and FGI maps
- The residual synchrotron will have a contribution to the total noise less than one order of magnitude with respect to the thermal noise of the TGI maps after 1 year

- Main objectives of QUIJOTE-CMB:
 - To detect the imprint of the gravitational B-modes if $r \ge 0.05$
 - To provide precise information of the polarization of the synchrotron and of the AME from our galaxy at low frequencies (10-40 GHz)

- Two large surveys in polarization
 - Shallow Galactic survey. It will cover 10,000 deg², and will be finished after 3 months of observations with each instrument. Expected sensitivities:
 - \approx 10 μ K/(beam 1°) with the MFI @ 11, 13, 17 and 19 GHz, in both Q and U
 - \leq 2 µK/(beam 1°) with the TGI @ 30 GHz and with the FGI @ 40 GHz
 - Deep cosmological survey. It will cover around 3,000 deg². Expected sensitivities after 1 year:
 - \approx 5 µK/(beam 1°) with the MFI @ 11, 13, 17 and 19 GHz
 - \leq 1 µK/(beam 1°) with the TGI @ 30 GHz and with the FGI @ 40 GHz

PROSPECTS of Science with the TGI and FGI

Telescope and instruments

Project overview

Core science

Non-core science

First observations

Summary

1 year effective time with the TGI over 3,000 deg²

ELINGENIOSO HIDALGODON QVI-XOTE DE LA MANCHA.

Compuesto por Miguel de Ceruantes Saauedra.

DIRIGIDO AL DVQVE DE BEIAR, Marques de Gibraleon, Conde de Benalcaçar, y Bañares, Vizconde de la Puebla de Alcozer, Señor de las villas de Capilla, Curiel, y Burgillos.

Con priuilegio de Castilla, Aragon, y Portugal. E N M A D R I D, Por Iuan de la Cuesta.

Vendefe en cafa de Francisco de Robles, librero del Rey nio feñor.

We are riding...

Thanks for your attention!