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Foreword

In March 1980, the Hipparcos mission was accepted within the scientific programme
of the European Space Agency. It was approved on the basis of performance analyses
predicting a standard error in parallax, at visual magnitude 9, of about 2.0 milliarcsec
(mas), assuming an observing programme of 100 000 stars. The standard errors actually
achieved are about 40 per cent smaller than these predictions, and the programme
includes nearly 20 per cent more stars, most of them selected on astrophysical grounds;
moreover, a wealth of accurate photometric data, variability and multiplicity information
has been extracted, which was not anticipated in the original project. The Tycho
experiment, resulting in a separate astrometric and photometric catalogue of over one
million stars, was also totally unforeseen in 1980. Thus, it is no exaggeration to claim
that the Hipparcos mission has achieved its original goals, and much more.

The planning and execution of the data reductions for Hipparcos required an immense
and concerted effort from the astronomical community, bringing together expertise not
only in many areas of astronomy but also in mechanics, numerical methods, geodesy,
and related fields. The reduction task was unusual among astronomical satellite projects
in the sense that it was an entity that could not be subdivided: no small subset of stars
could be reduced separately. It was therefore necessary to regard the data reductions as
an integral part of the project, which thus logically ends with the present publication of
the Hipparcos and Tycho Catalogues.

Even before acceptance of the mission in 1980, there had been two independent groups
of scientists planning to reduce all the observations of the satellite and produce an as-
trometric catalogue. When, in 1981, ESA issued an Announcement of Opportunity
to participate in the processing of the scientific data, the two groups consolidated into
the present data reduction consortia—Fundamental Astronomy by Space Techniques, un-
der the leadership of J. Kovalevsky, and Northern Data Analysis Consortium, originally
led by E. Høg and, from 1990, by L. Lindegren. These groups were subsequently
entrusted with the task of producing a single output catalogue under the supervision of
the Hipparcos Science Team. Between 1981 and 1989 the consortia developed inde-
pendent software for the comprehensive simulation and reductions of the satellite data.
Numerous comparisons were made between the partial reductions of simulated data,
from which errors in the mathematics and algorithms were identified and corrected.
Such comparisons continued during the mission, now using the real observations. Fi-
nally, two catalogues were produced that differed only slightly, and a rigorous method
was developed to combine them into a single, agreed Hipparcos Catalogue—the only
one that is published.

The point of making two independent reductions was not obvious to everybody—
certainly judging by the many times we were asked what we would do if the two cata-
logues turned out to be different! Our point was simply that any significant difference
in the results must be due to some error in the method or software, and that such
errors should then be found and corrected. In retrospect, it was an extremely good idea
to duplicate the main reductions. Not only did this eliminate many errors that might
otherwise have gone unnoticed, but it was also found that the combined catalogue was
superior to either of the consortia catalogues in terms of accuracy and reliability, for
reasons which could be understood (and which are explained in this volume).
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The full-scale scientific exploitation of the Hipparcos mission can now begin. Some
users will perhaps at first be confused by the wealth of information, the rich diversity of
results, the intricate relationships between the different parts of the catalogue, and the
sometimes very detailed descriptions of what the data represent. Indeed, the Hipparcos
Catalogue is vastly more complex than any previous astrometric catalogue. Apart from
‘traditional’ astrometric data—positions, proper motions, and parallaxes—the catalogue
provides accurate photometric results, light curves and variability analysis, detailed
information on resolved double and multiple stars, astrometric binaries, minor planets,
etc. The complexity of the catalogue reflects the non-trivial nature of celestial objects
revealed by an instrument of pioneering excellence.

The full complexity of the data analysis, in particular the multiple inter-relationships of
the various results, was not fully appreciated before launch. It demanded great flexibility
and ingenuity within the data analysis teams to cope successfully with this complexity,
with the additional complications brought by the unforeseen satellite orbit, and to
converge towards a single goal in a very short space of time. The linking of the combined
catalogue to the extragalactic reference frame, making the Hipparcos proper motions
inertial and enabling the positions to be compared immediately with radio catalogues,
was another example of an immensely successful collaboration involving many more
institutes throughout the world and the completion of a very difficult task according to a
tight schedule. Finally, the preparation of the results, their verification and presentation
on various media—printed volumes, machine-readable files, Celestia 2000—was itself a
formidable task.

A huge effort was thus invested in making these results accessible to the scientific com-
munity, and to do so in a form preserving as much as practicable of the scientifically
useful information hidden in the raw data stream. However, the extraction of this in-
formation was necessarily based on certain assumptions, e.g. that stars generally move
in straight lines through space. When these assumptions were clearly contradicted by
the data, alternative assumptions (models) had to be used, thus, for example, uniformly
accelerated motion or orbital motion. The division between different models is always a
matter of compromise between random and systematic errors, and thus to some extent
arbitrary. Similar considerations applied to all aspects of the processing, for instance
regarding the choice between constant and variable models in the photometric reduc-
tions. The additional information in the Epoch Photometry Annex, the Intermediate
Astrometric Data, and the Transit Data, is provided partly with a view to allow these
considerations to be re-assessed by the users of the catalogue.

The published Hipparcos Catalogue represents the reduction consortia’s interpretation
of the satellite data in terms of a certain range of models and criteria for selecting
between them. For most astrophysical applications it can be taken for granted that
the interpretation is reasonable and adequate. In other cases the user may wish to
understand precisely what has been done, why it was done in that way, and how these
choices are reflected in the final data. The present volume is intended to provide an
account of the reductions which is by no means complete, but sufficient to permit a
detailed understanding of the properties of the catalogue.

J. Kovalevsky, FAST Consortium Leader
L. Lindegren, NDAC Consortium Leader
E. Høg, former NDAC Consortium Leader



1. INTRODUCTION

The Hipparcos data reductions were the responsibility of two scientific consor-
tia, FAST and NDAC, supervised by the ESA-appointed Hipparcos Science
Team. Two other consortia, TDAC and INCA, were responsible for the Tycho
data reductions and the preparation of the Hipparcos Input Catalogue respec-
tively. In this chapter the motivation for presenting descriptions of the various
processes employed in the data reduction by FAST and NDAC is outlined. A
general overview of the data reductions is provided, with references to specific
chapters where more details can be found, and a summary of various other
aspects is presented, such as the preparation of the Hipparcos Input Catalogue
and the role of comparison activities.

1.1. The Purpose of this Volume

In addition to the tasks of production and description of the final Hipparcos and Tycho
Catalogues, the Hipparcos Science Team placed considerable importance on the full
documentation of the Hipparcos satellite operations (Volume 2), and in a detailed
description of the procedures used to reduce, calibrate and verify the data contained in
the final Hipparcos and Tycho Catalogues.

Several reasons motivated the preparation of this documentation. In the first instance,
the scientific method demands a careful and thorough explanation of the steps involved in
any scientific experiment, and in this respect the Hipparcos mission is no exception. For
many catalogue users, the precise methods adopted for the data analysis will be of little
interest, but for certain applications, a careful understanding of the data reduction steps,
the instrument calibration, the reduction algorithms, and the associated assumptions
and numerical constants, will be relevant in assessing the limitations of the astrometric,
photometric, and associated data presented in the catalogues. Similarly, the steps that
have been undertaken to place the resulting catalogues on an extragalactic reference
system, and to verify the quality of the resulting data, is important information that
must be preserved for future catalogue users.

Second, the compilation of the adopted methods, assumptions, and complications of
the data analysis was considered as an important contribution to a future astrometric
space mission, where target accuracies of microarcseconds have already been proposed.
This volume should provide many pointers to the difficulties, and possible solutions, to
be faced by such a mission in the future.
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At the same time, the documentation should serve to illustrate the intricate complexities
of achieving milliarcsec astrometry, and may therefore more easily illustrate the profound
and dedicated commitment and considerable scientific involvement which has been
invested in the Hipparcos project, and the challenges faced in bringing the largest data
analysis problem ever undertaken in astronomy to a rapid and successful conclusion.

1.2. Pre-Launch Preparations

As described in the Prologue to Volume 2, the first ideas for carrying out astrometric
measurements from space were presented in 1966. Lengthy and careful studies resulted
in an ESA Phase A study report, on which selection of the Hipparcos mission as a pro-
gramme within ESA’s scientific programme was finally based. Following this selection
in 1980, organisation of the scientific aspects was discussed in detail, and in 1981 ESA,
in consultation with the interested scientific community, issued two ‘Announcements of
Opportunity’: the first for a scientific consortium willing to undertake the compilation
of the Hipparcos Input Catalogue; the second, for one or more groups willing to under-
take the main mission data analysis, leading to the construction of the final Hipparcos
Catalogue. As reflected in the interest shown by the scientific community during the
Phase A studies, one consortium (subsequently called the INCA Consortium, and led
by Dr Catherine Turon of the Observatoire de Paris, Meudon) duly responded to the
first announcement; two teams (the NDAC Consortium and the FAST Consortium)
responded to the second. The FAST Consortium was led by Professor Jean Kovalevsky
of the Observatoire de la Côte d’Azur, CERGA, Grasse, France. The NDAC Consor-
tium was initially led by Professor Erik Høg of the Copenhagen University Observatory,
Denmark. It was subsequently led by Dr Lennart Lindegren of the Lund Observatory,
Sweden, following the inclusion of the Tycho experiment within the Hipparcos pro-
gramme, and the consequent formation of the Tycho Data Analysis Consortium, led by
Professor Høg.

From 1981 ESA organised a Hipparcos Science Team, under the chairmanship of the
ESA Hipparcos Project Scientist, Dr Michael Perryman. The four scientific consor-
tia (INCA, NDAC, FAST, and TDAC) thereafter worked autonomously under their
respective consortia leaders, with the coordination of all of the scientific tasks being
undertaken by the Hipparcos Science Team. The Science Team included representa-
tives from each of the Consortia (including the leaders); its terms of reference were to
supervise and take responsibility for all of the scientific aspects of the mission, including
the definition of the entire satellite observing programme, monitoring and approval of
the satellite’s scientific performance, the preparation and testing of the data analysis
software, the eventual creation of the final mission products including the production
of a single agreed-upon final catalogue, and the overall policy for preliminary and final
data distribution.

Preparations leading up to the satellite launch were described in the three volume
ESA SP-1111 (1989) ‘The Hipparcos Mission’: Volume 1 dealing with the Hipparcos
satellite, Volume 2 dealing with the preparation of the Hipparcos Input Catalogue, and
Volume 3 dealing with the preparations for the data analysis.

Following termination of the satellite observations in August 1993, after the satellite
had been in orbit for just four years, and with the completion of the final Hipparcos and
Tycho Catalogues announced by the Hipparcos Science Team on 8 August 1996, all of
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the original scientific goals of the Hipparcos mission had been met, and indeed in all
cases, significantly exceeded. More target stars, a higher astrometric accuracy, and a
substantial photometric data base have been realised. The original cost envelope for the
mission was exceeded by less than 15 per cent, a cost over-run largely attributable to the
one-year launch delay imposed by the Ariane launcher programme. The complex data
analysis system—the global treatment of 1000 Gigabits of data was considered as the
largest single data reduction problem undertaken in astronomy to date—was completed
according to the originally foreseen time schedule announced before launch for the main
Hipparcos Catalogue, and one year in advance of the pre-launch expectations for the
Tycho Catalogue.

These achievements may be attributed to a variety of factors and important organisa-
tional aspects:

(a) a clear set of scientific goals was established by the scientific community, and en-
dorsed by the ESA advisory bodies at the time of the project’s selection by ESA in
1980. These were considered as inflexible by the ESA Project Team and, in turn, by
industry. Specifications were established at the highest level—thus, a mean sky accuracy
in the five astrometric parameters at 9 mag of 2 mas was demanded—as well as at all
intermediate levels. With the scientific importance of the mission critically dependent
on the final accuracy, the spirit prevalent within the entire project was that 2 mas was
the requirement, anything worse was unacceptable;

(b) many of the intermediate specifications were formulated based upon extensive simu-
lations and studies already carried out during the Phase A study of the mission, many of
them relying critically on the studies carried out by the scientists who would eventually
take responsibility for the satellite data analysis;

(c) responsibility for all of the scientific aspects was taken by a single committee, the
Hipparcos Science Team, a non-political group committed to the mission goals and
hence its scientific success. All other bodies involved in the scientific aspects—the
scientific proposal selection committee, the four scientific consortia, and a variety of
working groups, all reported directly to this Science Team. This organisation is shown
schematically in Figure 1.1. The Hipparcos Science Team was in turn, responsible for
all scientific decisions during the satellite development phase, for overseeing the timely
preparation of the observing programme catalogue and the data analysis software, and
for controlling all other interfaces with ESA and ESOC having a potential impact on
the scientific conduct. The majority of the members of the Science Team were involved
with the Hipparcos project as their primary research effort during a period of about
16 years since formal approval of the project by ESA;

(d) members of the Hipparcos Science Team were closely involved in project decisions
which affected any aspect of the scientific performances, in formal project reviews, and
also as direct consultants to industry during the satellite’s detailed definition phase,
assisting the prime contractor in its interpretation and implementation of the ESA
project specifications;

(e) all of the scientific aspects of the Hipparcos mission, apart from the overall scientific
coordination of the project led by the ESA Project Scientist, were entrusted to the
scientific community, under their responsibility and financial authority, although with
the Hipparcos Science Team coordinating their activities and schedule at the highest
level;
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Figure 1.1. The organisation of the scientific aspects of the Hipparcos mission. The Hipparcos Science Team was

responsible for the scientific aspects of the ESA/ESOC and industrial development efforts (left-hand boxes), the overall

coordination and synchronisation of the scientific consortia activities (top boxes), the comparison activities between the

parallel reduction of the main mission data (right-hand boxes), and the coordination of the working group activities

devoted to the unification of specific results generated as part of the data analysis (bottom boxes).

(f) in turn, ESA took financial responsibility for the entire satellite (spacecraft and pay-
load), and entrusted its development, manufacture, testing and calibration (on-ground
and in-orbit) to the industrial prime contractor. The overall system approach to the
satellite as a single entity, adopted by ESA and the prime contractor (Matra, France,
subsequently Matra Marconi Space)—including error analysis and allocation, and pro-
curement, integration, verification and calibration of the payload—was a substantial and
crucial factor contributing to the eventual success of the mission;

(g) the parallel development of the satellite, the observing programme, and the software
and management system for the on-ground data analysis, was crucial. Thus, the dead-
line for observing proposals terminated in 1982 (at a time when launch was scheduled
for 1988) despite various suggestions to keep it undefined for longer. Careful optimi-
sation of the observing programme, and its optimisation with respect to the satellite’s
operational and observational capabilities, occupied a team of 30 or so people—some
working full time, and some part time—for 6 years. But as a result, the Hipparcos Input
Catalogue and the associated observations of nearly 120 000 programme stars worked
smoothly and flawlessly. In retrospect, the early deadline imposed on the observing
proposals, allowing extensive and meticulous preparations of the Input Catalogue, was
without doubt a correct decision;

(h) similarly, development of the software for the data analysis tasks started in the two
main data reduction teams (the FAST and NDAC Consortia) in 1981, in parallel with
the development of data simulation software. Consequently, not only was the software
finalised and tested pre-launch, but very significant guidance was provided by both
consortia, to ESA and to industry directly, in the area of satellite design and operation.
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The efficiency of the consortia’s preparations were evident from their results: even
in spite of the post-launch problems, the first great-circle reductions were completed
within a month or so after the start of the routine acquisition of data, and the first
‘sphere solution’ was reported just one year later;

(i) the data distribution system established by ESOC was prepared in parallel with the
data reception software being developed by the consortia. This ensured that, when data
first started flowing from the satellite—at 24 kbit/s—it could be received and treated
almost immediately by the consortia;

(j) an ‘Agreement’, or Memorandum of Understanding, was drawn up at an early
stage between ESA and the four scientific consortia involved in the project, setting
out deliverables and schedules for all groups, and their respective ‘rights’ in terms of
pre-release data. This included the agreement not to circulate, release, or publish
preliminary data, or scientific results based on such preliminary data; this had the very
beneficial effects of not propagating incorrect or misleading data into the literature,
and not distracting the work of the catalogue finalisation by motivations to publish
investigations into such preliminary data.

