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What goes into the X-ray N(M)
• Clusters are detected well above the ROSAT sensitivity limit, hand-checked, etc., strictly fx-limited 

sample of 50 objects created.

• Chandra data obtained for all clusters, deep Chandra data for a subset.

• Deep Chandra data used for hydrostatic masses, which normalize scaling relations with a low-
scatter proxy (YX). Scaling relation cross-checked with weak lensing data.  

• Derived proxy-vs.-Lx relation used to compute the selection function and estimate individual M’s.
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(2006) and Nagai et al. (2007b), who find that the scatter in
the Mtot–Mgas relation is approximately 11% in Mtot for a given
Mgas. Most of this scatter results from the X-ray analysis, as
intrinsic scatter of the gas mass for a fixed total mass in simulated
clusters is < 5%.

4.3. Mtot–YX Relation

The final Mtot proxy we use is the most robust X-ray mass
estimator proposed by KVN. The quantity, YX , is defined as

YX = TX × Mgas,X, (10)

where TX is the temperature derived from fitting the cluster X-ray
spectrum integrated within the projected radii 0.15 r500 − 1 r500,
and Mgas,X is the hot gas mass within the sphere r500, derived
from the X-ray image.

The quantity that YX approximates is the total thermal energy
of the ICM within r500, and also the integrated low-frequency
Sunyaev–Zeldovich flux (Sunyaev & Zeldovich 1972). The total
thermal energy, Y, was found in the simulations to be a very good
indicator of the total cluster mass (da Silva et al. 2004; Motl et al.
2005; Hallman et al. 2006; Nagai 2006). In the simplest self-
similar model (Kaiser 1986, 1991), Y scales with the cluster
mass as

Mtot ∝ Y 3/5 E(z)−2/5 (11)

(e.g., KVN). This scaling is a consequence of the expected
evolution in the Mtot − T relation (Equation (4)) and the
assumption of the self-similar model that fg is independent of
cluster mass. Hydrodynamic simulations show that the expected
scaling Equation (11) is indeed valid, and moreover, the relation
shows a smaller scatter in M for fixed Y than, e.g., the M − TX

relation. The primary reason is that the total thermal energy of
the ICM is not strongly disturbed by cluster mergers (Poole et al.
2007), unlike TX or X-ray luminosity (Ricker & Sarazin 2001).

It is reassuring that the Mtot −Y scaling also appears to be not
very sensitive to the effects of gas cooling, star formation, and
energy feedback (Nagai 2006); these effects do not affect the
power slope or the evolution law, although change somewhat the
overall normalization. The stability of Y is primarily explained
by the fact that gas cooling tends to remove from the ICM the
lowest entropy gas (Voit & Bryan 2001), increasing the average
temperature of the remaining gas and thus affecting TX and Mgas
in opposite ways. Direct hydrodynamic simulations of Nagai
et al. (2007a) confirm this expectation.

As discussed in KVN, the X-ray proxy, YX , is potentially even
more stable with respect to cluster mergers than the “true” Y.
In the postmerger state, for example, the temperature and thus
Y is biased somewhat low because of incomplete dissipation
of bulk ICM motions. The same bulk motions, however, cause
the gas density fluctuations, which leads to an overestimation of
Mgas from the X-ray analysis (Mathiesen et al. 1999). Therefore,
the merger-induced deviations of the average temperature and
derived Mgas are anticorrelated and hence partially canceled
out in YX . Even the strongest mergers in the simulated cluster
sample used in KVN do not lead to large deviations of YX from
the mean scaling. There is also no detectable systematic offset
in the normalization of the Mtot–YX relations for relaxed and
unrelaxed clusters. The upper limit for the difference in Mtot
for fixed YX within the KVN simulated sample is 4% (see their
Table 2).

