

# Given that Planck maps exist why make further suborbital measurements?

- Can achieve higher sensitivity quite easily on small patches of the full sky
- Can have higher angular resolution –
  particularly with ground based experiments

#### Ground based limitation: Can't do high frequencies



# Suborbital Limitation: Can't do full sky from a single site (or flight)



But full sky maps have been made from the ground (e.g. Haslam 408MHz using 2 sites)

# High Angular Resolution Experiments



South Pole Telescope (SPT) 10 meter diameter

Atacama Cosmology Telescope (ACT) 6 meter diameter

# **SPT Temperature Results**



# High ell TT in conjunction with Planck



## SPT/ACT SZ Clusters in conjunction with Planck



Planck provides lower redshift cluster sample – will be a major legacy going forward

# High Angular Res Pol Experiments (2G)



The SPTpol camera

The ACTpol receiver



#### Published Deep Suborbital Polarization Maps To Date



ACTpol 275 sq deg arxiv:1405.5524



SPTpol 100 sq deg arxiv: 1411.1042 and 1503.02315

Roughly scaled to indicate relative map sky coverage



POLARBEAR 25 sq deg arxiv:1403.2369

BICEP2/Keck 400 sq deg arxiv:1403.3985 and 1502.00643

#### Published Deep Suborbital Polarization Maps To Date

|                                   | Q,U Map rms<br>noise<br>N<br>[ uK-arcmin ] | Survey<br>effective area<br>A<br>[ deg²] | Total Q+U<br>Survey Weight<br>W=2A/N <sup>2</sup><br>[ uK <sup>-2</sup> ] | Reference        |
|-----------------------------------|--------------------------------------------|------------------------------------------|---------------------------------------------------------------------------|------------------|
| POLARBEAR                         | 6                                          | 24.5                                     | 5,000                                                                     | arxiv:1403.2369  |
| BICEP2                            | 5.2                                        | 380                                      | 100,000                                                                   | arxiv:1403.3985  |
| ACTpol                            | 15.8 to 24                                 | 276                                      | 5,000                                                                     | arxiv:1405.5524  |
| SPTpol                            | 17@95 &<br>9@150                           | 100                                      | 11,000                                                                    | arxiv:1503.02315 |
| BICEP2+Keck                       | 3.4                                        | 400                                      | 250,000                                                                   | arxiv:1502.00643 |
| Planck 143 GHz<br>(for reference) | 70                                         | 41,000                                   | 60,000                                                                    |                  |

Caution: gauging relative performance of experiments using nominal detector counts can be misleading – also projections are often optimistic!



Survey weight: A quantity which is linear in number of detectors and integration time – i.e. difficulty of achieving Also linear in power spectrum noise error bar size

#### Published Deep Suborbital Polarization Maps To Date



NB: Published results only – no projections!

#### High Res Experiments can measure EE damping tail



CMB has higher fractional polarization than point source foregrounds

– can push further down the damping tail in EE

#### High Res Experiments can measure EE damping tail



#### High Res Experiments Can Do Lensing Planck (2015) ACT *Planck* (2013) $[L(L+1)]^2 C_L^{\phi\phi}/2\pi \ [ imes 10^7]$ 1.5 0.50 Fig20 of arxiv:1502.01582 -0.510 100 5001000 2000

Planck currently better – High res ground based can eventually do much better – see later...



#### BKP Result: Dust is at least 50% of observed excess



#### **Current Constraints on Inflation**



a dust only model.)



# Removal of beam systematics using Planck templates

- Not just about resolution and sensitivity...
- Systematics can also be a major headache (as Planck well knows...)
- BICEP/Keck relies on "deprojection" to clean out beam systematics using Planck temperature maps as templates
  - The Planck maps have more than sufficient sensitivity for this purpose and similar uses will be a Legacy of Planck going forward.