The accuracy analysis and error allocation budget for Hipparcos during the develop-
ment phase was a highly complex activity, comprising diverse but inter-related aspects
such as spacecraft attitude control and jitter, optical performance and stability, detector
characteristics, spacecraft and payload thermal control, data rates, spacecraft and pay-
load shielding (electromagnetic and particle/Cerenkov), straylight, satellite spin rate,
scanning law, mission duration, and so on. Global missions like Hipparcos demand
that target accuracies are met and, in turn, that a minimum operational lifetime is also
achieved. Hipparcos was unusual amongst ESA missions in that the development of the
spacecraft and payload was entrusted to a single prime contractor (rather than separate
Principal Investigator groups providing the payload instruments).

All of this can be summarised by stating that a systems approach was adopted for
Hipparcos, with all of the many complex tasks encountered in a satellite project viewed
as part of the same system. A unique goal—the final catalogue, of the highest possible
astrometric accuracy, precision and rigour—was also established early on as the final
mission product; this ensured that the ultimate objectives of the mission were apparent
to all, both inside and outside the project. The simple advisory and decision-making
structure was efficient and successful, with a clear identification of responsibilities.

1.3. Preparation of the Observing Programme

A very challenging problem for Hipparcos was to identify the desired subset of pro-
gramme stars (about 120 000 could be accommodated) from amongst all those po-
tentially observable (a few million down to about 12 mag). This required (a) an an-
nouncement of opportunity for observing proposals (500 000 objects were eventually
proposed for study); (b) scientific assessment and priority allocation by an ad hoc (in-
dependent) selection committee; (c) extensive mission simulations covering scientific
and operational considerations; (d) a careful compromise between scientific desires and
aspirations and technical capabilities (e.g. general requirements on the uniformity of the
overall sky distribution of programme stars, and the inability to observe many faint stars
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in a small region of the sky); (e) an extensive, laborious, and complex programme for
the compilation of the requisite a priori astrometric and photometric data.

The details of the preparation of the Hipparcos Input Catalogue, published as ESA SP–
1136 in March 1992 (and subsequently on CD-ROM) have been described in ESA SP-
1111 Volume 2, and some key aspects of the observing programme are summarised in
Chapter 3.

1.4. Methodology and Organisation of the Data Analysis

The data analysis problem for Hipparcos was both global and complex, and is the
subject of the remainder of this volume. Both of these aspects have influenced how
the data analysis was undertaken, and how the final mission products have been made
available. It was not considered possible, or appropriate, for example, to circulate widely
preliminary astrometric data, for which the errors, both internal, external, or systematic
had been neither confirmed nor qualified. Neither was it possible to circulate subsets
of the raw data to Principal Investigators: the complex inter-relationship between the
data acquired by the satellite throughout the mission was itself the key to the eventual
determination of the astrometric parameters. The scientific community, many members
of which had been eagerly anticipating the mission results for many years, had to wait
patiently, and allow the data analysis teams to complete their work.

In practice, the Hipparcos reduction problem was broken down into a series of three
‘steps’: (1) solving for one-dimensional positions on a ‘reference great circle’; (2) re-
constructing the origins of these reference great circles; and (3) back-substitution of the
one-dimensional coordinates within the reference great circle system in order to estimate
the astrometric parameters. The overall flow of data through the data analysis chain is
illustrated in Figure 1.2, and the details of this analysis are the subject of the remainder
of this volume. A more detailed synopsis of the entire data reduction procedure is given
in Chapter 4, which itself gives reference to details covered in subsequent chapters.

It may be noted that the sequential approach to the data analysis problem introduces
approximations in the projections onto the reference great circles, and to an extent
decouples the solution of the astrometric parameters from the problem of the satellite
attitude determination. Truly global reduction algorithms for the Hipparcos data were
studied; they could possibly lead to small improvements in the overall astrometric
accuracies and the suppression of certain potential systematic errors, but were not
adopted due to time, schedule and computer resource constraints. On the other hand
the sequential approach also had one major advantage: that a comparison between the
two parallel reduction schemes could be undertaken at numerous well-defined points,
permitting errors to be identified and rectified before subjecting the results of that step
of the processing to the next.

The treatment of error sources such as chromatic terms, timing errors, relativistic (met-
ric) effects, orbit corrections and Earth ephemeris, secular acceleration, effects of double
and multiple stars (including astrometric binaries), computational rounding errors, and
so on, resulted in a complex analysis problem which required careful evaluation, and
iteration, before the results could be considered final and free from systematic errors at
the level of a few tenths of milliarcsec.
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Figure 1.2. The organisation of the data processing. The main mission data (left-hand part) were analysed in parallel

by the FAST and NDAC Consortia, with comparison activities leading to the establishment of a single agreed-upon

Hipparcos Catalogue. The main mission data processing is the subject of this volume. The Tycho data processing

(right-hand part) are the subject of Volume 4.
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This considerable complexity in the data analysis motivated the original selection of two
data analysis groups who would undertake the entire analysis tasks in parallel. This
was a highly unusual feature of the mission. However, in brief, this approach proved
to be a remarkably powerful solution to the problem of cross-verification, identification
of software coding errors or incorrect comprehension of interface specifications, etc.,
as well as providing important information on the final data quality, and the possible
contribution of modelling terms to the final accuracy estimations. Many errors or
imperfections were rapidly identified in this way. It is difficult to overemphasize how
important and successful this has been for Hipparcos. The power of this approach
has been repeatedly stressed by the Hipparcos scientific consortia, and at the time of
writing a similar approach has been proposed in the scientific management plan of the
COBRAS/SAMBA (microwave background) mission.

The necessity of the two independent reductions may be qualified further. Aside from
the fact that complex problems generally benefit from an independent approach to their
solution, the nature of the Hipparcos data means that any future re-analysis of the raw
satellite data seems highly unlikely. Confidence by the scientific community in the
results of the processing is very important. Unlike many other types of astronomical
observations, astrometric data have a crucial historical relevance: a new experiment
with a more modern instrument cannot simply be expected to reproduce or confirm
measurements that were made previously. One specific example may suffice: as of the
time of writing, FK5 and Hipparcos proper motions have not been fully reconciled:
one very likely explanation seems to be that the existence of (astrometric) binaries
and the corresponding photocentric motion due to orbital effects means that proper
motions measured at one epoch will not necessarily agree with, or will not necessarily
be superficially consistent with, proper motions at another. All efforts to eliminate
artificially induced random or systematic errors within the Hipparcos data have been
made, and independent reductions of the satellite data, along with appropriate cross-
verifications, offered powerful possibilities of controlling such errors.

As evident from the introduction to Volume 1, the complexities of the data analysis
demanded the formation of data analysis consortia comprising members and institutes
throughout Europe contributing a range of knowledge, interest, and expertise. The
geographical distribution of participating scientists involved its own complexities of
management and coordination. Regular meetings took place between the members of
each consortium, of the Hipparcos Science Team, and latterly between working groups
involved in the preparation of the final mission products (see Figure 1.1). In the early
1980’s, additional communication between participating scientists took place by normal
mail or, in urgent cases, by telex. From the mid-1980’s the widespread availability and
efficiency of electronic mail revolutionised daily working practices. It is not possible to
imagine the final mission products having been finalised so efficiently in the absence of
electronic mail communications.

Nevertheless, the geographical distribution of participants posed problems for informa-
tion flow. A centralised data processing institute would certainly have overcome some
of these problems, advantages including (i) centralisation of expertise and improved
possibilities for the exchange of ideas; (ii) ease of communications (even in the age
of fast computer networks meetings are necessary, and the problem of defining and
controlling interfaces of different tasks is complicated by geographical separation); (iii)
centralisation of documentation and the consequent improvement in the exchange of
information (the problem of keeping large numbers of individuals in many different
institutes up to date with a large, rapidly moving project was a formidable one, and was
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absolutely crucial at all stages of the project); (iv) exchange of data (in the multi-step,
sequential processing of the Hipparcos and Tycho data, large quantities of data had to
be moved from institute to institute). In this approach the need for two independent
reduction groups might have been relaxed, with critical steps perhaps being undertaken
by two or more separate individuals or groups within the central institute.

On the other hand the disadvantages of a centralised institute would have been numer-
ous, including: (i) the difficulties of attracting and retaining the necessary individuals
to work away from their home institutes for prolonged periods of time; (ii) making this
approach attractive to participating countries or institutes, both financially and intellec-
tually. Although the European-wide distribution of the Hipparcos data analysis effort
had its complications, the advantages of the large-scale collaboration of individuals and
institutes with various competences at various stages of the project was indispensable.

1.5. Comparisons

As mentioned above, the sequential approach for the data reductions allowed the iden-
tification of a number of key steps at which rigorous comparisons of the intermediate
data could be undertaken. These comparison activities had not been carefully speci-
fied in advance of launch, but grew up naturally as the processing advanced, with the
comparison activities being undertaken by the individual(s) or institute(s) possessing
the capabilities or resources necessary to carry out the work. A simplified diagram
illustrating the main aspects of the comparison activities is shown in Figure 1.3.

All intermediate data were not compared. Rather, various data subsets, including
‘difficult’ great circles, were identified, and evaluation and analysis of these cases pursued
until all features had been explained. It should also be noted that the eventual outcome
of each comparison task was never complete agreement on the numerical values derived
at each step: the independence of the parallel reduction groups was paramount, and
so many different assumptions, numerical algorithms, approximations, divisions of data
sets, etc., occurred such that this was not a realistic (or desirable) product of the
comparison exercises. The main objective was to ensure that the outcomes of each step
were consistent with their predicted errors, and with the models adopted for the data
analysis.

The entire comparison exercise identified numerous errors, shortcomings, imperfec-
tions, and incorrect assumptions. Like the parallel data reductions themselves, it is
difficult to overemphasise the importance of these tasks in achieving the final, agreed-
upon catalogue.

1.6. The Final Results Data Base and the Final Mission Products

Although the data analysis activities were undertaken within each consortium, the final
mission results are a combination of data derived at numerous separate institutes. Thus
the astrometric data, independently generated within the FAST and NDAC Consortia
(at CNES/CERGA and Lund respectively) were combined into a single final catalogue
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Figure 1.3. The organisation of the comparisons. Only the principle features of the main mission comparisons

are indicated. The left and right columns indicate schematically the flow of data through the NDAC and FAST

Consortia respectively, and the institute at which the corresponding software was developed (in the FAST Consortium,

the main chain of the data analysis was entirely implemented at CNES, Toulouse). The central column indicates

the location at which the corresponding comparison activities were carried out (ARI = Astronomisches Rechen-

Institut, Heidelberg; Bologna = Università di Bologna; CERGA = Observatoire de la Côte d’Azur, CERGA;

Copenhagen = Copenhagen University Observatory; Delft = Delft Geodetic Institute; Geneva = Observatoire de

Genève; Lund = Lund Observatory; RGO = Royal Greenwich Observatory, Cambridge; Torino = Centro di Studi

Sui Sistemi.)

at the Observatoire de Paris-Meudon. Photometric data were unified into a single pho-
tometric catalogue at the RGO, while corresponding light curves were produced at the
Observatoire de Genève using periods determined there and at the Royal Greenwich Ob-
servatory. Double and multiple star parameters were derived within institutes in Italy, at
CERGA, and at ARI (Heidelberg) for the FAST Consortium, and at Lund Observatory
for the NDAC Consortium. The final Hipparcos Catalogue includes Tycho photome-
try generated at Tübingen and Strasbourg, and transformed photometric colour indices
produced at the Observatoire de Genève. Each catalogue iteration produced inter-
mediate astrometric catalogues which evolved in parameters and precision. The final
astrometric data resulted from a rotation of the Hipparcos internal reference system to
the ICRS, using a final prescription based on a substantial coordinated effort within
the Hipparcos ‘Reference Frame Working Group’. Details of the final stages of the
Hipparcos Catalogue production are given in Chapters 16–18.

To keep track of these large data sets, and their updates, a central ‘Hipparcos Results
Data Base’ was set up, during the mission operations, at SRON Utrecht, under the
responsibility of Dr Hans Schrijver. Using the SYBASE data base system, intermediate
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and final astrometric and photometric data were compiled into this centralised data base,
and critically examined for quality and consistency with all other available astrometric
and photometric data, including ground-based results. The comprehensive centralised
system maintained an account of the various updates, drawing together the various
elements into a final single data base system.

Generation of the final mission products was based on this final results data base.
Definition of the form, content, format, and inter-relationship of the final mission
products was a task handled by the Documentation Working Group. Starting with
the early results of the first iterations of the catalogues, the concept for these final
mission products drew together the parallel evolution of the Hipparcos and Tycho
results, resulting in a comprehensive series of mission products which aims to be fully
interconsistent and properly documented. Converging to this series of final mission
products, in an agreed format, was a substantial effort which occupied the members of
the Documentation Working Group for several years.

In parallel with the final catalogue production, considerable effort was devoted to the
task of catalogue and data verification based, for example, on comparisons with the
best-available catalogues of ground-based positions, proper motions, and parallaxes.
The results of these verification activities are presented in Chapters 19–22.

1.7. Astrophysical Exploitation

With the Hipparcos programme of 120 000 stars, many of the target objects were known,
in advance, as objects of astrophysical or astrometric ‘interest’. In many cases their spec-
tral types and/or multi-colour photometry, and details of their multiplicity or (coarse)
photometric variability, were known. Metallicities, luminosity types, and many radial
velocities were known or are in the process of being acquired as part of dedicated support
programmes. Nevertheless, it must be pointed out that much of this ‘auxiliary’ material
is of very inhomogeneous quality: when the final Hipparcos Catalogue is published,
two-dimensional MK spectral types will be available for some 60 000 of the 120 000
programme stars; while radial velocities will only be available for some 20 000 of the
programme stars (although many others have meanwhile been acquired by associated
principal investigators).

The absence of radial velocities for the majority of the Hipparcos objects (let alone for the
one million Tycho objects) is considered unfortunate—radial velocities provide the third
space velocity component of the star, and high velocity accuracy can be achieved. The
radial velocity is a very important supplementary piece of information for any kinemat-
ical or dynamical interpretation of the proper motion data. At the same time, repeated
radial velocity measurements provide a powerful method of inferring and characterising
double or multiple systems (and consequently, for mass determinations). And finally,
radial velocities will be of significance in the assessment of secular (perspective) accel-
eration, the contribution to the apparent photocentric motion due to the (apparent)
time-dependent proper motion, an effect which will attain increasing significance with
improved astrometric measurements in the future.

