Approach

Reconstruction

コト 4月 1 4日 1 4日 1 日 - クタマ

All-sky reconstruction of the primordial scalar potential & implications

Sebastian Dorn

with Maksim Greiner and Torsten A. Enßlin

Max-Planck-Institut for Astrophysics Honolulu, August 2015

Approach

Reconstruction

ъ

590

Motivation

Approach

Reconstruction

ъ

500

Motivation

 \Rightarrow So why actually don't we infer these properties directly from Φ ?

・ロト ・ 一下・ ・ 日 ・

Motivation	1
000	

Approach

Reconstruction

<u>Data model:</u>

The naive ansatz:

 $d_{\rm CMB} = R\Phi + n$ $\hat{\Phi} = WF (d_{\rm CMB})$

(WF: Wiener filter operation)

<ロト < 回 ト < 三 ト < 三 ト こ の < で</p>

Motivation •••	Approach 00	Reconstruction
<u>Data model:</u>	$d_{\rm CMB} = R\Phi + n$	
The naive ansatz:	$\hat{\Phi} = WF(d_{\text{CMB}})$ (WF: Wiener filter operation)	
The problem :	$N_{\text{pixel}} \begin{cases} (d_{\text{CMB}}) \propto \mathcal{O}(10^7) \\ (\Phi) \propto \mathcal{O}(10^7)^{3/2} \\ (R) \propto \mathcal{O}(10^7)^3 \end{cases}$	

・ロト・4日ト・4日ト・4日ト・4日ト・4日ト

lotivation 0	Approach 00	Reconstruction
Data model:	$d_{\rm CMB} = R\Phi + n$	
<u>The naive ansatz:</u>	$\hat{\Phi} = WF\left(d_{\rm CMB}\right)$	
	(WF: Wiener filter operatio	n)
	$(d_{\rm CMB}) \propto \mathcal{O}(10^7)$	
The problem :	$N_{\rm pixel}$ $\left\{ (\Phi) \propto \mathcal{O}(10^7)^{3/2} \right.$	
	$(R) \propto \mathcal{O}(10^7)^3$	

M.

Φ inference hardly numerically feasable & very expensive!

 $\underset{00}{\text{Motivation}}$

Approach

Reconstruction

990

<u>The solution:</u> Reconstruct Φ slice by slice!

[Yadav & Wandelt et al. '05]

Reconstruction

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

Approach

• 1 slice = WF result $\hat{\Phi}$ projected onto a sphere:

$$\hat{\Phi}^{(2)} = T\left(\hat{\Phi}\right)$$

Approach •0

Reconstruction 0000000

Approach

• 1 slice = WF result $\hat{\Phi}$ projected onto a sphere:

$$\hat{\Phi}^{(2)} = T\left(\hat{\Phi}\right)$$

• Resulting WF for 1 slice:

$$\hat{\Phi}^{(2)} = P_{\ell}^{\Phi} R^{(2)\dagger} C_d^{-1} d$$

 P_{ℓ}^{Φ} : primo. power spectrum projected onto a sphere C_d : data (CMB) covariance $R^{(2)}$: 2d response, includes beam, mask, convolutions, physics

Achievements

- ${\circ}\,$ Full parallelization of the 3d WF
- Fast & cheap reconstruction
- Inclusion of polarization data simple
- Uncertainty estimates (sampling) per slices affordable

Approach

Reconstruction •000000

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Reconstruction From Nine-Year WMAP T-Data (V-Band)

・ロト ・四ト ・モト ・モート 三日

590

Approach

 $\begin{array}{c} \mathbf{Reconstruction} \\ 0000 \bullet 00 \end{array}$

500

 $r\!=\!1.05r_{\rm LSS}$

Approach

 $\begin{array}{c} \mathbf{Reconstruction} \\ \circ \circ \circ \circ \circ \bullet \circ \end{array}$

Primordial Power Spectrum $(r = r_{LSS}), T$ only [SD et al. '14]

900

Approach

 $\begin{array}{c} \mathbf{Reconstruction} \\ \texttt{000000} \bullet \end{array}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

<u>Next:</u>

- Planck data including polarization
- Cross-checks with LSS reconstructions
- Inference of inflationary (recombinational) parameters
- Morphology/Symmetry investigations