#### 2G Balloons which have already flown: EBEX and SPIDER



# Additional 2G ground based data under analysis and/or being taken right now

- SPTpol 2014/15 observing 500 sq deg
- ACTpol 2014/15 observing 2800 sq deg with 2x and 3x receivers
- POLARBEAR observing 250 sq deg
- Keck 95GHz in 2014/15 and 220GHz in 2015 plus BICEP3 coming on line
- CLASS coming online (at 40GHz)

## New in 2015 BICEP3 (2.5G?)

#### All 95 GHz

2560 detectors in modular focal plane (45% populated in 2015)

Twice the aperture of BICEP2/Keck

> 10x optical throughput of single BICEP2/Keck receiver



# Funded 3G Ground Based Experiments

- SPT-3G receiver under construction and will deploy fall 2016
- Advanced ACTpol (\$7.3M NSF MSIP funding)
- POLARBEAR becomes Simon's Array (\$5M NSF MSIP funding)

See Mike Niemack talk for more on ACTpol and Advanced ACTpol

### Do really large angular scales from suborbital?

- Three low res experiments are targeting:
  - CLASS ground based (Chile)
  - PIPER balloon (multiple flights)
  - LSPE balloon (arctic night flight)



LSPE (140, 220, 240 GHz)



CLASS (40, 90, 150, 220 GHz)



PIPER (200, 270, 350, 600 GHz)

#### What's left to do?

- Inflationary B-modes
  - At ell=80 bump
    - Need 1000 sq deg
    - Need foreground cleaning and delensing (so small angular scale info needed as well)
  - At ell=10 bump
    - Need >50% sky
    - Need super good foreground cleaning
    - Reionization from low ell E-modes will come as a bonus...
- Dark energy science via SZ clusters
  - Need >10,000 sq deg and high res
- Neutrino science etc via lensing plus cross correlations
  - Need >10,000 sq deg and medium res
- Further probe LCDM and recombination via damping tail
  - Need >=10,000 sq deg and high res

# Generations of suborbital pol experiments



# CMB-Stage 4 experiment

#### Because there is a lot more to learn from the CMB.

CMB-S4: a plan to build a coherent ground-based program working with, and building on, CMB stage II & III projects.

#### Participation includes, but is not limited to:

- the ACT, BICEP/KECK, SPT, Polarbear,... CMB teams and their international partners
- Argonne, FNAL, LBNL, SLAC, NIST U.S. national labs and the high energy physics community.

# What it will require

#### Survey:

- Inflation, Neutrino, and Dark Energy science requires an optimized survey which includes a range of resolution and sky coverage from deep to wide.

#### Sensitivity of ~1 uK-arcmin over half the sky

#### Experimental Configuration:

- 200,000+ detectors on multiple platforms
- spanning 40 240 GHz for foreground removal
- ≤ 3 arcmin resolution required for CMB lensing & neutrino science
- higher resolution leads to amazing and complementary dark energy constraints, and gravity tests on large scales via the SZ effects

See Snowmass planning document arxiv:1309.5383

#### "Official" CMB-S4 Slide

**2001: ACBAR** 16 detectors

multiple telescopes and map over 20,000 deg<sup>2</sup> of sky 2007: SPT 960 detectors Stage-2 **2012: SPTpol** Stage-3 ~1600 detectors 2016: SPT-3G -band multichroic pixels Stage-4 ~16,000 detectors Evolution of focal planes (an example) ~2022: CMB-S4 200,000-500,000 detectors Pol Pol