Efforts were made by the Hipparcos Science Team to coordinate the acquisition and
inclusion of the radial velocities within the final Hipparcos Catalogue. Unfortunately,
this (ground-based) aspect was never incorporated within ESA’s scientific mandate
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for the mission. Formal and less formal attempts to acquire, compile, or support
independent national efforts to acquire these data were also largely unsuccessful; it
proved difficult for the Hipparcos project to present a convincing case to relevant funding
authorities. Nevertheless, it must be concluded that for any future astrometric mission, a
parallel effort directed at the acquisition of complementary photometric, spectroscopic,
or radial velocity data should be considered very carefully, in order to provide the
homogeneous observational data necessary for a complete astrophysical exploitation of
the resulting astrometric data.

1.8. Data ‘Rights’ and Related Issues

The question of data rights, publication policies, and early release of data, are complex
issues which face the conduct of any space mission and, of course, all scientific exper-
iments conducted as large collaborations. Much energy is devoted to these issues, for
which there is rarely a clear-cut right or wrong answer.

The Hipparcos Science Team debated this question at an early stage. The earliest
thoughts were directed at the release of preliminary astrometric data two or three years
into the mission. As the complexities of the real data analysis became apparent, and the
huge effort that had to be devoted to the preparation and documentation of the results
became evident, the Hipparcos Science Team realised the dangers of this approach.
Preparing the data for release, even in preliminary form, would have taken critical effort
away from the principal task at hand—that of completing the final catalogue as carefully
and rapidly as possible. More importantly, it was considered that it would undoubt-
edly have led to great confusion (and criticism) of the results from users unfamiliar
with the details of the Hipparcos project. Before the final iterations the errors were
poorly categorised, and the coupling of errors between parallaxes, proper motions, and
double/multiple stars would have created many problems at the level of the scientific
interpretation; furthermore the positions and proper motions would not have been on
any well-defined reference system. For an experiment aiming at high-precision astrom-
etry, these shortcomings would have been unacceptable. The Hipparcos Science Team
considered that the benefits of releasing only final results convincingly outweighed the
prospects of distributing preliminary data. It is to be hoped that any such perception of
‘delays’ will be considered appropriately in an historical context.

M.A.C. Perryman



2. MISSION OPERATIONS TIME-LINE

This chapter provides a summary of activities and conditions that influenced
the quantity and quality of the data return, and shows them in the form of a
mission operations time-line. Due to its orbital problems, the mission oper-
ated under far from ideal conditions, and was subject to excessive radiation
which ultimately destroyed vital parts of the electronic hardware and brought
the mission to an end. In order to overcome the worst of these conditions and
to recover the mission in the best possible way, there was intense collaboration
and exchange of calibration and other results between the data reduction con-
sortia and the European Space Operations Centre in Darmstadt, Germany,
coordinated by the European Space Research and Technology Centre in No-
ordwijk, The Netherlands. Most topics described in this chapter are dealt with
more extensively in Volume 2 and various chapters of the current volume, most
notably Chapter 8.

2.1. Introduction

The data quality and data return of the Hipparcos mission were affected by many differ-
ent factors. Some led to improvements in the quantity and the quality of the data, such
as the inclusion of additional ground stations and improved instrument calibrations;
some were routine, such as refocusing, and gyro de-storage; while others were unwel-
come side effects of the orbit Hipparcos was forced to use, such as large background
variations, gyro failures, and interruptions of the real-time attitude determination near
perigee. This chapter provides a summary of those events and their place on the time-
line of the mission, as a general reference point for the many calibration results presented
in this volume. In order to facilitate such comparisons, all figures in the current volume
showing calibrated quantities over the length of the mission, are shown on the same
horizontal scale as the summary figures in this chapter, such as the overall summary
presented in Figure 2.1. The origin of the time scale is 1989 Jan 0.0 = JD 2 447 526.5.

2.2. Activities Leading to Improvements of the Data Quality

Over the entire mission length there was intensive collaboration between the reduction
consortia, the input catalogue consortium, and the operations team at ESOC, aiming
at improving the quality and quantity of the data return.
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Figure 2.1. Summary of various events that affected the Hipparcos mission. Table 2.1 lists chronologically events

that had direct bearing on the data reductions, and explains some of the symbols in the figure. The ground stations

used during the Hipparcos mission were: O: Odenwald; P1, P2: Perth (two receiver dishes); K1, K2: Kourou (two

receiver dishes); G: Goldstone.

Additional Ground Stations

The elliptical orbit Hipparcos occupied meant that contact with the satellite from the
Odenwald ground station was only possible for limited amounts of time, leading to
severe degradation of the mission. Additional ground stations were brought into op-
eration at very short notice: first Perth, then Kourou, and later Goldstone. Of these,
Odenwald and Perth were fully dedicated, while Kourou was also used during Ariane
rocket launches and was no longer used when the Goldstone station became reliably op-
erational. Goldstone also had other obligations, mainly towards the end of the mission,
when the Kourou station was again used. Only the Kourou station could sometimes
keep contact with the satellite during the perigee passage, but for almost all of the
time there was no contact between satellite and ground station for 1 to 2 hours around
perigee, and no observations were possible around that time. Two different receiver
dishes were used in Perth and in Kourou (indicated in Figure 2.2 by P1, P2 and K1, K2
respectively). Figure 2.1 shows the use of the ground stations throughout the mission.

The final overall coverage is shown as part of Figure 2.4. Further details of the ground
station commissioning can be found in Volume 2, Chapter 4. Chapter 8 in this volume
presents the verification and calibration of the ground station delay times.
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Table 2.1. Summary of the main events. Start and end times are given in days from 1989 Jan 0.

Start End Code Event

328 I1 Correction of coil current calibration matrix

382 I2 Analogue mode anomaly detected

389 I3 Grid rotation calibration implemented

612 T1 Payload thermal control anomaly

632 T2 Change from mechanism drive electronics unit 1 to 2

592 596 a Attitude lost, faulty attitude initialization

755 T3 Change from thermal control electronics unit 1 to 2

819 V Spurious undervoltage

900 S Gas tanks swapped

940 H Gyro 3 heater failure

1001 1004 b Uplink command error

1013 I4 Anomalous image dissector tube voltages

1161 1163 c Data lost due to tape fault

1285 T4 Thermal control electronics 2 anomaly

1285 1288 d Non-z-gyro patch introduced

1315 1396 e Suspension of data acquisitions

1453 1466 f Gyro 2 anomaly, sun-pointing for recovery

Instrument Calibration Upgrades

Various instrument calibrations were performed by ESOC and/or the data reduction
consortia, some on a regular basis (the coil current calibration matrix, the main grid
modulation coefficients), while others were produced as one-off inputs (grid rotation,
basic angle, star mapper single-slit response functions). The latter type of calibrations
all took place during the first few months of the mission, when the grid rotation and
the proper pointing of the image dissector tube were established. By the end of Jan-
uary 1990 the instrument was known sufficiently well and data accumulation was no
longer adversely affected by inadequate instrument descriptions. These calibrations are
described in Chapter 5 of Volume 2.

Catalogue Updates

A major influence on the mission performance were the updates of the input catalogue.
All updates were supplied by the input catalogue consortium, which acted on informa-
tion supplied by the data reduction consortia as well as by ESOC. The first positional
and photometric updates were obtained from the star mapper processing, later updates
used preliminary sphere solution results. Large updates were confirmed by plate exam-
inations before being implemented. These catalogue updates led to improved attitude
convergence and pointing accuracy of the image dissector tube. Further details can be
found in Volume 2, Chapter 8.

Hardware Calibrations

The calibration of the gyro orientations as supplied to ESOC by the NDAC consortium,
provided a more accurate separation of gyro drift and therefore an improvement in the



16 Mission Operations Time-Line

implementation of the gyro data in the real-time attitude determination. This imple-
mentation took place in June 1991 and can be recognized in Figure 13.4 in Volume 2
from the discontinuity in the drift values. Further details on the gyros can be found in
Chapter 8, and in Volume 2, Chapters 13 to 15.

The calibration of the thruster firing performance as described in Chapter 8 was supplied
to ESOC, but required no adjustment of operational parameters.

2.3. Routine Operational Phase

Refocusing

A wide range of data checks were carried out by ESOC on a routine basis and are
described in Volume 2, Chapter 10. These data checks provided information on the
performance of the main detector in terms of modulation coefficients and total signal
intensity. From this information was derived the requirement to refocus the instrument,
which happened at the start of the mission about every four weeks, later in the mission
at longer intervals. Refocusing affected all data reductions relying on the amplitude or
the phase of the modulated signal: great circle reductions (Chapter 9), ac-photometry
(Chapter 14), double star processing (Chapter 13) and optical transfer function calibra-
tion (Chapter 5). For this reason, most (but not all) refocusing took place before or after
the collection of useful data, i.e. close to perigee. The refocusing times are indicated in
Figure 2.1.

Occultations

The lengths of Earth occultations near perigee was much longer than was foreseen for the
nominal mission and led at some times to a temporary loss of attitude. In order to limit
the impact of the occultations, ESOC experimented with decreasing the time-window
during which the shutters were closed. As a result, there was less attitude loss associated
with occultations, but the price was an exponential increase in the background for the
star mapper and the image dissector tube detectors shortly before closing the shutters.
This was difficult to accommodate in the routine data reductions, and was dealt with
afterwards for the main mission photometric data (see Chapter 14).

Background Levels

The unforeseen orbit of Hipparcos, and the coincidence of the mission with a period of
high solar activity, led to large variations in the background signal of primarily the star
mapper detectors, as shown in Figure 2.2. The main contributor to the variations were
the high energy electrons in the van Allen belts, which were encountered at least 4 times a
day. These background levels influenced badly the performance of the real-time attitude
determination, as it made the detection of a large number of fainter reference star transits
in the star mappers impossible, thus reducing the number of available reference points.
Figure 2.2 shows the background as the equivalent of stellar magnitude, indicating that
at times near perigee even most of the brightest stars were undetectable.
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Figure 2.2. Star mapper background levels in the VT channel at different orbital phases over the mission. The

orbital phases were measured from apogee. The top graph also shows events of high solar activity (just below the level

of 5 mag).
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Thruster Firings

The cold-gas for the thruster firings was supplied from one of two gas-tanks. The
pressure in those tanks was monitored, and in mid-June 1992 (day 900) the first tank
was almost empty and swapped for the second tank (see Section 8.4 and Figure 8.9).

The thruster firing strategy was changed twice during the mission, using the experience
obtained during the early parts of the mission. The first change involved a decrease in
the minimum firing length from 4/75 s to 2/75 s. This took place around day 570.
The second change affected only the firings around the z-axis: these firings were limited
to those cases where the requirement for a firing translated into a firing length of at
least 8/75 s. This took place around day 760. The main effect of these changes was a
decrease in the amount of attitude disturbance, due to a decrease in the number and
length of the thruster firings.

Ground Station Coverage Patterns

The orbital period of the satellite was intentionally close to 4/9 days, which led to
repetitions in ground station coverage. This was most clearly so by the end of 1992
(around day 1050), when small changes in the orbital period meant almost exact repeats
of ground station coverage patterns over a period of several weeks (see also Section 8.1
and Figure 8.2). This repeating pattern led to the use of the 4-day period in the
examination of the data return statistics, as shown in Figure 2.4. Neighbouring periods
of 4 days were little affected by the variations in coverage patterns that existed from one
orbit to the next.

Gyro De-storage

Hipparcos was equipped with 5 gyros, of which three were needed for its nominal
operations, the remaining two being redundant. In order to ensure that the redundant
gyros were still in good working order they were subjected to a de-storage procedure
once every 4 weeks. This procedure consisted of a 1-minute long spin-up to nominal
spin frequency, followed by a period of approximately 2 hours of normal operations,
followed by a 1-minute spin-down back to its storage configuration. As a result of
those actions, the satellite was subjected to additional torques, most noticeably during
the spin-up and spin-down phases. Such (short) stretches of data were lost (see also
Chapter 7 and Chapter 8).

De-storage for redundant gyro 3 was stopped when it was found out that its heater had
broken down.

Micrometeorites

External hits of the satellite, possibly by micrometeoroids, were recognized in the gyro
readout records as discontinuities not associated with thruster firings. Two fairly sub-
stantial hits and 10 to 15 smaller ones were recorded. The larger hits were roughly
equivalent to thruster firings lasting 0.2 s, causing a change in rotation rate of the order
of a few arcsec s−1, the smaller ones were mostly about ten times smaller.
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Figure 2.3. Sky coverage of the nominal scanning law for times affected by data loss or sun-pointing recovery. See

Table 2.1 for the meaning of labels a, b, c, d.

2.4. Events and Failures Leading to Loss or Degradation of Data

The main events that led to some degradation of the Hipparcos data were generally
associated with failures: from the orbital problems due to the apogee boost motor
failure, through various thermal control electronics anomalies to the final failure of the
gyro electronics and the on-board computer. Table 2.1 lists chronologically the events
that were most noticeable in the data reduction and calibration results, summarizing
also some of the events mentioned in the previous two sections. Figure 2.1 shows these
events along the mission time-line. Below follows a brief description of the consequence
of some types of failures and anomalies.

Data Gaps and Sun-pointing

Gaps in the scanning of the sky were caused by uplink command errors and by hardware
failures. The main effect of such data gaps was in the final results: as the satellite
described a pre-defined scanning law, every data gap would cause a gap in the sky
coverage, meaning that some stars along a ‘strip’ of sky, had missed their chance of
being observed. Such events can sometimes be recognized from sky-maps showing the
total number of observations per object. The astrometric and photometric data of the
stars involved suffered an inevitable deterioration, and this was most serious for objects
near to the ecliptic plane, for which the density of observations was already lower than
in other parts of the sky, and for objects affected by two or more of these events. The
distribution of sky coverage affected by data-gaps before the interruption of observations
on day 1315 is shown in Figure 2.2. The effect of data gaps can be seen in Figure 14.16
for the photometric data.

Sun-pointing had three effects. It caused a disruption of the scanning law, with the same
effects as for data gaps; a narrow strip in a different part of the sky was very densely
scanned instead; the changed exposure of the satellite to sunlight caused changes in
temperature of the spacecraft, leading to problems with calibrations. Thus, especially in
photometry, sun-pointing data were often unreliable, while consisting on the other hand
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of often longer stretches of observations. Data obtained immediately following a sun-
pointing mode period was subject to rapid changes in spacecraft temperature. From the
astrometric point of view, the sun-pointing data only contributed to the determination
of position and proper motion in ecliptic latitude, the displacements due to parallax
and the longitude components being perpendicular to the scan direction and thus not
measurable on the main grid.

Thermal Anomalies

Thermal anomalies were associated with heater failures, and caused a drift in the tem-
perature of the payload on a few occasions. Such thermal anomalies had therefore
the same effect as refocusing, most noticeably the thermal control electronics failure
indicated by T3 in Table 2.1 and Figure 2.1. This failure caused a run-away effect for
the focus, and the recovery, through employing a redundant heater, brought the focus
abruptly back in line (see Figure 14.3, the discontinuity at day 755 associated with
event T3). This was accommodated in the reductions by associating the time of re-
covery with a pseudo-refocusing event, so that calibrations relying on running solutions
would implement an appropriate break at that position in time.