Since YX is so insensitive to the cluster dynamical state, it
is straightforward to calibrate the Mtot–YX relation using the
sample of Chandra clusters from V06, and then it is reasonable

Figure 11. Calibration of the Mtot–YX relation. Points with errorbars show
Chandra results from Vikhlinin et al. (2006) with seven additional clusters
(Section 4). The dashed line shows a power law fit (excluding the lowest mass
cluster) with the free slope. The dotted line shows the fit with the slope fixed
at the self-similar value, 3/5 (parameters for both cases are given in Table 3).
Open points show weak lensing measurements from Hoekstra (2007; these data
are not used in the fit); the strongest outlier is A1689 (open star), a known case
of large-scale structures superposed along the line of sight.

to assume that the same relation is also valid for unrelaxed
clusters. The observed Mtot–YX relation does follow very closely
the expected self-similar scaling of Equation (11) (Figure 11;
see also Arnaud et al. 2007). The best-fit power law is

ME(z)2/5 ∝ Y 0.53±0.04
X (12)

when all clusters are included. The marginal deviation of the
slope from a self-similar value of 3/5 is driven primarily by
the lowest-temperature cluster (MKW4), for which both the
total mass and YX measurements are most uncertain. Excluding
this cluster (its Mtot is in any case smaller than the lower mass
threshold in the cluster mass functions in our samples), the
power law fit becomes

ME(z)2/5 ∝ Y 0.57±0.05
X , (13)

fully consistent with the self-similar relation (shown by a dashed
line in Figure 11). We use the latter fit for the YX-based cluster
mass estimates. Note that Sun et al. (2008) find a slope of 0.57
when they fit jointly their galaxy group sample with the V06
clusters, supporting the notion that the MKW4 measurement can
be ignored. The normalization constant is provided in Table 3
(it is consistent with the XMM-Newton results of Arnaud et al.
2007). Note that the h-dependence of the normalization constant
in the Mtot–YX relation is ∝ h1/2, different from the usual h−1

in, e.g., the Mtot–TX relation. This is the consequence of the
h-dependence of the X-ray Mtot and Mgas estimates; see KVN
for details.

The overall uncertainties of the calibration of the Mtot–YX

are identical to those for the Mtot–TX relation (see Section 4.1),
with the exception that we do not expect an additional source
of uncertainty related to the transfer of calibration from relaxed
clusters to the entire population. As for the Mtot–TX relation, we
also have to rely on the simulations for an estimate of redshift-
dependent departures from the expected self-similar scaling.
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Mismatch with Planck+BAO is profound
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Mismatch with Planck+BAO is profound

z = 0.025 − 0.25

1014 1015

10−9

10−8

10−7

10−6

10−5

M500, h
−1

M"

N
(>

M
),

h
−

3
M
p
c−

3

z = 0.025 − 0.25

10
14

10
150

5

10

15

20

M500, h
−1

M"

N

Or,  ×1.45 correction of cluster masses
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Scaling relations for clusters in the MXXL 2055

In contrast, variations in baryon fraction are expected to affect LX

and YSZ similarly, but to have little effect on Mlens and to correlate
in a model-dependent and uncertain way with Nopt. In addition,
orientation is expected to have little effect on the measured X-ray
luminosity of a cluster but to produce correlated variations in its
measured SZ flux, richness and lensing mass. Finally, misidentifi-
cation of the centre and misestimation of the virial radius of a given
cluster will induce variations in all its observables. Generically, such
effects imply that deviations from the various mass–observable re-
lations are not independent. Rather, there is a non-zero covariance
which reflects common sensitivities to halo structure, orientation,
environment and foreground/background superposition – surrogates
which are similarly sensitive to these factors are expected to exhibit
a high degree of correlation (see also Stanek et al. 2010).

We quantify this effect in Fig. 6 which shows scatter plots of the
deviations from the mean at given M200 in the logarithms of the

values of observables for individual clusters. Here we include all
clusters with 1 × 1015 > M200 > 4 × 1014 M". In each panel, we
give explicitly the Pearson correlation coefficient, r, which charac-
terizes the correlation between the deviations.

The strongest correlation is that between the deviations in lens-
ing mass and YSZ, presumably because they are similarly sensitive
to cluster orientation, projection, miscentring and misestimation of
R200. The second strongest is between LX and YSZ, the two quanti-
ties sensitive to our estimates of gas density and temperature. The
weakest is between richness and LX, perhaps because the X-ray
luminosity is dominated by the dominant central concentration of
clusters while Nopt is influenced substantially by orientation and
projection effects. The other three correlations are all of similar
strength.

