Constraints on Cosmological Parameters: Combining Planck With Other Measurements

> Wendy Freedman University of Chicago

> > August 11, 2015 Legacy of Planck IAU meeting Honolulu, Hawaii

Cosmological Parameters

◆Planck 2015: ∧ CDM model ♦ Big Bang Nucleosynthesis Baryon Acoustic Oscillations ♦ Type Ia Supernovae Improvements to Hubble Constant **Measurements** \diamond Beyond the \land CDM model?

Planck 2015 + ACT + SPT Angular Power Spectrum

A 6-parameter \land CDM model provides an excellent fit to the Planck 2015, ACT and SPT data

Planck lensing $-40\sigma!$

E. Calabrese

Planck 6-parameter LCDM model

 $\Omega_b h^2$ $\Omega_{c}h^{2}$ **100** Τ ns $\ln(10^{10}A_{c})$ **Baryon density**

Cold dark matter density

100 x approx to r_s/D_A

Thomson scattering optical depth to reionization Scalar spectrum power-law index

Log power of the primordial curvature perturbations

Cosmic Microwave Background Anisotropies

<u>Planck Cosmological</u> <u>Parameters (</u>2013)

 $H_{0} = 67.3 \pm 1.2 \text{ km/s/Mpc}^{*}$ $\Omega_{M} = 0.315 \pm 0.017^{*}$ $\Omega_{\wedge} = 0.686 \pm 0.020^{*}$ $n_{s} = 0.9603 \pm 0.0074$ $w = -1.13_{-0.10}^{+0.13^{*}}$ ** model-dependent <u> Planck Cosmological</u> Parameters (2015)

Planck 2015 temp + lensing (except for w) ;

Planck 2013 Cosmology Paper XVI

Planck 2015 Cosmology Paper XIII

Planck Cosmology 2015

The nearly exact degeneracy — i.e., nearly the same CMB anisotropies in models with different geometries but the same matter content —

Is a limit to deriving parameters such as the Hubble constant from CMB data alone

It also means that an accurate independent measure of H_0 provides a key means of constraining other cosmological parameters in combination with CMB anisotropies

 $\Omega_{\rm b}h^2, \Omega_{\rm c}h^2$ well measured

Planck cosmology paper 2015

Planck TT+lowP (grey) Planck TT,TE,EE+lowP (red) Planck TT,TE,EE+lowP +BAO (blue)

Big Bang Nucleosynthesis

He abundance

- Planck 2015 contours
- Fixed N = 3 (points)
- **BBN relation for Y**_p
- Includes 3-σ nuclear rate uncertainties

Completely independent test of standard BBN CMB data only

Cyburt et al. 2015 1505.01076

Baryon Acoustic Oscillations

Correlation function

Power spectrum

Baryon Acoustic Oscillations

"Inverse Distance Ladder"

- BAO, SNIa distances
- Planck CMB calibrates sound horizon scale, r_d
- BAO points normalized with r_d = 147.49 Mpc
- D_v is converted to D_M assuming \wedge CDM.
- The SNIa points are shifted vertically to match the BAO data

Aubourg et al. 2015

$$D_V(z) \equiv [D_M^2(z) \times cz/H(z)]^{1/3}$$
$$D_V(z) = \left[(1+z)^2 D_A^2(z) \frac{cz}{H(z)} \right]^{1/3}$$

Samples from Planck TT+lowP chains in the N_{eff} -H₀ plane, color-coded by σ_8 .

Add BAO Solid contours: Planck TT,TE,EE+lowP+BAO.

- TT + pol + lensing + BAO + H₀ + SNIa
- Σm_v < 0.23 eV [95% CL] "Best estimate"

• Σm_v < 0.49 eV [95% CL] Planck TT; TE; EE+lowP

Type la Supernovae

Type la Supernovae

Planck 2015 XIII Betoule et al. 2014 SNe

$$\mathbf{w} = \mathbf{w}_0 + (1-a) \mathbf{w}_a$$

Joint analysis consistent with LCDM

Type la Supernovae

From Planck alone: TT + low P (95%CL) $w = -1.54^{+0.62}_{-0.50}$

Add in Planck lensing + BAO + SNIa + H₀ $w = -1.019^{+0.075}_{-0.080}$

Combining Constraints

Betoule et al. 2014 Combining CMB, SN, BAO, WL, Clusters Improvements to H₀

Recent Direct Measurements of H₀

- SH_0ES (Riess et al. 2011) : $H_0 = 73.9 \pm 2.4 \text{ km s}^{-1} \text{ Mpc}^{-1}$
- Carnegie Hubble Project: H_o = 74.3 ± 1.5 [stat] ± 2.1 [sys] km s⁻¹ Mpc⁻¹ (WLF et al. 2012)