Gyro Failures

Gyro failures were first indicated by noise bursts, i.e. sudden increases in the noise on
the gyro readings. This affected the attitude control possibilities, in particular around
perigee when no ground-station contact and star mapper transits were available as an
additional control. The actual failure was accompanied by spin-downs and haphazard
torques working on the spacecraft, resulting in loss of control and recovery to sun-
pointing. The failure of both z-axis gyros led to the need for operating the spacecraft
on two gyros only, one of which (gyro 3) had a failed heater. The consequence of this
was increased sensitivity in gyro drift to temperature fluctuations in the spacecraft, and
the presence of low amplitude modulated noise on the readings (see Chapter 8 and
Volume 2, Chapters 13 to 15).

2.5. Data Return

Many of the points mentioned in the previous sections contributed in a positive or
negative way to the overall data return. Primarily, however, this was determined by
ground station coverage, occultations, and the success rate of the real-time attitude
determination convergence. The overall data return over the mission (in units of 4
days) is shown in Figure 2.4; it averaged just over 60 per cent.

Real-Time Attitude Determination Convergence

Successful data collection could only start after the real-time attitude determination loop
had converged: when predicting oncoming transits of star mapper stars, it would find
them at the expected time and place. After a perigee passage the attitude control would
often be lost, and in need of ground-based assistance to converge again (see Volume 2).
There were no clear patterns recognized in the time and effort it took to re-converge the
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Figure 2.4. The data return summary over intervals of 4 days (close to 9 orbits). The top graph shows the fraction

of time lost due to ‘no attitude convergence’. The bottom graph shows between the upper boundary and curve ‘a’ the

fraction of time lost due to occultations during data coverage. Curve ‘b’ (dotted) shows the maximum possible data

return (ground-station coverage minus occultations). Curve ‘c’ shows the actual data return. The difference between

‘b’ and ‘c’ is the same as the curve in the upper graph. Curve ‘d’ shows the fraction of data contained in data sets of

less than 1200 frames, usually too short to be included in the final results. The difference between curves ‘a’ and ‘b’

shows the fraction of time lost due to ‘no ground station coverage’.

attitude (in other words, with how far the satellite had drifted away from its assumed
attitude), no relations with perigee height were detected (low perigee caused drag and
could have influenced the satellite pointing). There was, however, almost certainly a
relation with high background level in the star mapper detectors near perigee, effectively
extending the period without attitude control. Other influences were occultations very
shortly before perigee, effectively increasing the time span without observations.

F. van Leeuwen, M.A.C. Perryman
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3. OBSERVING PROGRAMME

The Hipparcos observing programme was defined, during successive steps,
over the period 1982–1991, on the basis of scientific proposals submitted to
ESA, while taking into account the operational requirements and the observing
possibilities of the satellite. Considerable attention was paid to the selection of
stars in order to enhance, as far as possible, the scientific return expected from
the mission. In parallel, extensive ground-based programmes were organised
to obtain, before launch, good positional and photometric data about the
programme stars. This information was used to optimise the observations by
the satellite, through proper positioning of the instantaneous field of view, and
careful determination of the observing time to be devoted to each star, which
were observed only one-by-one. The Hipparcos Input Catalogue, published
in 1992, contained the most up-to-date, comprehensive and homogeneous
information on the 118 209 stars selected for observation with Hipparcos at
the time of the satellite launch.

3.1. Introduction

The Hipparcos mission was primarily designed to provide a uniform whole-sky catalogue
of stellar positions, proper motions and parallaxes. However, from the very beginning,
it was recognised that a major enhancement of the scientific return might result from
also selecting stars on the basis of their relevance to major astrophysical questions.
The resulting catalogue has enormous value for a wide variety of detailed astrometric
and astrophysical studies. Compared with existing stellar catalogues, the Hipparcos
Catalogue offers a significant improvement on the errors of these quantities, absolute
rather than relative parallaxes and proper motions, a relatively dense reference network,
and homogeneous sky coverage. Some of the most spectacular advances expected
from the mission were always expected to arise from the significant increase in the
precision of measurements of trigonometric parallaxes compared with typical Earth-
based observations, and from the very much larger number—and the very much wider
variety—of stars which were measurable.

The construction of the Hipparcos Input Catalogue, which included, with relevant
data, all stars retained for the Hipparcos Observing programme, is decribed in detail in
Perryman & Turon (1989). It was published in printed form (Turon et al. 1992a), a tape
version (Turon et al. 1992b, 1993) is deposited at the Centre de Données astronomiques
de Strasbourg, and it can be interrogated through their WWW pages (VizieR and
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SIMBAD). A CD-ROM version with extensive interrogation, sampling, and mapping
facilities was also released (Turon et al. 1994).

3.2. The Stellar Inputs

Scientific Proposals

In answer to an Invitation for Proposals issued by ESA in 1982 to the scientific com-
munity, 214 proposals were submitted, comprising suggestions for the observation of
both stars and minor planets. Amongst the scientific proposals submitted, programmes
to determine distances, motions, luminosities, masses, radii, and ages of a wide range
of stellar types including white dwarfs, normal dwarfs, giants, radio and X-ray stars,
variables and binary stars were well represented. Studies of star cluster dynamics and
distances, stellar physics (including studies of atmospheric convection and mass-transfer
phenomena) and studies of the interstellar medium were proposed. Determination of
the optical reference frame and its relationship to the radio and infrared reference frames
was proposed, and major collaborative projects between the Hubble Space Telescope,
VLBI and other important ground-based astrometric and astrophysical programmes
were initiated. Proposals also covered studies of solar system dynamics, including the
dynamics, structures and masses of asteroids, the major planets and certain planetary
satellites; Earth rotation, polar motion and continental drift; and lunar occultation
phenomena. Galactic dynamics and evolution, dynamics of the Magellanic Clouds, de-
termination of the extragalactic distance scale from Cepheids, and investigations of the
validity of general relativity are other examples of the broad scientific interest generated
by the Hipparcos mission.

Altogether, the proposals submitted amounted to about 500 000 stars. It was eventu-
ally recognised by the INCA Consortium, through an extensive automated use of the
SIMBAD database (Egret et al. 1991) and manual cross-identifications (Turon, Gómez
& Crifo 1989), that there were many redundancies in the stars proposed: finally, about
210 000 individual objects were contained in the 214 proposals submitted.

In addition to stars, 48 minor planets and three satellites of major planets (Europa,
Titan and Iapetus) were observed by Hipparcos, mainly for improving the definition
of the dynamical reference system and for linking it to the Hipparcos reference sys-
tem. Preparatory work undertaken within the INCA Consortium to optimise their
observability with the satellite is described by Bec-Borsenberger (1992).

The INCA ‘Survey’

The ‘Survey’ is a basic list of bright stars, largely complete to a given magnitude limit,
resulting from a compromise between various, possibly conflicting, requirements: (i)
the satellite operations and the data reductions required a list of about 50 000 – 60 000
stars with V ≤ 9 mag and with good positions (to better than about 1 arcsec), uniformly
distributed over the celestial sphere; (ii) from a purely scientific point of view, it was
considered highly desirable to define a sample over the whole celestial sphere, complete
to the faintest possible magnitude limit, in order to enhance future statistical uses of the
whole catalogue.
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In practice, stars were selected automatically from the SIMBAD Data Base of the Centre
de Données astronomiques de Strasbourg (CDS), considered to be essentially complete
down to about V = 9.0 mag (Egret et al. 1991), using the following criteria:

V ≤ 7.9 + 1.1 sin jbj for spectral types earlier or equal to G5

V ≤ 7.3 + 1.1 sin jbj for spectral types later than G5

When no spectral type was available, the break was taken at B − V = 0.8 mag. Special
attention was subsequently given to variable stars, for which the SIMBAD magnitude
is usually the one at maximum brightness.

The choice of the above limits was made after the study of the statistical properties
of various possible selections obtained from SIMBAD (Crifo et al. 1985, Crifo 1988,
Turon et al. 1989a). In order to reduce the very high contribution of red giant stars (43
per cent, mostly situated between 300 and 500 pc) in favour of A, F, and early G-type
stars, statistically closer to the Sun, and for which the ages may be better predicted, a
brighter limiting magnitude was chosen for late-type stars than for early-type stars. The
magnitude difference was a constant, adjusted in order to have the bulk of giant stars
within 200 pc in the galactic plane, thereby avoiding the most disturbing interstellar
clouds.

As a result, about 55 000 objects were selected. This sample of stars was then processed
during the numerical simulations of the mission just like any other proposal. However,
special care was taken to maintain its statistical properties as much as possible.

Due to uncertainties in the knowledge of magnitudes and spectral types, inevitably some
stars were erroneously included or rejected from the selected sample. The effect of these
errors has been estimated to be about 1000 missed stars, with some 2500 incorrectly
included. The sample finally retained contains 52 000 stars, 95 per cent of them being
closer than 500 pc. Less than 6 per cent of the complete sample failed to be retained
after the selection process, due to operational constraints on the satellite (Gómez et
al. 1989).

Additional INCA Proposals

In addition to the 214 proposals submitted to ESA by the worldwide astronomical
community, five additional proposals were defined during the course of the work of
the INCA Consortium. In particular, it was necessary to make a global and dedicated
study of all proposals submitted on certain specific topics in order to optimise their
observation by Hipparcos. This was implemented for programmes dealing with stars in
the Magellanic Clouds (Prévot 1989) and in galactic open clusters (Mermilliod & Turon
1989), for stars used for the geometrical calibration for the Hubble Space Telescope
(within the cluster NGC 188), and for programmes for linking the Hipparcos system to
an extragalactic reference system, i.e. radio stars and stars around compact extragalactic
radio sources (Argue et al. 1984, Jahreiß et al. 1992).

These proposals were made in close cooperation with members of the data analysis
consortia, and after detailed studies on proximity effects, and on the requirements of
the link to an extragalactic reference system (Turon et al. 1989b).
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3.3. From Scientific Proposals to a Tentative Input Catalogue

The steps taken to arrive at the composition of the final Hipparcos Input Catalogue
were not at all obvious at the outset of the project, and the final inclusion or rejection of
some objects was rather arbitrary. The main steps taken were as follows:

(a) a Scientific Selection Committee, appointed by ESA, ranked the proposal, or subsets
of the proposals, in five priority classes, from objects with a high scientific interest which
were to be included in the Hipparcos Input Catalogue if at all possible (priority 1),
through to objects which were not to be retained in the Hipparcos Input Catalogue
selection process unless there were no other competing stars in the relevant area of sky
(priority 5). Different priorities were often awarded for a given proposal for different
magnitude ranges, since it was known that the observation of fainter objects would be
expensive in terms of observing time, and that only a decreasing percentage of all stars
in the sky at fainter magnitudes could be included;

(b) based on these recommendations, the INCA Consortium constructed distributions
of the proposed objects as a function of priority, magnitude and position on the sky.
After the first round of priority allocations, it was immediately obvious that a large
amount of work was needed to achieve a sky and magnitude distribution better suited
to the satellite’s capabilities;

(c) methods were developed within the INCA Consortium to simulate numerically the
observation with Hipparcos, and to control the observing time allocated to each star
throughout the mission. This allowed the Consortium to establish the feasibility of ob-
servations of any given star, according to its magnitude and the detailed properties of its
surroundings, as well as the expected precision of the astrometric parameters. Different
algorithms prescribing the allocation of observing time as a function of magnitude were
studied at the start of the work, allowing a decision to be made on the total number
of stars to be retained in the Input Catalogue as a function of magnitude, based on
the final expected accuracies implied by these distributions. Nine successive selections
were submitted to a chain of numerical simulations (Crézé 1985, Crézé & Chareton
1988, Crézé et al. 1989), allowing the statistical representation of the various proposed
programmes and the expected precision on the astrometric parameters to be assessed;

(d) the proposers were given the opportunity to express their comments, first on the
priorities allocated to their proposed programmes, and later, once a close-to-final star
selection was obtained, on the individual stars retained from their proposal. This
dialogue, albeit unusual, was felt desirable for two important reasons: (1) the first
round of recommendations from the ESA Selection Committee and the corresponding
treatment of the data by the INCA Consortium was necessarily somewhat statistical
in nature. It was realised that such a coarse treatment might be satisfactory for many
proposals, but quite unsuitable for others, and (2) since the observing programme of
Hipparcos remained fixed throughout the satellite lifetime (it was not possible to add
new objects to the observing list throughout the mission, nor to undertake new rounds
of proposals) it was important to satisfy the scientific requirements of each proposal
from the very outset and to check, further on, that the final star selection would not
exclude one specifically important object in the opinion of the proposer;
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(e) the INCA Consortium presented the results of this work to the Scientific Selection
Committee, in the form of detailed statistics and ‘performances’ for each proposal.
This presentation, which took place four years after the commencement of the INCA
Consortium’s work, allowed the Selection Committee to verify that their original rec-
ommendations, and other scientific goals that were identified during the course of the
INCA Consortium’s work, had been satisfactorily implemented.

3.4. Resulting Catalogue Content

Global Content

The sky distributions of all candidate stars and of stars selected in the final catalogue are
shown in Figures 3.1 and 3.2 respectively. Though much smoother than the distribution
of proposed stars, the distribution of observed stars still shows a concentration along
the galactic plane. This was allowed by the fact that, in these regions, the only stars
which were observable are relatively bright, and their individual target observing time
relatively small. The global distribution of selected stars versus Hp magnitude (i.e.
the magnitude in the Hipparcos band) is given in Table 3.1, along with the percentage
of success obtained for priority 1 stars and for all survey stars (the Hp band has an
effective wavelength close to that of the V band of the Johnson system, but much wider,
as shown in Figure 14.1, and in Table 1.3.1 in Volume 1). The bulk of stars observed
by Hipparcos are brighter than Hp = 10 mag, and few of them are fainter than 12 mag.
The effect of the weight placed on high priority stars is also clear from the comparison
of columns 2 and 5.

Astrometric Programmes

The general ‘success’ of the astrometric programmes was very high, since they contained
mainly bright stars spread all over the sky or over large areas. The number of stars
proposed for each main programme and the percentage of observed stars in each case,
are given in Table 3.2. Particular attention was paid to the inclusion of fundamental
stars (FK5, FK5 extension, IRS), and to guarantee that radio and ‘link’ stars (stars
in the close neighbourhood of quasars compact in the optical and radio wavelengths)
would be observed by Hipparcos in an optimum way, in order to prepare the link of the
Hipparcos reference frame to an extragalactic reference system, via VLBI and Hubble
Space Telescope observations.

Astrophysical Programmes

As described in Section 3.2, a very large variety of astrophysical programmes was pro-
posed for observation on Hipparcos. Table 3.3 shows the mean rate of inclusion for the
main categories of programmes. The Hipparcos Input Catalogue contains field stars of
almost all spectral types and luminosity classes belonging to various stellar populations,
most types of binary and variable stars, very specific objects such as white dwarfs, central
stars of planetary nebulae, and Wolf-Rayet stars, stars in about 280 open clusters, and
stars in the Magellanic Clouds (Gómez 1988; Gómez & Crifo 1988). In most cases,
the closest stars of each category were retained. The result is that more than 85 per
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Figure 3.1. Sky distribution of candidate stars shown as a function of galactic coordinates. The most prominent

feature is the concentration of candidate stars along the galactic plane. Stellar densities refer to the number of stars in
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Figure 3.2. Sky distribution, in galactic coordinates, of all selected stars. Stellar densities refer to the number of stars

in an area of 6 .�4 × 6 .�4.
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Table 3.1. Final selection of stars in the Hipparcos Input Catalogue, and the global percentage of success for

priority 1 and survey stars, as a function of the Hipparcos magnitude, Hp.