While Fig. 6 illustrates the correlated scatter in observ-
ables among clusters of given ‘true’ mass, the more relevant

Figure 6. Correlations among deviations of observables in galaxy clusters with mass in the range 4 × 1014 M" < M200 < 1 × 1015 M". Data correspond to
logarithmic deviations, i.e. ! log (s) ≡ log (s) − 〈log (s)〉, where the mean is computed for clusters in narrow mass bins (! log M200 = 0.2). The intensity
of the background 2D histogram is proportional to the number of haloes in the corresponding region of the plot, with a darker grey-scale indicating a larger
number density of objects. The red circles correspond to the average y value in bins along the x axis. The linear correlation coefficient r for each pair of
observables is given in the legend of each panel.
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Planck Collaboration: Validation of new Planck clusters with XMM-Newton

Fig. 12. Scaling properties of Planck clusters, colour-coded as a function of redshift. In all figures, R500 and M500 are estimated from the M500–YX
relation of Arnaud et al. (2010). Top left panel: the scaled density profiles of the new clusters confirmed with XMM-Newton observations. The
radii are scaled to R500. The density is scaled to the mean density within R500. The thick lines denote the mean scaled profile for each sub-
sample. The black line is the mean profile of the REXCESS sample (Arnaud et al. 2010). Other panels: scaling relations. Squares show the
new clusters confirmed with XMM-Newton observations. Points show clusters in the Planck-ESZ sample with XMM-Newton archival data as
presented in Planck Collaboration (2011c). Relations are plotted between the intrinsic Compton parameter, D2

AY500, and the mass M500 (top right
panel), between the X-ray luminosity and Y500 (bottom left panel) and between mass and luminosity (bottom right panel). Each quantity is scaled
with redshift, as expected from standard self-similar evolution. The lines in the left and middle panel denotes the predicted Y500 scaling relations
from the REXCESS X-ray observations (Arnaud et al. 2010). The line in the right panel is the Malmquist bias corrected M–L relation from the
REXCESS sample (Pratt et al. 2009; Arnaud et al. 2010). The new clusters are on average less luminous at a given Y500, or more massive at a
given luminosity, than X-ray selected clusters. There is no evidence of non-standard evolution.

(Planck Collaboration 2011c). We exclude clusters at low
flux, D−2

A CXSZ YX < 5 × 10−4 arcmin2, to minimise possible
Malmquist bias (see Sect. 4.4). The best fitting power law gives
a slope α = 0.043 ± 0.036, with a normalisation of 0.97 ± 0.03
at z = 0.2. The relation is thus consistent with a constant ratio at
the REXCESS value of 0.924 ± 0.004. A histogram of the ratio
shows a peak exactly at the REXCESS position. The distribu-
tion is skewed towards high ratios, the skewness decreasing if
low flux clusters are excluded. This skewness might be intrinsic
to the cluster population. It might also reflect a residual effect
of the Malmquist bias, clusters with intrinsic high Y500/YX ratio
being preferentially detected in SZ surveys.

7. Conclusions

We have presented results on the final 15 Planck galaxy clus-
ter candidates observed as part of a 500 ks validation pro-
gramme undertaken in XMM-Newton Director’s Discretionary

Time. The sample was derived from blind detections in the
full 15.5-month nominal Planck survey, and includes candi-
dates detected at 4.0 < S/N < 6.1. External flags including
RASS and DSS detection were used to push the sampling strat-
egy into the low-flux, high-redshift regime and to better as-
sess the use of RASS data for candidate validation. This last
phase of the follow-up programme yielded 14 clusters from 12
Planck candidate detections (two candidates are double sys-
tems) with redshifts between 0.2 and 0.9, with six clusters at
z > 0.5. Their masses, estimated using the M500–YX relation,
range from 2.5 × 1014 to 8 × 1014 M#. We found an interest-
ing double peaked cluster, PLCK G147.3−16.6, that is likely an
ongoing major merger of two systems of equal mass. Optical
observations with NOT, TNG, and Gemini confirmed a redshift
of 0.65.

The full XMM-Newton validation follow-up programme de-
tailed in this paper and in Planck Collaboration (2011b); Planck
Collaboration (2012) comprises 51 observations of Planck

A130, page 13 of 19
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Figure 12. Results for the mass–luminosity relation with Mtot estimated from YX . Left: the correlation for low-redshift clusters (black points) with the best-fit power
law relation. The red points show the data for high-z clusters with the luminosities corrected for the evolution [E(z)γ ]. All luminosities are corrected for the expected
Malmqiust bias (see Appendix A.2). Right: evolution in the normalization of the LX–M relation. Individual measurements have been corrected for Malmquist bias
and divided by the best-fit low-z relation. Solid and dotted lines show the best fit in the form E(z)γ and (1 + z)γ , respectively. In both panels, the clusters with large
correction (∆ ln L > 0.5) are shown with open symbols. The lack of a systematic offset between clusters with the estimated strong and weak Malmquist bias proves
that the correction has been applied correctly. The z > 1 clusters in this panel are from the RDCS survey (Tozzi et al. 2003); they were not used in the fit and are
shown only to demonstrate that the extrapolation of our best-fit E(z)γ evolution to higher redshifts still produces reasonable results.

