Open solar data, data products, and tools at MEDOC

É. Buchlin, S. Caminade, S. Parenti, B. Perri, F. Auchère, N. Traoré, K. Ashkar, D. Leung

IHDEA 2024, Madrid, 2024-10-17

What is MEDOC? https://idoc.osups.universite-paris-saclay.fr/MEDOC/

A data and operations center for solar physics space missions :

- Created in 1996, as *European SoHO data and operations center*
- Since then, many other solar data sets (STEREO, SDO...), but also derived data products and tools to use data → facilitate data exploitation
- SoHO/GOLF and Solar Orbiter/SPICE operations

Funding from CNES, CNRS, and Université Paris-Saclay
 Projects/collaborations with ESA, EC, CNES, CDPP...

What is MEDOC? https://idoc.osups.universite-paris-saclay.fr/MEDOC/

A data and operations center for solar physics space missions :

- Created in 1996, as *European SoHO data and operations center*
- Since then, many other solar data sets (STEREO, SDO...), but also derived data products and tools to use data → facilitate data exploitation
- SoHO/GOLF and Solar Orbiter/SPICE operations

- Funding from CNES, CNRS, and Université Paris-Saclay
- Projects/collaborations with ESA, EC, CNES, CDPP...

Officially CNRS-recognized "observation services" for heliophysics data

- **METOC** : space solar/heliospheric data (remote-sensing observations)
- 😟 🖙 : solar system natural plasmas (in-situ measurements)
- SOLEIL : ground solar data (VL, radio, cosmic rays)
- ► APIS (planetary auroral observations), MASER (radio), CLIMSO, STORMS, ISGI.

..offering

- Access to data and products derived from observation data
- Tools and services to access and exploit data

... in an effort to make data and metadata

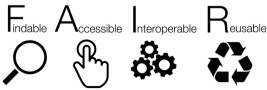
Officially CNRS-recognized "observation services" for heliophysics data

- **METOC** : space solar/heliospheric data (remote-sensing observations)
- Solar system natural plasmas (in-situ measurements)
- SOLEIL : ground solar data (VL, radio, cosmic rays)
- ► APIS (planetary auroral observations), MASER (radio), CLIMSO, STORMS, ISGI.

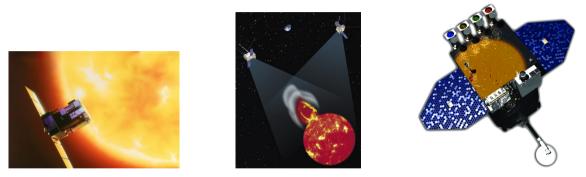
...offering :

- Access to data and products derived from observation data
- Tools and services to access and exploit data

... in an effort to make data and metadata


Officially CNRS-recognized "observation services" for heliophysics data

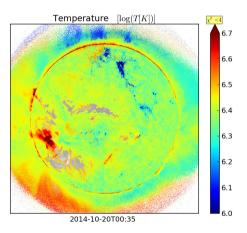
- METOC : space solar/heliospheric data (remote-sensing observations)
 - Solar system natural plasmas (in-situ measurements)
- 3SOLEIL : ground solar data (VL, radio, cosmic rays)
- ► APIS (planetary auroral observations), MASER (radio), CLIMSO, STORMS, ISGI.


...offering :

- Access to data and products derived from observation data
- Tools and services to access and exploit data

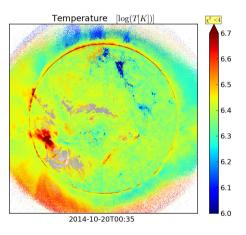
... in an effort to make data and metadata

What does MEDOC provide? Observation data



 Current missions : SoHO (1995–), STEREO/SECCHI (2006–), SDO (2010–) : > 700 TB Coming soon : Solar Orbiter (2020–)

PICARD (2010–2014; CNES main archive), TRACE (1998–2010)...


Derived data products (computed from observation data)

- Thermal structure of the corona (DEM parameters)
- Synchronous synoptic maps of the corona and photosphere
- Electric currents in active regions
- Movies, spectral atlases, catalogs...

Derived data products (computed from observation data)

- Thermal structure of the corona (DEM parameters)
- Synchronous synoptic maps of the corona and photosphere
- Electric currents in active regions
- Movies, spectral atlases, catalogs...

Some of these are computed several times per day, just a few hours after the observation.

Main interface : SiTools2

- Developed (2010–2017) by AKKA for CNES, Java, ExtJS
- REST API, for which we have developed IDL and Python clients
- Web interface
- ▶ Not maintained anymore by CNES \rightarrow migration needed.