Planck LCDM estimate of H₀

• Planck 2015 $H_0 = 67.3 \pm 1.3 \text{ km s}^{-1} \text{ Mpc}^{-1}$

Comparison of Spitzer LMC and Milky Way Leavitt Laws

H₀ From Enlarged Sample of Type la Supernovae

Beaton et al. (2015)

 $H_0 = 72.7 \pm 2.0$ [stat] ± 0.5 [sys] km s⁻¹ Mpc

An Independent Route to H₀ (Carnegie Chicago Hubble Project: CHP II)

The dispersion in the RR Lyrae period-luminosity relation is <0.05 mag; half that of Cepheids
 Measurement of H0 to 3% + Planck
 One of most accurate measurements of w

An Independent Calibration of H₀ Using RR Lyrae Stars

There exists a PL relation for RR Lyrae stars in the IR!

- (Not in the optical it is a HORIZONTAL BRANCH)
- Extremely small scatter: $\sigma \sim 0.05$ mag in the mid-IR
- This distance scale is
 - Independent of the Cepheid scale
 - And more accurate!
- New distances to RR Lyrae stars (with parallaxes)
- New distance to the LMC

Carnegie Chicago Hubble Project (CCHP) II

- HST Cycle 22: 132 hours prime, 52 parallel H-band observations
- Spitzer Cycle 9 (3.6 μm), Magellan (JHK), TMMT (BVI)
- **RR** Lyrae and TRGB distances
 - **Double the number of SNIa calibrators**
 - Goal: H₀ to 3%

RR Lyrae Parallax Calibrator Sample

V. Scowcroft

Recent RR Lyrae Distances (Spitzer, Magellan, TMMT^{**}) Galactic Parallax Sample Omega Cen, Reticulum (LMC)

A. Monson, B. Madore, M. Durbin et al.

Tip of the Red Giant Branch (TRGB) Distances

NGC 300

NGC 4258

Future Parallax Measurements ESA's Global Astrometric Interferometer for Astrophysics (Gaia)

- ***** A few microsecond accuracy
- Systematic survey of entire sky to 20 mag
- * $\sigma_{\pi} / \pi < 1\%$ out to several kiloparsecs

 Accurate measurements of many Cepheids and RR Lyrae variables (~100's of Cepheids; 1000's of RR Lyraes) [~70 observations per object] + Spitzer, HST

✤ Distance to LMC to 0.02-0.04 mag (1-2% in distance)

•Expected relative accuracy in the distance of Galactic Cepheids from Gaia.

Direct Measurements of H₀: Decreasing Systematics

WLF et al. (2001)

WLF et al. 2012; Scowcroft et al. 2012; Monson et al 2015

Other Future H0 Measurements:
Target H0 to 1%: (sys + stat)LIGOOvercoming SystematicsGravitational WavesBAO

Gaia Calibration of Cepheid/RRL/SNIae

Gravitational Lens Time Delays

For robust measurement at least 3 independent methods with uncertainties at ~1% level

Planck: Relaxing Parameter Constraints

Planck 2015 data 6- to 12-parameter fit Biggest effects:

- Hubble constant
- σ₈, r.m.s. amplitude of density fluctuations
 practically undetermined from
 Planck measurements alone
- even when external datasets such as BAO are included

Di Valentino, Melchiorri & Silk 2015

Cosmological Parameters from 12parameter Fits to Planck 2015 Data

Model			
Dataset	$\Omega_{ m b}h^2$	$\Omega_{ m c}h^2$	H_0
Λ CDM			
Planck	$0.02226\substack{+0.00031\\-0.00029}$	$0.1198\substack{+0.0028\\-0.0028}$	$67.3^{+1.3}_{-1.3}$
Λ CDM			
Planck+ BAO	$0.02229\substack{+0.00028\\-0.00027}$	$0.1193\substack{+0.0021\\-0.0020}$	$67.52\substack{+0.93\\-0.93}$
e CDM			
Planck	$0.02239^{+0.00060}_{-0.00056}$	$0.1186^{+0.0071}_{-0.0068}$	> 51.2
e CDM			
Planck+BAO	$0.02251\substack{+0.00056\\-0.00052}$	$0.1185\substack{+0.0069\\-0.0069}$	$68.4_{-4.1}^{+4.3}$
e CDM			
Planck+lensing	$0.02214\substack{+0.00053\\-0.00052}$	$0.1176\substack{+0.0069\\-0.0066}$	> 54.5
e CDM			
Planck+HST	$0.02239\substack{+0.00059\\-0.00057}$	$0.1187^{+0.0072}_{-0.0070}$	$74.4^{+5.1}_{-5.1}$
e CDM			
Planck+JLA	$0.02242\substack{+0.00058\\-0.00056}$	$0.1188^{+0.0071}_{-0.0067}$	$67.4_{-4.2}^{+4.4}$
e CDM			
Planck+WL	$0.02251\substack{+0.00056\\-0.00055}$	$0.1188^{+0.0073}_{-0.0069}$	> 54.2
e CDM			
Planck+BAO-RSD	$0.02253\substack{+0.00052\\-0.00050}$	$0.1184^{+0.0069}_{-0.0067}$	$68.6^{+4.2}_{-3.9}$
e CDM			
Planck+BKP	$0.02237^{+0.00057}_{-0.00056}$	$0.1186^{+0.0072}_{-0.0069}$	> 52.3