Böhringer (2002); the net effect of updated Mtot measurements
and corrections for the Malmquist bias appears to lead to
very small revisions of the normalization of the LX–Mtot
relation.

The left panel in Figure 12 shows that, indeed, the low-z data
are adequately described by a single power law relation. The
high-z clusters also follow the same relation with approximately
the same scatter, after correction for the evolution in the
overall normalization [E(z)1.85]. The observed evolution in the
normalization (the right panel of Figure 12) is consistent with
the E(z)γ scaling, but also with a (1 + z)γ law. The exact form
of the evolution law is not crucial for our purposes since we use
the LX–M relation only to estimate the survey coverage at each
redshift and not to estimate the cluster masses. The effect of the
choice of the parametrization on the derived V (M) is discussed
below.

The observed deviations from the mean relation at low red-
shifts (Figure 13) are consistent with the log-normal distribution
with a scatter of σln L = 0.396 (or ≈ ±48%) in LX for fixed M.
The contribution of the measurement uncertainties to this scatter
is negligible for low-z objects. The expected scatter in the Mtot
estimates using YX is also significantly lower. Therefore, it is
reasonable to expect that the observed scatter is a good repre-
sentation of that in the relation between LX and true mass.19 The
current data quality is insufficient to characterize the shape of
the scatter distribution precisely. For example, we cannot check
if the tails of the distribution are consistent with the log-normal
model. The knowledge of tails in the P (LX|M) distribution is
crucial if one uses LX as a proxy for cluster mass (Lima & Hu

19 Note that we are forced to use the total luminosities, including centers and
substructures, for reasons given in Section 3.2. If these components are
excluded from the flux measurements, the scatter can easily be made lower,
see, e.g., Maughan (2007).

Figure 13. Distribution of the deviations from the mean LX–M relation for
the low-z sample (where the contribution of measurement uncertainties is
negligible). The solid line shows the best-fit log-normal distribution with the
scatter σln L = 0.396.

2005). In our case, however, the LX–M relation is used only
for the survey volume calculations, where the effects of the
P (LX|M) are minor (see Section 5.1.3).

The observed 48% scatter in the LX–M relation implies that
Malmquist bias effects are very significant. For example, in a
purely flux-limited low-z sample, the average bias in the lumi-
nosity for fixed M is ∆ ln L = 0.235 or 26% (see Equation (A4)
in Appendix A.1). This is qualitatively similar to the conclusions
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relation of Arnaud et al. (2010). Top left panel: the scaled density profiles of the new clusters confirmed with XMM-Newton observations. The
radii are scaled to R500. The density is scaled to the mean density within R500. The thick lines denote the mean scaled profile for each sub-
sample. The black line is the mean profile of the REXCESS sample (Arnaud et al. 2010). Other panels: scaling relations. Squares show the
new clusters confirmed with XMM-Newton observations. Points show clusters in the Planck-ESZ sample with XMM-Newton archival data as
presented in Planck Collaboration (2011c). Relations are plotted between the intrinsic Compton parameter, D2

AY500, and the mass M500 (top right
panel), between the X-ray luminosity and Y500 (bottom left panel) and between mass and luminosity (bottom right panel). Each quantity is scaled
with redshift, as expected from standard self-similar evolution. The lines in the left and middle panel denotes the predicted Y500 scaling relations
from the REXCESS X-ray observations (Arnaud et al. 2010). The line in the right panel is the Malmquist bias corrected M–L relation from the
REXCESS sample (Pratt et al. 2009; Arnaud et al. 2010). The new clusters are on average less luminous at a given Y500, or more massive at a
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(Planck Collaboration 2011c). We exclude clusters at low
flux, D−2

A CXSZ YX < 5 × 10−4 arcmin2, to minimise possible
Malmquist bias (see Sect. 4.4). The best fitting power law gives
a slope α = 0.043 ± 0.036, with a normalisation of 0.97 ± 0.03
at z = 0.2. The relation is thus consistent with a constant ratio at
the REXCESS value of 0.924 ± 0.004. A histogram of the ratio
shows a peak exactly at the REXCESS position. The distribu-
tion is skewed towards high ratios, the skewness decreasing if
low flux clusters are excluded. This skewness might be intrinsic
to the cluster population. It might also reflect a residual effect
of the Malmquist bias, clusters with intrinsic high Y500/YX ratio
being preferentially detected in SZ surveys.