Magnitude Entries Entries Global Success Success
(Hp) in INCA in Input success of priority 1 of survey

Data Base Catalogue stars stars
(per cent) (per cent) (per cent)

< 6 4 200 4 200 100 100 100

6 − 7 8 540 8 510 99 99 99

7 − 8 24 160 22 250 92 98 93

8 − 9 55 290 41 100 74 96 93

9 − 10 70 970 29 410 41 91 91

10 − 11 36 270 9 330 26 83 -

11 − 12 10 190 2 930 29 86 -

≥ 12 5 140 650 12 44 -

Total 214 760 118 380 55 94 94

Retained 72 500 52 800

Table 3.2. Success of the main astrometric proposals in the Input Catalogue.

Catalogue or Proposal Number of Success
proposed stars (per cent)

FK5 1 535 100

FK5 extension 2 013 99.8

NPZT 1 718 99.4

AGK3R 21 499 98.2

SRS 20 495 96.8

IRS Supplement 1 900 95

GC 33 100 90

Selected radio stars 189 98

Selected link stars 175 95

Photographic link stars 1 000 42

Lunar occultations 15 300 50

Jupiter occultations 4 900 42

Uranus and Neptune occultations 23 39

Pluto occultations 290 41

Parallax standard stars 64 95
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Table 3.3. Success rates of various categories of astrophysical programmes.

Type of Proposal Success

(per cent)

Luminosity calibration >70

Stellar masses >95

Stellar atmospheres >90

Stellar structure >90

Galactic structure(1) >50

Galactic structure(2) >80

Magellanic Clouds >50

1 if the number of proposed stars was ≥ 10 000
2 if the number of proposed stars was < 10 000

Table 3.4. Distribution of the selected stars as a function of spectral types and distance estimates (the total

number is not 118 000, as it was impossible to make even a rough estimate of the distance of some stars).

Spectral Type Distance (pc) Total

<100 100-500 500-1000 > 1000

O-B 170 6 050 2 530 1 980 10 730

A0-A9 1 260 15 910 1 330 270 18 770

F0-F9 12 400 13 150 110 250 25 910

G0-K1.5 14 200 23 560 2 150 530 40 440

K2-M8 3 380 10 470 5 500 900 20 250

Total 31 410 69 140 11 620 3 930 116 100

cent of the selected stars are closer than 500 pc. The distribution of the selected stars
by spectral types, with a rough estimate of the distance, is given in Table 3.4.

3.5. Tests of the Hipparcos Input Catalogue by Satellite Observations

Tests of the Hipparcos Input Catalogue Data

The Hipparcos Input Catalogue was probably the first catalogue ever tested before its
publication, and with an instrument allowing a much higher accuracy on positions,
proper motions, magnitudes and colours to be achieved. The specifications of ESA
were standard errors of 1.5 arcsec on the positions at epoch 1990 (with a somewhat
better accuracy on positions for a subset of stars used for real-time satellite attitude
determination), and 0.5 mag on the B or V magnitudes for all programme stars. From
comparisons made using the preliminary sphere solution obtained from 30 months
of Hipparcos data (see Chapter 16), the accuracies achieved in the Hipparcos Input
Catalogue were largely within these specifications: 0.3 arcsec on the positions, and
0.25 mag on Hp magnitudes, with accuracies of 0.02 mag or better for more than one
third of the catalogue (Turon et al. 1995).
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Entries with No Solution: Identification Errors

In the final Hipparcos Catalogue, 263 entries have no astrometric solution, 14 of these
also have no photometric solution. The main reasons for these problems were that the
position and/or proper motion and/or magnitude was wrong in the Hipparcos Input
Catalogue and that, as a result, either the sky background was measured, or the star was
too faint at the epochs of observation for an astrometric solution to be obtained. The
stars entering these categories are mainly high proper motion stars and large amplitude
variable stars. A few of them are components of double or multiple systems. Notes in
the Hipparcos Catalogue indicate these problem stars.

In addition to these entries where no star was observed by the satellite, a small number
of identification errors were detected, where the satellite observed a star which is not
the star quoted in the Hipparcos Input Catalogue (at least with respect to the cross-
identifications tabulated for such a star). Again, these entries are mainly high proper
motion stars and large amplitude variable stars. Notes in the Hipparcos Catalogue also
indicate these problems.

C. Turon
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4. OVERVIEW OF THE DATA ANALYSIS

This chapter provides a general overview of the data analysis leading from
the raw satellite data to the Hipparcos Catalogue and associated annexes—the
details of the various processes are presented in the following chapters. The
basic concept for the data analysis had already been established at an early stage
in the mission planning, and the reductions were subsequently carried out in a
series of sequential processes, each substantially decreasing the corresponding
data volume. Certain aspects of the analysis were in practice dictated by the
relatively limited computer resources at the time of development and earliest
implementations. Much effort was devoted during the preparatory phases to
creating reduction software that was both fast and highly reliable. The practical
organisation of the treatment of the data in both consortia, FAST and NDAC,
is also summarised.

4.1. Main Stages of the Data Reduction

Input Data Stream

The input data stream consisted of the scientific data from the satellite, auxiliary data
(principally the satellite orbital parameters) and various satellite ‘housekeeping’ data.
These data streams were prepared by ESOC from the original telemetry data, and put on
9-track, 6250 bpi tapes (see Volume 2, Chapter 9) at a rate of just under 1 tape per day.
Most of the data was provided in a highly compressed form, with some 1350 tapes in
total delivered by ESOC to each consortium. The total amount of compressed science
data relevant for the construction of the Hipparcos Catalogue was around 70 Gigabytes.

Reduction Processes

A ‘three-step’ reduction scheme was first proposed by L. Lindegren, of Lund Observa-
tory (Sweden), during the feasibility study of the space astrometry mission. It consisted
of three major steps: the great-circle reduction, the sphere solution and the determina-
tion of the astrometric parameters. Although a direct, global solution of the mission data
would have been possible in principal, it was totally impossible in practice. The three-
step method allowed the overall analysis problem to be decomposed into three sequential
steps, allowing the processing of the satellite data to be considered as feasible. It led to
a marginal degradation of accuracy compared with a theoretically optimum reduction
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system, and the same general approach was adopted by both consortia. However, steps
2 and 3 were combined to one step by NDAC in the final implementation, which also
comprised the processes for star mapper data reduction, attitude reconstruction and
image dissector tube data reduction, plus a wide range of off-line processes (see below).

In practice, the processing did not follow an exclusively sequential structure—thus, for
example, results from the sphere solution were used to iteratively improve the attitude
reconstruction and great-circle reduction, by feeding back improved stellar positions
into the reduction process, while results from the great-circle reduction were used as
a quality control of the attitude reconstruction. Several other processes ran largely in
parallel with the main data processing, but with a sometimes complex interaction with
other processes:

• the double star processing (Chapter 13) interacted at many points with main reduc-
tion processes: results from the star mapper processing provided precise starting
coordinates for double stars with separations larger than 1.5 arcsec, image dissec-
tor tube data processing provided the input data for the double star processing, the
great-circle reduction provided relative reference positions for the measurements,
and the sphere solution results allowed these to be transformed into absolute posi-
tions;

• the photometric reductions (Chapter 14) proceeded rather independently of the
astrometric tasks, although the photometric results were used in all three main
processes, in particular providing colour determinations obtained with the star
mapper data;

• comparisons between various calibration parameters obtained at various stages of
the data processing led to a better understanding of the instrument and thus of the
reliability of the reduced data. These aspects are presented in Chapter 8 and 10;

• special treatment was required for the processing of minor planets and planetary
satellites (Chapter 15), from the first processing to the presentation of the final
results;

• at all stages of the reductions, a catalogue of stellar parameters (positional and pho-
tometric) was used, and was regularly updated using intermediate mission results.

The rest of this section provides some more details about the reduction processes and
references to the chapters in the current volume where full descriptions can be found.
The processes are here divided into the main reduction chain, the parallel processes,
and other aspects.

Main Reduction Chain

Part A. Processing of photon counts (Chapters 5 to 7): The aim of the first
reduction processes was to derive from the image dissector tube counts, in combination
with the star mapper data (and to some extent gyro data), the phases of the modulated
signals at a given reference time during the star transits, and with respect to a chosen
reference line on the grid. In addition, the satellite attitude angles at the chosen reference
time were needed for further processing, as well as for the first processing of the image
dissector tube data. The processing proceeded as follows:
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(1) preliminary investigation of the satellite attitude to provide input data required for
the star mapper processing, processing of the star mapper data to transit times
(Chapter 6);

(2) using catalogue positions and star mapper transit times, the attitude for each obser-
vational frame with image dissector tube data was reconstructed with an accuracy
of better than 0.1 arcsec (Chapter 7);

(3) using the reconstructed attitude results, the image dissector tube data were reduced
to provide phase and amplitude information for the astrometry and photometry
respectively (Chapter 5).

The output of the latter two processes formed the input for Part B, the great-circle
reductions (Chapter 9). Parallel processes in Part A were the star mapper and image
dissector tube photometric reductions, catalogue improvements, and a range of calibra-
tions. Data were also prepared for the double star processing. The total amount of data
at this stage was, on average for each observation frame of 2.13 s, 4.5 transit times, their
accuracies and amplitudes, the three satellite attitude angles with accuracies, as well as
full timing information. The reduction in data volume from the original photon counts
was about a factor of 100. On average, about 50 000 transit times were obtained per
orbit (these typically constituting one ‘reference great circle’).

Part B. The great-circle reductions (Chapter 9): The task of the great-circle
reductions was to combine the 50 000 transit times obtained over one orbital period
into abscissae along a reference great circle, for the 2 000 different stars observed during
that period. This was obtained through a further refinement of the along-scan satellite
attitude, through projection onto a reference great circle using the results of process
(2) described under Part A, and through calibration of the large-scale distortions of
the projections on the main detector. Also calibrated was the basic angle (Chapter 10)
between the two fields of view, which enabled the linking of different parts of the sky at
the milliarcsec level. The monitoring of the various calibrations was used as part of the
overall quality control.

Double star coordinates were generally not carried along in the great-circle reduction:
the reference phase of the modulation for a double star was a combination of two signals,
the result of which depended on the orientation of the modulating grid with respect to
the orientation of the double system. They had to be treated independently, using,
however, the scan-phase information obtained in the great-circle reduction.

The output of each reference great circle reduction was a reference pole, a preliminary
zero-phase (relative to some celestial reference frame), and abscissae, and their accura-
cies, for some 2000 stars. This represented the data collected for single stars over an
interval of between 6–9 hours.

Part C. Sphere solution and astrometric parameters (Chapter 11): The task of
the sphere solution was to establish a consistent system of zero-phases for all reference
great circles, and subsequently derive from the combined abscissae, corrected for the
zero-points, the five astrometric parameters: the two components of position, the two
components of proper motion and the parallax. In the process, effects that could not be
detected at earlier levels in the data reductions were calibrated: certain harmonics in the
great-circle solutions could enter due to occultation-gaps, and chromaticity corrections
could only be obtained at this level.
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The final astrometric parameter determination was carried out after the merging of the
data from the two consortia (Chapter 17). At this stage non-linear proper motion cases
were also detected and solved for.

Parallel Processes

A series of parallel processes used data from the main processing chain, and sometimes
provided information to it. The two principal parallel processes were the double star
processing and the photometric calibrations.

Double star processing (Chapter 13): The character of the modulated signal ob-
tained with the main detector was such that all information on double stars had to be
processed as a separate, dedicated task. Input data came from the image dissector tube
data processing, the image dissector tube photometric calibrations, the great-circle cal-
ibration results and the reference great circle zero-point calibrations obtained as part of
the sphere solution. Further information for the detection of double stars was provided
through accumulated statistics from the image dissector tube data processing. Data
from the optical transfer function (Section 5.9), describing the characteristics of the
modulated signal as a function of position in the field of view and as a function of star
colour, was incorporated in the reduced image dissector tube data results. These data
were not only supplied for double stars known a priori, but for every star observed, since
many unknown double stars were present in the observing programme.

The double star processing consisted of two stages: (1) recognition of stars as double (or
multiple); (2) solving the double star parameters (separation, orientation, magnitude
difference). By using data from the sphere solution and the great-circle reductions, the
double star parameters could be entered into the final sphere solution. Checks on the
reliability of this fitting were made through treating some single stars with the same
processing, and comparing the results with those obtained in the normal processing.

Photometric calibrations (Chapter 14): Two types of photometric calibrations were
carried out: for the star mapper data, and for the image dissector tube data. The
first was of moderate accuracy, and intended to provide colour information for stars
without reliable colour information in the Hipparcos Input Catalogue. This could only
be done for stars brighter than approximately 10 mag. The star mapper photometry
also provided a background signal relative to which the background signal in the main
detector could be determined.

The image dissector tube photometry provided accurate photometric data in a broad
band, eminently suitable for use as ‘epoch photometry’ for the detection and investi-
gation of variable stars. It was also used as calibration information in the double star
processing.

Catalogue updates (Chapters 6 and 16): The quality of the data reductions was
considerably improved through the work done on updating the catalogue information:
improved positions provided a more accurate attitude reconstruction, allowed a bet-
ter distinction of the pointing of the instantaneous field of view, and a more reliable
great-circle reduction (through removal of grid-step ambiguities). Catalogue updates
were initially provided through accumulated star mapper reduction results: the attitude
reconstruction was more accurate than that represented by the positions of stars in the
Hipparcos Input Catalogue, and the residual transit times left after attitude reconstruc-
tion were used to correct those positions. The star mapper data also provided improved
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colour information as described in the previous section. Finally, the star mapper data
provided improved parameters for some 1200 double stars. At later stages in the pro-
cessing, improvements came from the first preliminary sphere solutions, at which point
positional accuracies were reached that no longer had any negative influence on their
use in the reduction processes.

Catalogue updates were also provided to the satellite operations team at ESOC for
improved satellite performance.

Other Aspects

Calibrations (Chapters 8 and 10): Calibrations were carried out at almost every
stage of the data reductions, and comparisons between various calibration results led
to a much better understanding of the instrument and the external influences on it. In
many cases calibrations were performed to a level well beyond the strict requirements of
the data processing, providing information that can be of use in future space missions.

Interfaces with the Tycho Catalogue reductions: The Tycho data reductions re-
quired the attitude reconstruction from the main mission. As the Tycho reductions
used the star mapper data, their reduction processes and results were incorporated in
comparison exercises. The Tycho photometry was essential in establishing the reference
colours for the final main mission reductions.

Comparisons: Careful and extensive comparisons were carried out throughout the
data reductions, an important process which began before the start of the mission using
simulated data, and which was to some extent facilitated by the common adoption of
the same sequence of reduction processes by both consortia. The main comparison
tasks were:

(1) star mapper reductions: detections, transit times, intensities, and error estimates;

(2) attitude reconstruction: coverage, general performance, outliers;

(3) image dissector tube data reductions: phase and amplitude estimates, results from
‘partially observed stars’, accuracies;

(4) great-circle reduction: abscissae, accuracies, slit ambiguities;

(5) sphere reconstruction: accuracies, rotations;

(6) double stars reductions: detections, parameter comparisons;

(7) photometric reductions: biases, error estimates, data rejection and flagging, bary-
centric corrections;

(8) variability investigations: detections, periods, zero-phases;

(9) satellite orbital parameters, and determination of celestial directions.