**CMB-S4: A coordinated community wide** 

program to put 200,000 to 500,000

detectors spanning 40 - 240 GHz on

"Official" CMB-S4 Slide

# US HEP P5 Panel recommended DoE support CMB-S4

recommended under all funding scenarios

# Table 1 Summary of Scenarios

|                                          |                                                          | Scenarios                                                 |             |       |           | Science Drivers |              |             |                      |  |
|------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------|-------------|-------|-----------|-----------------|--------------|-------------|----------------------|--|
| Project/Activity                         | Scenario A                                               | Scenario B                                                | Scenario C  | Higgs | Neutrinos | Dark Matter     | Cosm. Accel. | The Unknown | Technique (Frontier) |  |
| Large Projects                           |                                                          |                                                           |             |       |           |                 |              |             |                      |  |
| Muon program: Mu2e, Muon g-2             | Y, Mu2e small reprofile needed                           | Υ                                                         | Υ           |       |           |                 |              | ~           | ı                    |  |
| HL-LHC                                   | Υ                                                        | Υ                                                         | Υ           | ~     |           | 1               |              | ~           | Ε                    |  |
| LBNF + PIP-II                            | LBNF components<br>Y, delayed relative to<br>Scenario B. | Υ                                                         | Y, enhanced |       | 1         |                 |              | ~           | I,C                  |  |
| ILC                                      | R&D only                                                 | R&D, possibly small hardware contributions. See text.     | Υ           | ~     |           | ~               |              | ~           | Е                    |  |
| NuSTORM                                  | N                                                        | N                                                         | N           |       | ~         |                 |              |             | ı                    |  |
| RADAR                                    | N                                                        | N                                                         | N           |       | ~         |                 |              |             | ı                    |  |
| Medium Projects                          |                                                          |                                                           |             |       |           |                 |              |             |                      |  |
| LSST                                     | Υ                                                        | Υ                                                         | Υ           |       | ~         |                 | <b>~</b>     |             | С                    |  |
| DM G2                                    | Υ                                                        | Υ                                                         | Υ           |       |           | 1               |              |             | С                    |  |
| Small Projects Portfolio                 | Υ                                                        | Υ                                                         | Υ           |       | /         | ~               | ~            | ~           | All                  |  |
| Accelerator R&D and Test Facilities      | Y, reduced                                               | some reductions with Y, redirection to PIP-II development | Y, enhanced | ~     | 1         | 1               |              | 1           | E,I                  |  |
| CMB-S4                                   | Υ                                                        | Υ                                                         | Υ           |       | 1         |                 | 1            |             | С                    |  |
| DM G3                                    | Y, reduced                                               | Υ                                                         | Υ           |       |           | <b>✓</b>        |              |             | С                    |  |
| PINGU                                    | Further development of concept encouraged                |                                                           |             |       | 1         | <b>✓</b>        |              |             | С                    |  |
| ORKA                                     | N                                                        | N                                                         | N           |       |           |                 |              | <b>✓</b>    | ı                    |  |
| MAP                                      | N                                                        | N                                                         | N           | ~     | 1         | ~               |              | ~           | E,I                  |  |
| CHIPS                                    | N                                                        | N                                                         | N           |       | 1         |                 |              |             | ı                    |  |
| LAr1                                     | N                                                        | N                                                         | N           |       | ~         |                 |              |             | 1                    |  |
| Additional Small Projects (beyond the Sm | all Projects Portf                                       | olio above)                                               |             |       |           |                 |              |             |                      |  |
| DESI                                     | N                                                        | Υ                                                         | Υ           |       | ~         |                 | ~            |             | С                    |  |
|                                          | .,                                                       |                                                           |             |       |           |                 |              |             | Γ.                   |  |



## Conclusions

- Suborbital experiments are doing important science
  - in many cases enabled by and in conjunction with Planck
- The small aperture BICEP/Keck experiments currently have by far the highest published sensitivity
  - Don't over focus on nominal detector count...
  - But 3G experiments are coming...
- BICEP/Keck also have the best systematic control at lower ell
  - It remains to be seen: can high res experiments deliver at lower ell?
- Big plans for the future:
  - CMB-S4 seeks to put 100,000's of detectors on the sky!

# **Backup Slides**

# Modulation is overrated – Pair differencing can work very well!



This is PSD of BICEP2 timestream data with telescope scanning 30deg on the sky at 1.5deg/sec.

This plot shows that the combination of BICEP2 technology plus the South Pole atmosphere can do at least this well in terms of 1/f noise.

(A weighted average of the 2011+12 data as used in the final map)



The BICEP2/Keck/BICEP2 program is on-going – now with 3 frequency bands: 95/150/220 GHz