Σm_v W r dn_s/dlnk A_{lens} N_{eff}

Di Valentino, Melchiorri & Silk 2015

Cosmological Parameters from 12parameter Fits to Planck 2015 Data

Model					
Dataset	H_0	w	σ_8	$N_{ m eff}$	$A_{ m lens}$
Λ CDM					
Planck	$67.3^{+1.3}_{-1.3}$	-	$0.831^{+0.026}_{-0.026}$	-	-
Λ CDM					
Planck+ BAO	$67.52\substack{+0.9:\\-0.9:}$	-	$0.832^{+0.025}_{-0.025}$	-	-
e CDM					
Planck	> 51.2	$-1.32\substack{+0.98\\-0.85}$	$0.81^{+0.24}_{-0.26}$	$3.08\substack{+0.57\\-0.51}$	$1.21\substack{+0.27\\-0.24}$
e CDM					
Planck+BAO	$68.4_{-4.1}^{+4.3}$	$-1.04\substack{+0.20\\-0.21}$	$0.781^{+0.065}_{-0.063}$	$3.11\substack{+0.52\\-0.48}$	$1.20\substack{+0.19\\-0.19}$
e CDM					
Planck+lensing	> 54.5	$-1.45\substack{+0.96\\-0.83}$	$0.85^{+0.21}_{-0.24}$	$2.93\substack{+0.51\-0.48}$	$1.04^{+0.16}_{-0.15}$
e CDM					
Planck+HST	$74.4^{+5.1}_{-5.1}$	$-1.32\substack{+0.29\\-0.31}$	$0.81^{+0.10}_{-0.11}$	$3.09\substack{+0.58\\-0.55}$	$1.18\substack{+0.19\\-0.18}$
e CDM					
Planck+JLA	$67.4_{-4.2}^{+4.4}$	$-1.06\substack{+0.13\\-0.14}$	$0.759^{+0.088}_{-0.089}$	$3.10\substack{+0.57\\-0.54}$	$1.20^{+0.19}_{-0.17}$
e CDM					
Planck+WL	> 54.2	$-1.41^{+0.98}_{-0.79}$	$0.82^{+0.22}_{-0.25}$	$3.16\substack{+0.58\\-0.56}$	$1.24^{+0.23}_{-0.22}$
e CDM					
Planck+BAO-RSD	$68.6^{+4.2}_{-3.9}$	$-1.05\substack{+0.17\\-0.19}$	$0.774^{+0.055}_{-0.058}$	$3.12\substack{+0.51\-0.48}$	$1.22^{+0.18}_{-0.17}$
e CDM					
Planck+BKP	> 52.3	$-1.31\substack{+0.96\\-0.89}$	$0.81^{+0.23}_{-0.25}$	$3.07\substack{+0.57 \\ -0.55}$	$1.20\substack{+0.24 \\ -0.22}$

No evidence for new physics beyond the Standard model

Di Valentino, Melchiorri & Silk 2015

Looking Ahead

• Current / Near Term:

- DES, PanStarrs, BOSS, HETDEX
- Hyper Suprime-Cam (HSC) on Subaru
- DESI
- SPT, ACT, Planck

Major New Facilities

- WFIRST / AFTA; Euclid (Dark Energy Missions)
- LSST (Large Synoptic Survey Telescope)
- GMT, TMT, E-ELT
- JWST
- SKA (BAO of HI in galaxies)
- eRosita (ESA x-ray telescope cluster survey)

Summary

- The Planck data, including polarization, are consistent with a 6-parameter \land CDM model
- Is there no new physics beyond this current standard model?
 - Planck data alone cannot answer this question
 - A new generation of experiments (BAO, SNe, H₀, WL, CMB polarization) are well-poised to address this question
- Planck has set the bar very high!

Landau – "Cosmologists are often in error but never in doubt"