All these comparisons had important consequences for the mission results: they revealed
numerous errors or possibilities for improvement in the reductions, stimulating the data
reduction groups to produce improved and optimum results—this element of (good
hearted) competition was an important factor in obtaining the final high quality of the
Hipparcos Catalogue results.
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Figure 4.1. General scheme of the interactions between tasks in the FAST Hipparcos data reduction organisation.

DMCS: Data Management and Command System.

4.2. Organisation of the Data Reductions in FAST

The data analysis by the FAST Consortium followed the principles described above, be-
ing essentially an iterative process during which intermediate quantities such as attitude
and instrumental calibrations status were improved together with the five astrometric
parameters (see Figure 4.1). The process was iterated about ten times, either when
new observational data was included or simply when a better working star catalogue was
available from earlier reductions. On several occasions, software was improved between
two successive iterations, partly as a result of the comparison exercises, also thereby
contributing to the general improvement of the results.

The various tasks were prepared in different scientific institutes before the launch of
the satellite. They were verified using simulated data prepared in CERGA (Observa-
toire de la Côte d’Azur), and put in a format that was pre-defined in an architecture
document and an interface document where all the interactions and data exchanges
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between software were foreseen. The actual exploitation of the software was carried out
systematically on the CNES CDC computer, so that the software had to be transferable,
irrespective of the computer used in the contributing institutes. Thus each piece of soft-
ware had to be verified first in the responsible institute then, once transferred, in CNES.
An ensemble of acceptance tests was set up for each software module, and acceptance
was declared after the tests had been fully satisfied. An inter-institute committee, re-
ferred to as the Software Advisory Group (SWAG), which included representatives of
CNES (J.L. Pieplu and C. Huc), CERGA (J. Kovalevsky and J.L. Falin) and other
participating institutes (E. Canuto, CSS; R. Hering, ARI; H. Kok, Delft; and F.P. Mur-
golo, CSATA) played a major role in building the interfaces, in enforcing inter-institute
cooperation, and in transforming independent software into a coherent data processing
system.

The role of the Software Advisory Group continued after satellite launch. The software
accepted on the basis of simulated data, had to be proved adequate to treat the real
data. All the software modules, separately and in combination, had to be confronted
with unforeseen problems or perturbations, and with the consequences of the highly
eccentric orbit such as the absence of data during perigee passages, the increase of
photon noise in the van Allen belts, long eclipses, and the large variability of torques
with time.

It took more than one year to rewrite some of the software and to re-perform all the
acceptance tests on the CNES computer using some data sets chosen in such a way that
all different peculiarities of the orbit and of the data recovery were fully covered. Thus
the actual systematic data treatment started only in May 1991, 1.5 years after the actual
start of the mission. The automatic mass treatment organised in CNES, and controlled
by the ‘Data Management and Command System’ was very efficient, and the lag rapidly
diminished. However additional improvements, in particular in attitude determination
and great-circle reduction, continued to be made for at least another year and a half.

The FAST reduction structure can be described by grouping the various tasks and
related software into five categories:

(1) data reception: this consisted of transforming ground-based data (the Hipparcos
Input Catalogue, and planetary ephemerides) and the satellite data transmitted by
ESOC into a form directly accessible by the various software modules;

(2) ‘first-look’ and calibrations: every week, the first-look task in SRON, Utrecht
treated one data set (data acquired during one satellite orbit) to validate the data
sent by ESOC almost in real time, and to provide the first calibrations to the FAST
data reductions. Later, these calibrations were improved using the results of the
main data reductions;

(3) mass treatment: this consisted of transforming the raw data into star abscissae on
a reference great circle, carried out data set by data set. Two different chains were
used: one for the first treatment of the data, the second for the iterations;

(4) synthesis: all the available results on data sets, whether obtained from the first or
iterated treatments, were combined to determine a consistent mesh of reference
great circles with their origins, followed by the astrometric parameters of each star;

(5) off-line tasks: these included photometry, double and multiple star treatment,
minor planet reductions, and the improvement of calibrations.

Each of these tasks, and their interactions, is described hereafter.
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Data Management and Command System

The decision to perform all the data treatment on a single large centralised computer,
and to do it as automatically as possible, required the setting up of a software system
which would be able, using simple commands, to process any subsystem for any data
set, and to access all intermediate or final files at any time.

Processing all the data, over the whole mission, demanded the correct and coherent
execution of more than 30 000 jobs, accessing 80 classes of files, comprising a total of
more than 120 000 files. In order to minimise the consequences of mistakes, to control
the progress of the processing, and to optimise the mass production, the scientific
software and the subsystems were embedded in a ‘Data Management and Command
System’. The main functions of this system were as follows:

(1) to activate the different parts of the reduction software according to a pre-set
operation scheme. The organisation of commands allowed the activation of the
subsystems sequentially or individually, on one or several data sets. Special care
was taken to verify the feasibility of the commands, in accordance with the operation
scheme and the available computer resources;

(2) to manage the scientific and operational data within a data bank on disks and
magnetic tapes. The Data Management and Command System identified and
extracted from the data bank the data necessary to execute a task and stored the
results. The storage resources were divided into different areas in order to avoid
interferences between parts of the main reduction. A copy of the files was created
and managed in a separate archival area;

(3) to allocate dynamically and control the computer resources needed by the subsys-
tems during operation;

(4) to update the consultation area with new results and to manage the access re-
quests. This consultation facility of intermediate and final results through the Data
Management and Command System was intensively used by the CERGA team in
Grasse, throughout the reductions, for the scientific control of the processing. It
was through this facility that all off-line tasks received the intermediate data that
was needed;

(5) to allow the debugging, correction of errors, implementation and tests of modifica-
tions or software improvements in a separate resource environment.

The size of the Data Management and Command System was about 150 000 lines
of code, including comments. It represented roughly half of the complete reduction
system, the other half covering the preparation tasks and the scientific software. It
managed 4000 high-density magnetic tapes and used 1.5 Gigabytes of disk space. The
reduction system worked on the multi-user CDC 992 of the CNES computing centre at
Toulouse. The complete reduction of the Hipparcos data at CNES used approximately
1500 hours of CPU time of this 24 Mips machine.

Data Reception and Preparation

The data received from ESOC was first checked for consistency, then divided into
different files for subsequent use. From ESOC quality flags the limits of the data sets
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were automatically determined. After a few months, the test parameters were made
less stringent because it appeared that the flagging of possibly bad data was sometimes
unnecessarily severe. After this, the quantity of data retained by FAST and NDAC was
quite comparable. The preparation of data included the following items:

(1) a full description of the data set was made containing the observation times, the
stars observed, the satellite gas jet actuation times and durations of telemetry gaps,
eclipse times, the relation between on-board and on-ground times in the form of a
third-order polynomial and some statistics. This ‘Mission Control File’ was used
by all FAST software modules throughout the reductions;

(2) several files included all information concerning the stars observed in the data
set: in particular a priori geometric and apparent positions of stars at their times
of observation in the great circle reference frame, various partial derivatives with
respect to astrometric and calibration parameters, reference astrometric parameters
to be improved, grid coordinates derived from coil-currents, etc. These files were
updated at each iteration;

(3) photon counts from the main grid, with details of the observing strategy, and the
star mapper photon counts with time indicators. These files were used only in the
first treatment;

(4) orbit and on-ground attitude files, and minor planet ephemerides.

First Look

In the FAST Consortium’s first-look facility at SRON, Utrecht, data from one orbit per
week were received from ESOC within a few days after data acquisition. Using a special
version of the FAST data reduction software, these data were analysed within 24 hours
of reception; relevant results were distributed to FAST, ESOC and INCA. This special
processing served a number of purposes:

(1) a check on the integrity of the data produced by the instrument and processed by
ESOC. More particularly, it was verified that the data could be processed without
problems by the FAST main reduction software;

(2) a check on the correctness of the reduction software. Especially in the early phases
of the data reduction, numerous corrections were proposed. In parallel, results
were used in the various comparisons between the consortia processing results;

(3) as a result of the great-circle reductions, geometric calibrations of the main field of
view, including the basic angle, were obtained. This provided an excellent method
of verifying the stability of the instrument. These results were sent to FAST and
ESOC; the latter used the calibration, in particular the grid rotation, to improve
the real-time pointing of the instrument;

(4) a number of other quick calibrations were performed: geometry of the star mapper
field of view, photometry of the main field, photometry of the star mapper, single-
slit response of the star mapper. Results of all calibrations were sent to the FAST
main reduction to serve as a first approximation to be improved after the availability
of the complete set of measurements. Results of some calibrations were also sent
regularly to ESOC; for example, the calibrated modulation factors were sent weekly
in order to allow ESOC to monitor the focusing of the instrument;

(5) the level of all star signals were compared with their expected values. In particular,
those cases where no signal was measured (which could have been due to an
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incorrect position in the Hipparcos Input Catalogue) were signalled to the Input
Catalogue Consortium.

Calibrations

The various parameters describing the instrument and the instrumental effects on the
data had to be calibrated since the quality of the results of the reduction depended
critically on the quality of calibration. So, in FAST, great care and much work was
devoted to improve the calibrations so as to use the latest and optimised values at each
iteration. Conversely, better intermediate solutions were used to re-run the calibration
software in order to further improve the values of the parameters. The main quantities
which were calibrated fell into one of the following categories:

(1) image dissector tube data: modulation coefficients M1, M2, the phases g1 and g2

for single stars, and a first photometric calibration as a function of position on the
grid and star colour (see Chapter 5). The calibrations were essentially used in the
determination the grid coordinates, in the double and multiple system processing,
and in the photometric analysis;

(2) star mapper: the shapes and the position of the star mapper grids with respect to the
main grid were calibrated with an accuracy significantly better than the precision
of the star mapper observations (see Chapter 6);

(3) optical parameters of the instrument: these included the basic angle and the grid-
to-field transformation over the main grid. They were performed as a part of the
great-circle reduction (see Chapter 9) although the synthesis and analysis of these
results as a function of time were an important part of the calibration task.

Most of these parameters were not stable with time (see Chapter 10) so that the incor-
poration of the calibrations had to be time dependent. In FAST, the following structure
was adopted. The full mission was divided into 33 periods whose duration varied from 6
to 40 days depending on the speed of variation of parameters (mainly the basic angle and
the field rotation) also taking into account the refocusing times. Two of these periods
concerned sun-pointing situations. For each of these periods, the calibrated quantities
were presented, whenever suitable, as analytical functions (polynomials) of position on
the grid, colour and magnitude of the star, and time. For the star mapper calibrations,
needing lower precision, only 9 periods ranging between 6 and 332 days were adopted.
All were periodically updated when better data became available.

Mass Treatment

Within the Data Management and Command System, every data set was treated con-
tinuously in a single run from the preparation of the data to the great-circle reduction
inclusively, proceeding first through the star mapper data processing, and the determi-
nation of the attitude, then the image dissector tube data processing and grid coordinate
determination and, finally, the computation of grid coordinates. A number of inter-
mediate results used in other tasks were stored in files: for example the results of the
image dissector tube data processing were provided to all the off-line tasks, the attitude
to the double star processing and minor planet task, data for various calibrations, etc.
Results of the image dissector tube and star mapper photon count treatment and the
attitude file were re-used in the iteration mass treatment. The latter therefore included,
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in addition to a simplified preparation task, a re-evaluation of the attitude and of the
grid coordinates and a new reduction on great circles.

Synthesis

Whenever a sufficient number of new or iterated great circle results were obtained, they
were sorted star-by-star. The data of some 42 000 stars, selected for their brightness,
absence of duplicity, and quality and number of observations, and referred to as ‘primary
stars’ in FAST, were used as an input to the sphere solution software (see Chapter 11).
Then, the abscissae of the stars were corrected using the re-determined origins of the
great circles and used to compute the astrometric parameters of stars. The latter work
was shared by CERGA on the CNES computer, and Astronomisches Rechen-Institut
(ARI) in Heidelberg. At this level, the results of the double and multiple star processing
were introduced in the equations to determine their astrometric parameters.

The ensemble of the mass production and the corresponding synthesis was called a
‘run’. Eight such runs were made during the four years of processing. Four iterations
were made during the first 18-month data treatment and three involved more data
during the global course of the data reductions. In addition, during the final year,
several other syntheses were performed without re-doing the totality of mass processing,
but introducing various individual improvements after re-processing some data sets by
the mass treatment, or in modifying the status of some stars (primary/secondary or
double/single).

Off-Line Tasks

In principle, off-line tasks were performed outside the Data Management and Command
System, but the input data were prepared by it. The organisation was as follows:

Minor Planets: The data included the abscissae on great circles as determined by
the great-circle reduction task, five parameter modulation coefficients, various data
describing the reference great circles, and the orbit of the satellite (position and velocity).
The files were prepared in CNES and sent to the Bureau des Longitudes where the
corresponding analysis was carried out.

Photometry: This task was essentially based on treated photon counts and modu-
lation coefficients prepared by the Data Management and Command System. The
photometry task itself was executed on the CNES computer by the CERGA team. Very
good communications existed with the Royal Greenwich Observatory (RGO) team of
NDAC, so that comparisons of results were made very frequently and allowed a quick
convergence towards comparable results.

Double and Multiple Stars: The complex activities related to the double and multiple
star reductions was divided into two separate phases:

(a) relative astrometry of stellar systems, in which the relative positions and intensities
of components were determined. Again, the data was prepared within the Data
Management and Command System, then sent to the relevant groups. In Italy, it
was sent to CSATA (Bari) where further preparation of the data was performed,
the results being sent to the Istituto Astrofisica Spaziale in Frascati and the Torino
Observatory. The results were compared in Torino and formed the first set of
results. A second set was obtained in CERGA on the CNES computer. The FAST
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ensemble of results was evaluated in CERGA and the best results were sent to Lund
for the final merging of double and multiple star data. Multiple star reductions were
made independently in Torino and CERGA, then checked, and the results which
improved the goodness-of-fit in the computation of the astrometric parameters were
retained and sent to Lund for merging;

(b) absolute astrometry of stellar systems, in which the astrometric parameters were
determined. This was performed in ARI, Heidelberg. In addition, ARI analysed the
residuals of the astrometric parameter reduction, and identified some astrometric
double stars and ‘variability induced movers’. It also contributed to what are called
‘stochastic solutions’ for unresolved, probably double or multiple, stars.

4.3. Organisation of the Data Reductions in NDAC

The three main groups of data reduction processes, as described in Section 4.1, corre-
sponded in NDAC with three groups that were each responsible for the development,
testing and implementation of their part of the reduction software. The connections
between the groups were specified in an interface document, and all data transfer was
made by 9-track tape (later also by DAT cartridges) in the agreed standard formats.

The responsibilities were divided as follows:

(1) Royal Greenwich Observatory, UK (RGO): Part A (star mapper processing, atti-
tude reconstruction, image dissector tube data processing), photometric reductions
and photometric variability investigations;

(2) Copenhagen University Observatory, Denmark (CUO): Part B (great-circle reduc-
tions) and experiments with global solution;

(3) Lund Observatory, Sweden (LO): Part C (sphere solution and astrometric param-
eter determination) and double star processing.