7. Conclusions

We have presented results on the final 15 Planck galaxy clus-
ter candidates observed as part of a 500 ks validation pro-
gramme undertaken in XMM-Newton Director’s Discretionary

Time. The sample was derived from blind detections in the
full 15.5-month nominal Planck survey, and includes candi-
dates detected at 4.0 < S/N < 6.1. External flags including
RASS and DSS detection were used to push the sampling strat-
egy into the low-flux, high-redshift regime and to better as-
sess the use of RASS data for candidate validation. This last
phase of the follow-up programme yielded 14 clusters from 12
Planck candidate detections (two candidates are double sys-
tems) with redshifts between 0.2 and 0.9, with six clusters at
z > 0.5. Their masses, estimated using the M500–YX relation,
range from 2.5 × 1014 to 8 × 1014 M#. We found an interest-
ing double peaked cluster, PLCK G147.3−16.6, that is likely an
ongoing major merger of two systems of equal mass. Optical
observations with NOT, TNG, and Gemini confirmed a redshift
of 0.65.

The full XMM-Newton validation follow-up programme de-
tailed in this paper and in Planck Collaboration (2011b); Planck
Collaboration (2012) comprises 51 observations of Planck
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Figure 12. Results for the mass–luminosity relation with Mtot estimated from YX . Left: the correlation for low-redshift clusters (black points) with the best-fit power
law relation. The red points show the data for high-z clusters with the luminosities corrected for the evolution [E(z)γ ]. All luminosities are corrected for the expected
Malmqiust bias (see Appendix A.2). Right: evolution in the normalization of the LX–M relation. Individual measurements have been corrected for Malmquist bias
and divided by the best-fit low-z relation. Solid and dotted lines show the best fit in the form E(z)γ and (1 + z)γ , respectively. In both panels, the clusters with large
correction (∆ ln L > 0.5) are shown with open symbols. The lack of a systematic offset between clusters with the estimated strong and weak Malmquist bias proves
that the correction has been applied correctly. The z > 1 clusters in this panel are from the RDCS survey (Tozzi et al. 2003); they were not used in the fit and are
shown only to demonstrate that the extrapolation of our best-fit E(z)γ evolution to higher redshifts still produces reasonable results.

Böhringer (2002); the net effect of updated Mtot measurements
and corrections for the Malmquist bias appears to lead to
very small revisions of the normalization of the LX–Mtot
relation.

The left panel in Figure 12 shows that, indeed, the low-z data
are adequately described by a single power law relation. The
high-z clusters also follow the same relation with approximately
the same scatter, after correction for the evolution in the
overall normalization [E(z)1.85]. The observed evolution in the
normalization (the right panel of Figure 12) is consistent with
the E(z)γ scaling, but also with a (1 + z)γ law. The exact form
of the evolution law is not crucial for our purposes since we use
the LX–M relation only to estimate the survey coverage at each
redshift and not to estimate the cluster masses. The effect of the
choice of the parametrization on the derived V (M) is discussed
below.

The observed deviations from the mean relation at low red-
shifts (Figure 13) are consistent with the log-normal distribution
with a scatter of σln L = 0.396 (or ≈ ±48%) in LX for fixed M.
The contribution of the measurement uncertainties to this scatter
is negligible for low-z objects. The expected scatter in the Mtot
estimates using YX is also significantly lower. Therefore, it is
reasonable to expect that the observed scatter is a good repre-
sentation of that in the relation between LX and true mass.19 The
current data quality is insufficient to characterize the shape of
the scatter distribution precisely. For example, we cannot check
if the tails of the distribution are consistent with the log-normal
model. The knowledge of tails in the P (LX|M) distribution is
crucial if one uses LX as a proxy for cluster mass (Lima & Hu

19 Note that we are forced to use the total luminosities, including centers and
substructures, for reasons given in Section 3.2. If these components are
excluded from the flux measurements, the scatter can easily be made lower,
see, e.g., Maughan (2007).

