WMAP, Planck, and the Future of Experimental Cosmology

L. Page ESLAB April 2013

WMAP Observations

- 30% of the sky in 1 hour. Heavy cross linking.
- Just a few parameters for gain model for 9 years.
- 17 seasons of Nyquist-sampled Jupiter mapping to determine beams.
- Noise model independent of cosmology. Depends only on N_{obs}.
- Unity transfer function & low 1/f.
- Sidelobe mapping on the ground and in flight.

New dipole and gain model. ****** Small pointing error corrected.

Physical optics model the beams on A side. Use K and Ka bands for foreground cleaning. Maximum likelihood for I<30, pseudo C₁ for I>30

Reassess gain model, 0.2% ** 10 seasons for beam. Measure at -44dB, 0.5% Omega beyond that. ** Full physical optics model. ** Reassess far sidelobes, enlarge transition radius, mode sidelobe accounting into time line. ** Improved likelihood at I<32

Continued improved improvement in beams. A and B separately

Reassess ILC and move to optimal C_I estimator.

WMAP

Established and tested the standard model of cosmology: Flat, adiabatic & Gaussian ptb., 6 parameters. τ =0.089 +/- 0.014

	WMAP9	WMAP9+ACT	Planck	Planck+WP
$100 \Omega_b h^2$	2.264 ± 0.050	2.260± 0.041	2.217±0.033	2.205 ± 0.028
$100 \ \Omega_c h^2$	11.38± 0.45	11.46± 0.43	11.86± 0.31	11.99± 0.27
Ns	0.972±0.013	0.973± 0.011	0.9635 ± 0.0094	0.9603± 0.0073
σ ₈	0.821±0.023	0.83± 0.021	0.823± 0.018	0.829± 0.012
H ₀	70.0± 2.2	69.7±2.0	67.9± 1.5	67.3± 1.2

WMAP: χ^2 =3336/3115 (PTE =0.003) Driven by low 1 polarization.

2 WMAP Demonstrated superhorizon fluctuations.

This TE anticorrelation is the best evidence for the existence of super horizon fluctuations, a key element of the standard model.

Spergel & Zaldarriaga (1997) Peiris et al. (2003)

WMAP

Got a good start on the early universe or "Inflation parameters": r, n_s. dn_s/dk, f_{nl}.

Current best B-mode limit, r<0.74 (BICEP/Chiang et al.) More to r than inflation

"Anomalies"?

What's Next. Low-I Polarization

CLASS

EBEX
2013PlanckLSPE
PlanckSKI
DELITE2013201420152016

QUIJOTE

ABS

SPUD

Ground

Space/balloon

9

QUBIC (Antarctic interferometer)

BICEP3

ABS

Staggs et al.

Foreground emission.

Model: WMAP synchrotron plus FDS dust with 2% polarization.

BICEP (2006–2008)

BICEP2 (2010–2012)

Keck (2011-)

BICEP3 (2014-)

BICEP3 has more than x2 larger throughput than 5 Keck receivers

* The increased throughput will enable BICEP/Keck program to go deep at 95GHz

Cosmology Large Angular Scale Surveyor

Modulator & Optics

Search for B-mode inflation signature from primordial gravitational radiation at >2° scales with projected sensitivity to detect tensor-to-scalar ratios below 0.01, even when including foreground and systematic errors.

Use demonstrated front-end wire grid polarization modulator (VPM) at 10 Hz to isolate cosmic signal.

COLUMBIA

Take advantage of enhanced signal of reionization "bump" and avoid lensing B-mode signal.

Survey large fraction (65%) of sky observable from Atacama Desert at frequencies (40, 90, 150 GHz) where the full-sky CMB-to-foreground ratio is maximized.

Atacama Site

Cerro Toco, 5200 m, 65% of sky observable above elev 45°

Focal Plane

Polarization Sensitive Bolometric Detectors

NASA OF NIST

NASA/GSFC 40 & 90 GHz

NIST 150 GHz

EBEX 1 K optics, 0.3 K focal planes and refrigerator

One of two focal planes with 5 of 7 detector wafers

SPIDER

Primordial Inflation Polarization Explorer (PIPER)

Sensitivity

- 5120 Detectors (TES bolometers)
- 1.5 K optics with no windows
- Background-limited performance

Systematics

- Front-End polarization modulator
- Twin telescopes in bucket dewar

Foregrounds

- 1500, 1100, 850, and 500 μm
- Clearly separate dust from CMB

Sky Coverage

- Balloon payload, conventional flight
- 8 flights; half the sky each night

Goal: Detect Primordial B-Modes with r < 0.01

PIPER Detector Arrays

• Absorber-coupled TES bolometers at 100 mK

- 4 arrays each 32 x 40 pixels (5120 total)
- Backshort-Under-Grid (BUG) architecture
- Through-wafer vias put wiring UNDER array
- Bump-bond to NIST 32x40 tMUX chip

5120 detectors in each frequency band!

An open question

- Will large telescopes e.g. ACT/Polarbear/SPT be able to get l=20-100 well enough to get primordial B-modes?
- It depends on the modes one has to throw away in the analysis. South Pole has better atmosphere, Atacama has 90^o cross linking.
- For T, I_{min} ~500 for ACT & SPT

What's Next at I>1000

HTT/Polarbear-I (640 feeds 1280 dets)

Simons Array/PB3 (~20,000 dets 3 telescopes)

ACTPol (1300 feeds) 2013 3000 dets)

Advanced ACTPol (~3800 feeds 16,000 dets) 2016

SPTPol (~1000 feeds) South Pole

SPT 3G (~2500 feeds 15,000 dets)

ACTPol/SPTPol

Planck

Can look through foregrounds in EE at l>2000 to get at n_s

Science from I>1000+ Planck

- Early universe parameters... is there running?
- Sum of neutrino masses to ~0.06 eV.
- Early dark energy.
- Curvature.
- Structure formation through the ages—biases of various populations.
- Etc.

Advanced ACTPol

(Baseline design led by Michigan and Cornell)

Unique Instrument Capabilities:

- Arcmin resolution across ~3/4 sky
- 4x optical throughput of ACTPol
- 30 300 GHz coverage
- ~ 16,000 multichroic detectors
- Polarization modulation

Baseline optics layout on ACT

0.80

 σ_8

0.88

-0.4

0.72

SPT future plans

SPT-SZ (done) 960 TES detectors

	Area (deg²)	Beamsize (arcmin)	Map Noise (uK-arcmin)
WMAP	40,000	13	300
Planck	40,000	5	45
SPT	2500	1	18
SPTpol	600	1	5
SPT-3G	2500	1	2

SPTpol (ongoing) 1600 detectors

360 detectors at 100 GHz

1176 detectors at 150 GHz

3-band pixels at 90/150/220 GHz

SPT-3G (planned for 2016) 15,234 detectors

POLARBEAR – CMB Polarization

Ŧ

APC, Berkeley, Cardiff, C.U. Boulder, Dalhousie, Imperial, IPMU, KEK, McGill, UCSD

Another CMB Satellite? Yes!

А PIXIE (NASA/GSFC) EPIC (NASA/JPL) LiteBIRD (KEK) FTS CoRE (ESA)

Detectors

Expanding CMB Photosphere

An Experiment for the Century

Thank you