In all cases the same people who had designed, developed and tested the software
also implemented the software, which gave NDAC some advantages of flexibility. All
software was implemented on small, semi-dedicated computers (MicroVAX, Sun, and
HP/Apollo workstations). The number of people involved at any one time has always
been small: at RGO it varied between 3 and 4, at CUO between 1 and 2, and at LO
only two people were involved. This reduced greatly the need for meetings, as most
problems could easily be solved over the phone or later through electronic mail between
the two or three people concerned. A great deal of testing took place before the start of
the mission through the use of simulated data produced at the RGO.

The biggest strain on the processing of the data was at the RGO, primarily due to the
sheer volume of data arriving and its preparation for the data processing. Approximately
120 to 140 man-days were spent getting the data across from tape to disk in the required
format. All data was transferred to optical disk for direct access. A total of 120 disks of
2 Gigabytes each were used to store the complete mission data. This process involved
also a first visual inspection of the data quality through an interactive display of the gyro
data. Display packages for other data streams were also available and used extensively
in the beginning of the mission in order to understand some anomalies.
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From the moment the data was on disk, the processing was semi-automatic: pro-
grammes were created to produce command files for data processing according to log
files of the processing done so far. The command files could keep the processing of
many data sets for time intervals of up to several days, the only requirement being the
supervision of the occasional change of magnetic tape or disk. The data reductions
produced small selections of control graphs, showing the quality of the input data and
of the reduced data. A log was kept of every process, which was automatically updated
at completion. The standard reductions at this stage were completed by writing the nec-
essary files for the great-circle reductions to tape and sending the data to CUO. During
the first 18 months of the mission, updated catalogue data was also sent to CUO.

At CUO the tapes with input for the great-circle reductions were read and the data
reorganised on disk, allowing easy access for processing. The reduction of a great-
circle set was carried out by performing a chain of processes where the first processes
read data from the input files, and the last process wrote the output files. During the
processing of a set, several intermediate files were created and used, but these files were
all deleted after the output results were accepted. The definition and initialisation of
the great-circle set and its reduction were controlled by a number of global parameters
which could be changed by editing an option file. Each of the programs used in the
reduction of the great-circle sets could be run as stand-alone programs, but the large
number of files and tapes involved made it difficult, and indeed undesirable, to manage
and monitor the great-circle reduction processes manually. A data management system
of programs and directories was therefore set up to control the use of the data files and
tapes throughout the mission. Utility programs were also available for plotting results
such as the attitude updates or the data in any column of the intermediate files versus
record number. From CUO the satellite three-axis attitude for the entire mission was
delivered to TDAC, combining results from RGO and CUO.

All the input data for the sphere solution and determination of astrometric parameters,
performed at LO, could be contained on a few magnetic tapes and the complete set of
files could be stored on disk for the processing. Thus no special data management system
was required for this task. However, because there was considerable experimentation
with the solution programs and the modelling of various effects, some care was needed
to preserve the different program versions and the corresponding data sets. Each new
run was given a sequential number (the final sphere solution was number 370), which
was used to identify successive catalogue versions as well as the programs by which
they were generated. At major milestones of the processing, the whole directory tree
containing data and programs was saved on tape cartridges. The solution program also
generated files of intermediate abscissa data, used as input to the catalogue merging.

The double star processing at LO used much larger data sets as input, including the
signal parameters for the individual field of view crossings from RGO, the complete
attitude files from CUO, and a number of photometric and geometric calibration files
from RGO, CUO, and the sphere solution at LO. The generation of the ‘case history
files’ from these data streams involved some rather complex juggling of data between
disks and tapes (replaced by DAT cartridges in the latter part of the mission). This was
however only done a few times throughout the mission, and the subsequent solution
of double and multiple stars could then be made one object at a time, using dedicated
software for the different object types.

M.A.C. Perryman, J. Kovalevsky, L. Lindegren, F. van Leeuwen
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5. IMAGE DISSECTOR TUBE
DATA PROCESSING

The image dissector tube data formed the main data stream for the Hipparcos
mission. This detector assembly was situated behind the modulating grid and
was capable of observing the light transmitted through a very small area of
this grid, the so-called instantaneous field of view. This chapter describes
the characteristics of the image dissector tube data and the reduction steps
that prepared these data for further processing in the great circle reduction (as
described in Chapter 9), the double star treatment (as described in Chapter 13)
and the photometric treatment (as described in Chapter 14). The description
of the reductions will use some information described in later chapters, most
notably the results and description of the attitude reconstruction (as described
in Chapter 7).

5.1. Description of the Measurements and Other Input Data

The Grid

A spherical glass surface, matching the curvature of optimal focus, was located in the
focal plane of the telescope. The modulation grid, built up from 168 by 46 elements
referred to as scan-fields, was engraved on this surface. Each scan-field contained 16
transparent lines. The method of engraving these lines meant that when projected or-
thogonally on a flat plane normal to the optical axis of the curved glass on which it
was engraved, these grids are strictly rectangular, but while projected on the spherical
surface of the focal plane, they are slightly distorted. These distortions could largely
be compensated by expressing grid coordinates as direction cosines rather than angular
displacements, as was done by NDAC, or as a two-dimensional fourth order model
which includes simultaneously the actual grid distortion and the field-to-grid transfor-
mation, as done by FAST. Further (very small) corrections (the so-called medium-scale
distortions) for the positions on the grid were determined and applied at the level of
the phase determination during the great-circle reductions by NDAC (Section 10.3),
and applied at each interlacing period according to the ground based measurements by
FAST (Section 5.9).

The grid contained a small number of defects, identified during the pre-launch verifica-
tion. Some of these defects were recognised in the data analysis in Utrecht (‘First Look’
analysis). The grid defects were accounted for in the FAST processing by rejecting data
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obtained close to a grid defect. No special measures were taken for this purpose by
NDAC. The amount of data affected was very small.

The grid had a total of 168 × 16 = 2688 lines, with an average width of 3.13 µm and an
average separation of 8.20 µm. More detailed specifications can be found in Chapter 2
of Volume 2. When projected on the sky, this gave a grid period of 1.2074 arcsec.

It was established early in the mission that the grid was oriented at an angle of 5 arcmin
from the normal to the scanning circle. This was taken into account for the observations
from mid-January 1990 onwards, but caused a small amount of degradation of the data
accumulated during the first six weeks of the mission before this date.

The Instantaneous Field of View and Pointing

The instantaneous field of view (IFOV) allowed for the observation of objects within
a small (30 arcsec diameter) area on the grid. It was directed towards the predicted
position of a star by the satellite’s on-board computer, using ground-based apparent-
coordinate predictions and the satellite based real-time attitude determination (see
Chapter 7). Thus, at times when problems occurred with the real-time attitude determi-
nation, the pointing of the IFOV was directly affected. Also, when a priori coordinates
of an object were wrong by more than a few arcsec, then this also influenced the effective
pointing. For this reason, many a priori coordinates were improved during the mission,
initially using mainly results from the star mapper data reductions (see Chapter 6 and
Volume 2, Chapter 8), and later using results of early sphere solutions.

The pointing of the IFOV was controlled with so-called coils currents, calibrated on-
board the satellite and verified at ESOC at regular intervals during the mission (see
also Volume 2, Chapters 5 and 10). This provided the 11 × 11 element coils current
calibration matrix that made it possible for the data reduction consortia to reconstruct
the IFOV pointing for every object observed. In the NDAC reductions the coils current
calibration matrix was represented by a third order two-dimensional polynomial. The
remaining standard deviation of the calibration data with respect to the fitted surface was
of the order of 0.4 arcsec. The coils current step-size corresponded to 1.16 arcsec, which
was therefore the highest pointing accuracy of the IFOV. The reduction software always
selected the calibration nearest in time to the observations. In NDAC, coils currents
supplied with observations were translated into positions on the grid and compared with
positions based on reconstructed attitude (Chapter 7) and improved stellar positions.
This allowed for rejection of data affected by bad pointing. Two selection criteria were
used: a 7 arcsec limit, which provided very good quality data but also a relatively large
loss of data, and a 10 arcsec limit, which gave a slight deterioration of the data but only
very small losses. The final data were all reduced with the 10 arcsec limit. Figure 5.1
shows the IFOV pointing performance over the mission. Time intervals with relatively
bad pointing were often associated with gyro-related attitude determination problems.

In FAST, the 11 × 11 coils current calibration matrix was extended by third order
Lagrange interpolation formula to a 41 × 41 mesh of coils current values, each giving a
pair of G and H coordinate values. This mesh was then inverted into a 41 × 41 mesh of
G and H values giving the corresponding coils currents. Such a table was constructed
for every orbit and then used by linear interpolation formulae to obtain G and H from
the coils current values provided by ESOC for each star observed at mid-time of each
observation frame.
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Figure 5.1. The observed pointing accuracy of the IFOV over the mission. The graphs show the fraction of

observations for which the reconstructed IFOV pointing was within the indicated radius from the actual position of the

stellar image. Only observations within 9.5 arcsec of the reconstructed IFOV pointing were used. Those outside were

associated with failures of the real-time attitude determination convergence.

The sensitivity profile of the IFOV was calibrated by ESOC and showed that serious
attenuation started at about 5 arcsec from its centre. The calibrated average IFOV is
shown in Figure 5.2. There were variations with colour and with position in the field of
view.

The sensitivity of the IFOV at a distance of 100 arcsec from the centre was still at a level of
0.04 per cent, allowing light from very bright stars to slightly disturb the measurements
of fainter stars through the so-called ‘veiling glare’. As virtually all bright stars were
also programme stars, this effect could be predicted, and veiling-glare corrections were
applied by FAST. No veiling-glare corrections were applied by NDAC, where instead
all image dissector tube transits were checked a posteriori for possible coincidences with
other stellar images.
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Figure 5.2. The average instantaneous field of view profile.

Observing Strategy

The integration time for a single image dissector tube observation (the sampling period)
was T1 = 1/1200 s. The observing strategy, i.e. the allocation of image dissector tube
samples to the programme stars and the controlling of the instantaneous field of view
pointing, was built on this unit (see Table 8.2). The image dissector tube data were
processed in blocks of samples collected over an interval of 32/15 s, referred to as an
observational frame (T4 = 2560T1). Within this time interval between one and ten
stars could be observed quasi-simultaneously. The average number of programme stars
in the 0.�9 × 0.�9 field was 4.8. The observational frame was split into 16 interlacing
periods of 2/15 s (T3 = 160T1), during which every star would receive its designated
fraction of observing time. The observing time was distributed in units of 8 sample
periods (also referred to as ‘slots’, T2 = 8T1), mainly according to the brightness of
the object to be observed and the competition for observing time from other objects.
A ‘slot’ almost covered the passage across one grid period: at an average scan-velocity
of 168.75 arcsec s−1 (equal to 360 arcsec per observational frame), the path-length
of a stellar image over the grid during a ‘slot’ equalled 1.125 arcsec, just under the
1.2074 arcsec of the grid period.

When switching from one object to the next, a tiny but significant amount of time was
lost from the first integration interval after repositioning. Every first sample in the first
slot obtained immediately after a repositioning was therefore not used in the reductions.
Special provisions were made for brighter stars entering or leaving the field, which were
observed for only part of the observational frame in units of two ‘slots’ per interlacing
period. These observations were referred to as ‘partially observed stars’, and have
required special attention in the data reductions. Further details of the star observing
strategy are given in Volume 2, Chapter 8.

Analogue Mode and Photon Counting Mode

Stars brighter than 1.5 mag were intended to be measured in analogue mode, fainter
stars in photon-counting mode. It was discovered early in the mission that data ob-
tained in the analogue mode was faulty due to a phase shift between the change-over
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Figure 5.3. Verification of the intensity transfer function (ITF), using data for the brightest stars. The diagonal line

is the expected relation (apart from an offset) for properly decompressed counts. Only counts for Sirius, at -1.5 mag,

were still affected by uncorrected saturation.

from photon-counting to analogue mode (and back), and the switch of the instantaneous
field of view between the stars concerned. Part of the data thus affected could still be
reduced (this was only done by the NDAC consortium), but a proper calibration of the
intensities obtained in analogue mode with respect to those obtained in photon-counting
mode could not be obtained because of lack of data. The (very small) number of transits
affected have not been included in the Hipparcos Epoch Photometry Annex, and con-
cern only stars brighter than Hp = 1.5 with observations obtained before JD 2 447 925.0.
It thus follows that all epoch photometry data presented in the Hipparcos Epoch Pho-
tometry Annex (HEPA, see Volume 1) were obtained in photon-counting mode, which
means that some distortion of the signal could take place, primarily affecting the final
photometric results of one or two of the brightest stars, due to saturation of the highest
counts.

The Decompression of Photon Counts

The photon counts were compressed on-board the satellite using a semi-logarithmic
scheme (see Volume 2, Chapters 3 and 9) to create a 1-byte integer in the range 0 to
255. A decompression law for the photon counts had been provided in the form of
a table, relating the 255 possible compressed counts back to actual intensities. These
relations were checked and partly re-calibrated, allowing for the effects of truncation
and non-linearity. This was done early in the mission, using actual mission data.
Figure 5.3 shows the relation for the decompressed counts and the stellar magnitudes
for the brightest stars in the mission. Data from only a relatively short stretch of time
could be used due to the changes in sensitivity of the image dissector tube tube detector
(see Chapter 14). The selected counts were chosen very close to the maximum of the
modulated signal, as based on the reconstruction of the phases. Before saturation set in,
the noise introduced by the compression and decompression was well below the Poisson
noise on the photon counts.



52 Image Dissector Tube Data Processing

The Scanning Motion

The scanning motion of the satellite was never exactly around its z axis (see Chapter 7).
Due to torques working on the satellite, accelerations existed around all three satellite
axes, resulting in small amounts of rotation also around the x and y axes, as well
as variations in the scan velocity around the z axis. The reduction process of the
image dissector tube data used a reference position of the satellite at mid-time of the
observational frame, and first and second derivatives with time of this position, to
describe the position of the grid with respect to the position of a star at any time during
the observational frame.

Quality Flag

A quality flag was added to the data by ESOC, based on the monitoring of the real-
time attitude determination. However, during the first two years of the mission, this
monitoring was unable to distinguish cases where only one field of view was properly
converged in the attitude loop, and not the other. As a result, the use of this quality
flag was limited, and did allow faulty data to enter early reduction stages. The quality
flag was only used by FAST which, in addition, verified the relative positioning of the
instantaneous field of view (using the coil currents) and of the stars, allowing rejection
of most of the faulty observing frames in the photometric reduction. The effect on grid
coordinates was negligible since this did not affect the modulation phases.

Information from the Catalogue

The star catalogue, initially a preliminary version of the Hipparcos Input Catalogue,
provided initial positions, magnitudes and colours for the observed stars. The positions
were important for the proper recognition of small scale distortions such as grid errors,
and for a comparison between the pointing of the instantaneous field of view and the
reconstructed position of the star on the grid. This catalogue was updated several times
during the mission (see Volume 2, Section 8.3 and Table 8.3), first using additional
ground-based data and later using star mapper data.

Magnitudes and colours were mainly important for the ‘optical transfer function’ cali-
bration, described in Section 5.9, which allowed a distinction between single stars and
double and multiple stars and were used in the photometric reductions and minor planet
analysis.

5.2. The Signal Model

Five-Parameter Models

The image dissector tube photon counts Nk obtained for a star during an observational
frame were described as a sequence of statistically independent and Poisson-distributed
counts, having ideally a time-periodic expected value of E(Nk) ≡ Ik. This modulated
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Table 5.1. Relations between the parameters in Equation 5.4, 5.1 and 5.3.