Figure 13. Distribution of the deviations from the mean LX–M relation for
the low-z sample (where the contribution of measurement uncertainties is
negligible). The solid line shows the best-fit log-normal distribution with the
scatter σln L = 0.396.

2005). In our case, however, the LX–M relation is used only
for the survey volume calculations, where the effects of the
P (LX|M) are minor (see Section 5.1.3).

The observed 48% scatter in the LX–M relation implies that
Malmquist bias effects are very significant. For example, in a
purely flux-limited low-z sample, the average bias in the lumi-
nosity for fixed M is ∆ ln L = 0.235 or 26% (see Equation (A4)
in Appendix A.1). This is qualitatively similar to the conclusions
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(2006) and Nagai et al. (2007b), who find that the scatter in
the Mtot–Mgas relation is approximately 11% in Mtot for a given
Mgas. Most of this scatter results from the X-ray analysis, as
intrinsic scatter of the gas mass for a fixed total mass in simulated
clusters is < 5%.

4.3. Mtot–YX Relation

The final Mtot proxy we use is the most robust X-ray mass
estimator proposed by KVN. The quantity, YX , is defined as

YX = TX × Mgas,X, (10)

where TX is the temperature derived from fitting the cluster X-ray
spectrum integrated within the projected radii 0.15 r500 − 1 r500,
and Mgas,X is the hot gas mass within the sphere r500, derived
from the X-ray image.

The quantity that YX approximates is the total thermal energy
of the ICM within r500, and also the integrated low-frequency
Sunyaev–Zeldovich flux (Sunyaev & Zeldovich 1972). The total
thermal energy, Y, was found in the simulations to be a very good
indicator of the total cluster mass (da Silva et al. 2004; Motl et al.
2005; Hallman et al. 2006; Nagai 2006). In the simplest self-
similar model (Kaiser 1986, 1991), Y scales with the cluster
mass as

Mtot ∝ Y 3/5 E(z)−2/5 (11)

(e.g., KVN). This scaling is a consequence of the expected
evolution in the Mtot − T relation (Equation (4)) and the
assumption of the self-similar model that fg is independent of
cluster mass. Hydrodynamic simulations show that the expected
scaling Equation (11) is indeed valid, and moreover, the relation
shows a smaller scatter in M for fixed Y than, e.g., the M − TX

relation. The primary reason is that the total thermal energy of
the ICM is not strongly disturbed by cluster mergers (Poole et al.
2007), unlike TX or X-ray luminosity (Ricker & Sarazin 2001).

It is reassuring that the Mtot −Y scaling also appears to be not
very sensitive to the effects of gas cooling, star formation, and
energy feedback (Nagai 2006); these effects do not affect the
power slope or the evolution law, although change somewhat the
overall normalization. The stability of Y is primarily explained
by the fact that gas cooling tends to remove from the ICM the
lowest entropy gas (Voit & Bryan 2001), increasing the average
temperature of the remaining gas and thus affecting TX and Mgas
in opposite ways. Direct hydrodynamic simulations of Nagai
et al. (2007a) confirm this expectation.

As discussed in KVN, the X-ray proxy, YX , is potentially even
more stable with respect to cluster mergers than the “true” Y.
In the postmerger state, for example, the temperature and thus
Y is biased somewhat low because of incomplete dissipation
of bulk ICM motions. The same bulk motions, however, cause
the gas density fluctuations, which leads to an overestimation of
Mgas from the X-ray analysis (Mathiesen et al. 1999). Therefore,
the merger-induced deviations of the average temperature and
derived Mgas are anticorrelated and hence partially canceled
out in YX . Even the strongest mergers in the simulated cluster
sample used in KVN do not lead to large deviations of YX from
the mean scaling. There is also no detectable systematic offset
in the normalization of the Mtot–YX relations for relaxed and
unrelaxed clusters. The upper limit for the difference in Mtot
for fixed YX within the KVN simulated sample is 4% (see their
Table 2).