	2019-03-30 1	8:14:54 🔠 2019-	-04-04 18:14	54 🎹	and the second			
Wavelength	304 ^ 211	Quick Start	AIA : re			00000		
	193 171 131	1. Select dates Format must be: YYYY-MM-DD HH:MM:		↓2↓ MultiSort	Columns - ()	waveInth		8000
CADENCE	94 👻	 Select cadence Select a wavelength 		aia.lev1 aia.lev1	2019-03-30 19:00:21 2019-03-30 20:00:21	171	1000	
CADENCE	1 h *	4. Click Search		aia.lev1	2019-03-30 21:00:18	171		
				aia.lev1	2019+03+30 23:00:21	171	1.1	
	s	earch Reset		aia.lev1	2019-03-31 01:00:21	171	4	
	*			aia.lev1	2019-03-31 03:00:21	171	S. Sec.	
	s ()	iearch Reset		aia.lev1 aia.lev1	2019-03-31 03:00:21 2019-03-31 03:00:21	171		

New interface : REGARDS

- Developed by CS for CNES
- Built on Spring microservices, implements OAIS recommendation
- REST API (for which we have developed a Python client)
- Web interface (React+Redux)

۵ 🕼	Catalogue	🐞 Solar-Orbiter						19/06	/2023 20:50:25 UTC	Connexion	\geq	õ	۴	
1	Solar-Or	biter				🚍 Résultats								
						C R	AFRAICHIR 🛛 🍸 FILTRES	ET TRI	COLON	4ES		QR	RECHERO	CHER
י 🗆	TOUT SÉLECT	IONNER 500/5054 résultat				- TELESCOP	PE - DETECTOR							
		1 Observatory		🗽 Date-obs	Scientific objective	1 Observation mode	1 X-center [arcsec]	1 Y-center		1. Data type				
	[]	Solar Orbiter	SPICE	15/12/2021 11:19:11	L_FULL_LRES_MCAD_Cor	. CAL_SPECTRAL-RESPON	-79.700035	-66.704	124	SCI		<u>•</u>	()	¢
	3	Solar Orbiter	SPICE	01/03/2022 13:34:35	None	CAL_SPECTRAL-RESPON	44.505917	-73.639	08			± .	i	۵
	3	Solar Orbiter	SPICE	12/01/2022 17:42:58	None	CAL_SPECTRAL-RESPON	-30.632143	-70.330	96	SCI		± i	0	۵
	3	Solar Orbiter	SPICE	12/01/2022 17:23:33	None	CAL_SPECTRAL-RESPON	13.301798	-73.593	41			± (()	۵
	3	Solar Orbiter	SPICE	17/11/2020 08:17:45	None	CAL_FOCUS-COLD_TS_SL	-85.20438	-77.459	22	SCI		± i	()	\$
	5	Solar Orbiter	SPICE	06/03/2022 22:38:31	R_BOTH_HRES_HCAD_Na.	.SCI_HIGH-CAD_SS_SL04	-755.7152	-530.3	42	SCI		± i	()	۵
	[]	Solar Orbiter	SPICE	18/11/2020 15:03:07	None	SCI_DYN-QS-MEDIUM-1A	-84.17502	-77.367	24	SCI		± (i	\$

How we are migrating to REGARDS

- Setting up all datasets : displayed columns, query forms, filters.... Now using a single data model.
- Ingesting data :
 - Build OAIS SIP packets from pre-existing databases (SOHO, STEREO, SDO...) or from TAP interface (ESA Solar Orbiter archive).
 - Submit them to the ingestion queue using AMQP (RabbitMQ)
 - After ingestion, the products are harvested into ElasticSearch
- REGARDS can in principle ingest data using OpenSearch, but is this supported by another heliophysics archive?

Some challenges

- A lot of "hidden" work before datasets are migrated or ingested.
- Currently no good technical solution for ingesting our > 300M SDO records
 - REGARDS, as a generic CNES tool, doesn't support heliophysics API standards

How we are migrating to REGARDS

- Setting up all datasets : displayed columns, query forms, filters.... Now using a single data model.
- Ingesting data :
 - Build OAIS SIP packets from pre-existing databases (SOHO, STEREO, SDO...) or from TAP interface (ESA Solar Orbiter archive).
 - Submit them to the ingestion queue using AMQP (RabbitMQ)
 - After ingestion, the products are harvested into ElasticSearch
- REGARDS can in principle ingest data using OpenSearch, but is this supported by another heliophysics archive?