Since YX is so insensitive to the cluster dynamical state, it
is straightforward to calibrate the Mtot–YX relation using the
sample of Chandra clusters from V06, and then it is reasonable

Figure 11. Calibration of the Mtot–YX relation. Points with errorbars show
Chandra results from Vikhlinin et al. (2006) with seven additional clusters
(Section 4). The dashed line shows a power law fit (excluding the lowest mass
cluster) with the free slope. The dotted line shows the fit with the slope fixed
at the self-similar value, 3/5 (parameters for both cases are given in Table 3).
Open points show weak lensing measurements from Hoekstra (2007; these data
are not used in the fit); the strongest outlier is A1689 (open star), a known case
of large-scale structures superposed along the line of sight.

to assume that the same relation is also valid for unrelaxed
clusters. The observed Mtot–YX relation does follow very closely
the expected self-similar scaling of Equation (11) (Figure 11;
see also Arnaud et al. 2007). The best-fit power law is

ME(z)2/5 ∝ Y 0.53±0.04
X (12)

when all clusters are included. The marginal deviation of the
slope from a self-similar value of 3/5 is driven primarily by
the lowest-temperature cluster (MKW4), for which both the
total mass and YX measurements are most uncertain. Excluding
this cluster (its Mtot is in any case smaller than the lower mass
threshold in the cluster mass functions in our samples), the
power law fit becomes

ME(z)2/5 ∝ Y 0.57±0.05
X , (13)

fully consistent with the self-similar relation (shown by a dashed
line in Figure 11). We use the latter fit for the YX-based cluster
mass estimates. Note that Sun et al. (2008) find a slope of 0.57
when they fit jointly their galaxy group sample with the V06
clusters, supporting the notion that the MKW4 measurement can
be ignored. The normalization constant is provided in Table 3
(it is consistent with the XMM-Newton results of Arnaud et al.
2007). Note that the h-dependence of the normalization constant
in the Mtot–YX relation is ∝ h1/2, different from the usual h−1

in, e.g., the Mtot–TX relation. This is the consequence of the
h-dependence of the X-ray Mtot and Mgas estimates; see KVN
for details.

The overall uncertainties of the calibration of the Mtot–YX

are identical to those for the Mtot–TX relation (see Section 4.1),
with the exception that we do not expect an additional source
of uncertainty related to the transfer of calibration from relaxed
clusters to the entire population. As for the Mtot–TX relation, we
also have to rely on the simulations for an estimate of redshift-
dependent departures from the expected self-similar scaling.

Weak lensing masses from Hoekstra ’07, no offset 
relative to hydrostatic masses (±10% unc.)

However, Hoekstra ’12  WL masses lower,
H12/H07 = 0.87±0.08  for 19 objects in common

... but very little change for these 10 clusters:
H12/Chandra = 0.98±0.08

... but another large sample (von der Linden, 
Applegate et al.) goes higher than H12,
A12/H12 = 1.2±??

... but A12 is consistent with H07

... and –(5-10)% biases in Mwl expected at least for 
some reconstructions methods (Becker & Kravtsov)

TODO: Get more data; apply identical Yx-Mwl approach to all H12 and A12 clusters; test 
irreducible biases due to LSS for actual WL reconstruction methods; understand the difference 
between H12 and A12. At present, ~20% corrections to M’s are not excluded.
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Conclusions

• Profound, factor of ~ 2.5, mismatch between observed Ncl and 
prediction of the Planck+BAO model

• Sample selection function revisions of this magnitude implausible

• No concrete evidence for any significant hydrostatic bias from 
comparison of Chandra and WL masses. But ~20% revisions of M’s in 
the near future not excluded (half-way to fix the problem).

• No direct evidence for mismatch in σ8 at the same z. Possibly, 
tension with clusters is of same nature as with direct-H0, SN, 
WMAP (want lower ΩM, higher h)

• If we fit ΛCDM with, e.g. ΩM≣0.28 and σ8≣0.79, will we see big (×2) 
problems in any cosmological dataset?



“Centennial” low-z X-ray sample: plans

• Completely uniform Chandra analysis (internal X-ray measurement biases < 2%)

• We’ll publish a CosmoMC module  (btw, the module for CCCP is now available at 
http://hea-www.harvard.edu/400d/cosm/combined/en)

• We’ll provide a method to easily account for changes in Mwl/MX-ray or YSZ/YX etc.

• Expected statistical accuracy: 
- ±0.01 in σ8,

- ±0.06 eV in ∑mν assuming perfect CMB amplitude and perfect cluster masses

+20 more from 
400deg2

http://hea-www.harvard.edu/400d/cosm/combined/en
http://hea-www.harvard.edu/400d/cosm/combined/en