Some challenges :

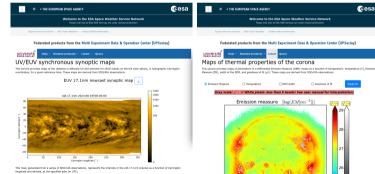
- ► A lot of "hidden" work before datasets are migrated or ingested.
- Currently no good technical solution for ingesting our > 300M SDO records
- REGARDS, as a generic CNES tool, doesn't support heliophysics API standards out-of-the-box.

EPN-TAP VO services

- ► A few MEDOC-specific datasets are available through EPN-TAP using a DaCHS server
- ▶ Then they are available from *Virtual Observatories* : VESPA and Solar-VO
- Maybe soon in VSO, or waiting for VSO 2.0?

VESPA Virtual European Solar and Planetary Access

\varTheta Help 🗸

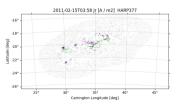

Target Name	GAIA-DEM is a database quantity of light emitting	e of Differential Emis							
Dataproduct Type Instrument Host Name Instrument Name	Measuro), and DEM vidi 21.1, and 33.5mm). In ad based on the CNES STI clients developed by ME Credits: <u>Creators</u> : Karin Dassas, <u>Contributors</u> : IDOC	Creators: Karin Dassas, Eric Buchlin							
= V Processing level	Column visibility Show Select All in current page								
	granule_uid	17	dataproduct_type 🕸	target_name 🕸	time_min (d)	time_max (d)	access_ur		
Time	DEM-AIA-width_2023-06-	14 23:34:51.622000	image	Sun	2023-06-14T23:34:51.621	2023-06-14T23:34:51.621	https://idoc-		

É. Buchlin — MEDOC

Products for the ESA Space Weather Portal https://swe.ssa.esa.int/

MEDOC provides 4 products (maps derived from data) to ESA's Space Weather network portal (ESA contract numbers 4000128012/19/D/MRP and 4000134036/21/D/MRP):

- Web apps with well-determined functionalities and layout
- API (freely specified HAPI was not ready when we started)
- All datasets have a SPASE description file submitted to ESA (not in any registry yet?)


ACLAY	Help *	Related products	• • Latest	query

unive

Maps of electric currents in Active Regions

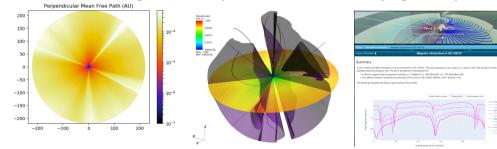
This service provides maps of the radial component of the electric current density vector in Active Regions, in Cylindrical Equal Area coordinates, These maps are derived from science-level and near-real-time SDO/HMI data.


Observation date	Data type	Version	HARP	NOAA Active Region number(s)	Download FITS file
2011-02-15T03:58:12 UTC	sci	1	377	11158	يلك

É. Buchlin — MEDOC

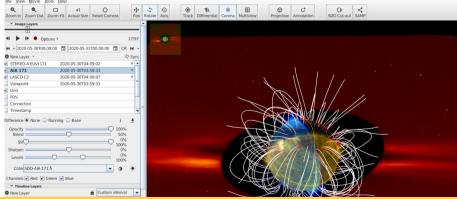
Data from numerical simulation runs

- Solar wind profiles (VP code, 1D hydrodynamics)
- Solar eruption (OHM code, 3D MHD)
- Solar wind with cosmic rays scattering (PLUTO code, 3D MHD).



Data from numerical simulation runs

- Solar wind profiles (VP code, 1D hydrodynamics)
- Solar eruption (OHM code, 3D MHD)
- Solar wind with cosmic rays scattering (PLUTO code, 3D MHD).


Will soon be provided through the new MEDOC node of Galactica (CEA/AIM, OP/VO-PDC, Heidelberg)

Galactica is built following IVOA Theory Data Model, and uses Django, Celery, RabbitMQ

Data exploration / visualization : HelioViewer (ESA and NASA)

- ▶ HelioViewer JPIP (JPEG2000) server at MEDOC. New (ESA, ROB) : HAPI interface.
- ▶ Full mirror of NASA-GSFC HelioViewer data (100TB data).
- JHelioViewer SAMP interface, can be used e.g. to get FITS data from ESA Solar Orbiter archive

Conclusion

- MEDOC provides data and tools for the community
 - All are open, available with no registration
- Efforts to provide APIs, complete metadata, DOIs... as well as to adopt standards (in particular IVOA ones)

But many tools are not fully compliant with these standards... Still much work to do.

Conclusion

- MEDOC provides data and tools for the community
 - All are open, available with no registration
- Efforts to provide APIs, complete metadata, DOIs... as well as to adopt standards (in particular IVOA ones)
- But many tools are not fully compliant with these standards... Still much work to do.