[5.4] [5.1] [5.3]
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3)3/2 (M2 /M1) cos 2(g1 − g2)

β5
�

(b2
2 − b2

3)b5 − 2b2b3b4
�

/(b2
2 + b2
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Table 5.2. Relations between the parameters in Equation 5.2, 5.1, 5.3 and 5.5.

[5.2] [5.1] [5.3] [5.5]

a = F1(b) a = F2(r)

a1 b1 Ib + Is r1

a2

q
b2
2 + b2

3 IsM1 r2
a3 arctan(−b3 /b2) [+π] g1 r3

a4

q
b2
4 + b2

5 IsM2 µr2
a5 arctan(−b5 /b4) [+π] g1 + g2 r3 + ν

signal was accurately represented by a first and second harmonic, five-parameter model
(higher harmonics were not significant):

Ik(b) = b1 + b2 cos pk + b3 sin pk + b4 cos 2pk + b5 sin 2pk [5.1]

An equivalent form, separating intensity and phase parameters, was used by FAST:

Ik(a) = a1 + a2 cos(pk + a3) + a4 cos 2(pk + a5) [5.2]

which can also be given, expressed in parameters with direct physical interpretation, as:

Ik = Ib + Is
�
1 + M1 cos(pk + g1) + M2 cos 2(pk + g1 + g2)

�
[5.3]

In all cases the phases pk were measured relative to the fiducial reference line of the main
grid at mid-time of the observational frame. This reference line was positioned either
halfway between slits 1344 and 1345 (NDAC) or in the middle of slit 1345 (FAST). In
Equation 5.3, Ib represents the background signal (sky, radiation, dark current), Is the
signal intensity. g1 is the actual phase of the first harmonic of the signal, relative to the
fiducial reference line, at mid-frame time. M1 and M2 are the modulation coefficients
for the first and second harmonics in the signal, while g2 represents the phase difference
between the first and second harmonic. The image dissector tube reductions aimed
at the determination of Is + Ib, g1, g2, M1 and M2, using the photon counts obtained
during an observational frame.

An expression slightly different from Equation 5.2 was used by NDAC, and was referred
to as the β-parameter solution:

Ik(�) = β1 + β2
�
cos(pk + β3) + β4 cos 2(pk + β3) + β5 sin 2(pk + β3)

�
[5.4]

where β4 and β5 were pure instrument parameters, describing together the amplitude
ratio and the phase difference between the first and second harmonics. The relations
between the parameters in Equations 5.4, 5.1 and 5.3 are given in Table 5.1 (NDAC
reductions). The relations between Equations 5.2, 5.1, 5.3 and 5.5 are given in Table 5.2
(FAST reductions).
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Three-Parameter Models

For single stars the amplitude ratio µ = a4 /a2 and phase difference ν = a5 − a3 were a
function of the colour of the object and the position of the measurement on the grid.
Their calibration allowed the following representation of the signal:

Ik(r) = r1 + r2 cos(pk + r3) + µr2 cos 2(pk + r3 + ν) [5.5]

as used in the FAST reductions. In the NDAC reductions the three-parameter model
was contained in Equation 5.4 through the calibration of β4 and β5. The calibration of
these parameters is described in Section 5.9, dealing with the optical transfer function.

The Grid Phase of the Image Centre

The image centre was defined by the angular phase g0, and was referred to as the
reference phase. In the NDAC processing g0 = β3 was chosen, since β3 was less sensitive
to slight focal variations (which could be due to temperature variations) than was β5,
which was effectively the phase difference between the first and the second harmonic
multiplied by the amplitude ratio of the second and first harmonics.

In FAST, g0 was expressed as a linear combination of a3 and a5 (Equation 5.2):

g0 = (1 − w)a3 + wa5

The choice of w which would minimise the variance of the combination would have
been:

w = 4a2
4 /(a2

2 + 4a2
4)

However, a2 and a4 are not known a priori and the actual observed values may differ
from one observation frame to another. Some constant value had to be taken also
in order to facilitate subsequent processing of grid coordinates and present a unique
reference throughout the reduction for multiple star reduction. The choice was, using
the notation of Equation 5.3:

w = 4M2
20 /(M2

10 + 4M2
20) [5.6]

where the zero subscript indicates that these values of the parameters M1 and M2 were
taken as constant. They were chosen, after evaluating calibrations made by the ‘First
Look’ task, for a mean colour index equal to 0.5. The values chosen were M10 = 0.70
and M20 = 0.20, leading to the rounded value w = 0.25.

This choice had at least three advantages:

(1) to use the maximum amount of information present in a single star. Compar-
isons with other choices such as using only the first harmonic showed a significant
improvement of the residuals in the great-circle reduction;

(2) in the case of double stars, although Equation 5.6 is not optimum, it provided on
average more information than any other value for w, especially when M1 is close
to zero as may happen in some cases;

(3) tests made with ‘First Look’ results have shown that among all values of w, the one
selected minimizes the rms of the great-circle reduction results.
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5.3. Principles of the Image Dissector Tube Data Processing

The data processing in FAST and NDAC, although different in detail, proceeded along
very similar lines. It aimed at estimating:

• the five photo-geometric parameters (a or �), together with their respective co-
variance matrix (A or Bβ), to be used in subsequent double star and photometry
processing;

• the three photo-geometric parameters of the single star model, to create a statistical
test in charge of discriminating between single and multiple stars;

• the reference grid phase g0 and its standard deviation, in NDAC referred to the
fiducial reference line, in FAST referred to a reference slit number n0, to be updated
in subsequent processing.

The cornerstone of all image dissector tube processing was the following assumption:
if the second order Fourier expansion given by Equation 5.1 (or its derived forms)
exactly models the expected value Ik of the image dissector tube count Nk of a star,
and the relative phases pk are exactly known for each sample k, then the maximum
likelihood estimate b̂, together with its estimated Cramér-Rao bound covariance matrix
B, tend asymptotically to be sufficient statistics of the image dissector tube samples of
the observed star. The same assertion can be made for the alternative formulations
leading to the parameter-covariance estimates (â, A) and (�̂, Bβ ). The five parameters,
e.g. b in Equation 5.1, could be estimated by maximizing the logarithm of the likelihood
function:

ln L(b) =
X

k

[Nk ln Ik(b) − Ik(b) − ln(Nk!)] [5.7]

while the covariance of b̂ could be estimated as the negative inverse of the Hessian
matrix, B = −[∂2 ln L /∂b∂b0]−1.

The assumption of sufficiency means that the estimation residuals tend to be a zero-
mean white noise without any additional information on the modulated star signal.
Consequently, any of the pairs (b̂, B), (â, A) or (�̂, Bβ ), corresponding to 20 independent
parameters, could be used for further processing, replacing the original photon counts
and providing considerable data compression. Furthermore, the constrained estimates
(µ̂, ν̂) or (β̂4, β̂5), corresponding to the three-parameter models, as well as the reference
grid phase g0, could also be computed from the compressed data (â, A) or (�̂, Bβ)
without loss of precision.

Obviously, the modelling assumptions had to be carefully tested to ascertain that the
estimated pair (â, A) or (�̂, Bβ) was statistically sufficient; this was done from the esti-
mation residuals, using a pair of suitable statistical indices, detailed in Section 5.7.

Image Dissector Tube Processing Steps

The image dissector tube processing was partitioned in four steps (here described as
done by FAST, the NDAC processing proceeded along very similar lines):

• computation of the relative phase pk for each photon count Nk;
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Figure 5.4 Flow chart of the FAST image dissector tube processing.
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• maximum likelihood estimation of the five parameters a and model verification;

• Gauss-Markov estimation of the three parameters r and computation of the statis-
tical index F35, discriminating between single and multiple stars;

• veiling-glare correction of a, estimation of the reference grid phase g0 and the slit
number n0.

The flow chart of the FAST image dissector tube processing is shown in Figure 5.4.

5.4. Calculation of the Relative Phases

The first step in the data processing required assigning relative modulation phases to
the individual samples. Relative phases pk for each sample could be determined very
accurately from the position of the star on the grid (accuracy better than 1 arcsec), the
angular rates of the satellite axes and the resulting scan-velocity, and the grid geome-
try, with or without taking into account the medium-scale distortions. The two data
consortia used different approaches to the calculation of pk, but the aim was the same:
providing reliable phases for solving Equation 5.1 or its equivalent.

The Relative Phases of Samples as Derived by NDAC

Let f , w and z be orthogonal unit vectors with f the relevant viewing direction at the
centre of the field, w the nominal scanning direction and z the normal to the viewing
plane. The ‘proper direction’ to a star (Chapter 12) can then be expressed relative to
the instrument as:

u = vf + ww + zz [5.8]

where w and z are the field coordinates (direction cosines) along the scan and transverse
to the scan, respectively, and v2 + w2 + z2 = 1. (w in Equation 5.8 should not be confused
with the weights w defined in Equation 5.6).

For the ideal grid, the modulation phase varies linearly with the field coordinate w. In
practice, the reference phase may be calculated as:

pk = −
2π
s

(w − w0) [5.9]

where w is the field coordinate of the image at the time of the kth sample, w0 is the
coordinate at the frame mid-time, and s is the grid period. The sign in Equation 5.9
is negative because w decreases with time when the satellite spins in the nominal sense
(positive about z), whereas pk is by definition an increasing quantity.

Neither w nor w0 were known with much precision at the time of the image dissector
tube data processing, mainly due to uncertainties of the order of 1 arcsec in the star
coordinates. The field coordinates were, however, sufficiently well known and the
incremental field coordinate w − w0 could be calculated to within a few milliarcsec for
the duration of an observation frame from the scanning velocity. The variations of w and
z with time were evaluated on the assumption that the angular velocity vector direction,
but not necessarily the speed, remained constant throughout the frame.
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Let h denote the unit vector along the instantaneous axis of rotation of the satellite and
u the unit vector to a star at arbitrary time t, relative to axes fixed in the satellite. Then:

u = (h0u)h + (h × u) × h [5.10]

Now let u0 be the star direction at the mid-time of the frame. Assuming that h remains
fixed relative to the satellite, then h0u = h0u0 and:

h × u = h × u0 cos D + h × (h × u0) sin D [5.11]

where D is the angular phase of the spin at time t relative to mid-frame time. The
direction of rotation about h is such that the relative spin phase decreases with time,
i.e. D = ψ0 − ψ , if ψ is the (increasing) attitude angle about the z axis. Combining
Equations 5.10 and 5.11 gives:

u = (h0u0)h + (h × u0) × h cos D + h × u0 sin D [5.12]

or:
u = u0 + h × u0 sin D + h × (h × u0)(1 − cos D) [5.13]

The direction of the instantaneous axis of rotation can be expressed as:

h = h1f + h2w + h3z [5.14]

where h1 and h2 depend on the field of view, but h3 does not. Scalar multiplication of
Equation 5.13 by w gives, by means of Equations 5.10 and 5.14:

w = w0 + (h3v0 − h1z0) sin D + [h2h1v0 − (1 − h2
2)w0 + h2h3z0](1 − cos D) [5.15]

where suffix zero denotes direction cosines at the mid-frame time. The coordinate z
transverse to the scan is similarly obtained by scalar multiplication of Equation 5.13 by
z:

z = z0 + (h1w0 − h2v0) sin D + [h3h1v0 + h3h2w0 − (1 − h2
3)z0](1 − cos D) [5.16]

The attitude determination gives the three components of the total inertial angular
velocity vector of the satellite at each frame mid-time, relative to axes fixed in the
satellite. Let ω be the total angular velocity at mid-frame time and ω̇3 the component
about h of the total angular acceleration; the spin phase at time t is then given by
D = −ωt − 1

2 ω̇3t2. Since v0, w0, z0, h1, h2, h3 are assumed to be constant for the
observation of a given object in a frame, the required expressions for the variations of w
and z are given by Equations 5.15 and 5.16.

The first stage in the analysis of the 2560 individual image dissector tube sample counts
for an observing frame was to calculate the relative spin phase D for the first sample in
each slot. Since all the samples in one slot came from the same star, the phase increment
was evaluated at the mid-time of each slot, and used throughout the slot to calculate the
reference phases of individual sample counts.

Denote by τn = (8n − 1287.5)T1 the time at the centre of the first sample in slot n,
relative to the mid-frame time, where n goes from 1 to 320 over the frame. The relative
spin phase Dn of the first sample of slot n is calculated from:

Dn = −ωτn −
1
2

ω̇3τ2
n [5.17]

Since τn+1 = τn + T2, where T2 = 8T1 is the duration of one slot, the relative spin phase
at slot n + 1 can be written as:

Dn+1 = Dn + ∆Dn [5.18]
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where:

∆Dn = −(ω + ω̇3τn)T2 −
1
2

ω̇3T 2
2 [5.19]

Also from Equation 5.19:
∆Dn+1 = ∆Dn − ω̇3T 2

2 [5.20]

The values of D1 and ∆D1 were evaluated at the start of the analysis of each frame, and
the relative spin phases of the first samples of subsequent slots were obtained from the
recurrence relations given by Equations 5.18, 5.19 and 5.20.

The calculation of reference phases was affected by inaccuracies in the field-to-grid
transformation (i.e. in the assumed local value of the grid scale s), by variability inside
the frame of the derivatives of the field coordinates, and by grid irregularities. The error
contribution in the final estimation due to such inaccuracies was, however, negligible,
as long as the specifications on angular velocity and field-to-grid transformation were
met.

The methods described above were tested before launch using simulated data with and
without photon noise. Noise levels introduced through the calculations of the relative
phases were well below 0.1 mas, and therefore completely negligible.

Computation of the Relative Phases by FAST

Phase model: The estimate p̂k of the relative phase pk for each sample k was performed
so as to guarantee that the global effect of the estimated errors p̂k − pk on the reference
phase g0 would be well below the dispersion due to the average photon noise in an
observational frame, which was ' 10 mas. The budget of the phase errors p̂k − pk was
constrained to contribute no more than a few milliarcsec noise.

The estimation procedure was based on the following model:

pk =
2π
s

�Z tk

t0

ω(τ; p)dτ + δψ (tk) + δp[G(tk), H(tk)] + �(tk)
�

mod 2π [5.21]

where the different terms have the following meaning:

• the integral describes the image motion across the grid from mid-frame time t0

to sample-time tk, modelled by a given parametric function for the apparent scan
velocity ω(t; p) = dG(t) /dt depending on the attitude vector p. In practice this took
into account the combination of the low-frequency components of the attitude mo-
tion and the large-scale distortions of the instrument. The integral was computed
by assuming during the whole frame a uniform motion with a velocity ω̄ = ω(t0; p̂)
estimated from the attitude reconstruction (see Chapter 7) performed just before
the image dissector tube data processing, and from the large-scale distortion cali-
brations provided by the ‘First Look’ task months in advance of the mass processing
(see Chapter 4);

• the component δψ (tk), usually referred to as jitter, described those motion com-
ponents that could not be modelled by the previous parametric model, such as
vibrations induced by thruster firings. However, the satellite design had reduced
jitter to a negligible level of a few milliarcsec, except immediately following thruster
firings. For this reason, the observation frame following the start of such an actua-
tion was omitted from the data reduction;
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• the term δp described the medium-scale distortions of the grid as provided by the
on-ground calibrations as one value per scan-field (see also Sections 5.1 and 10.3).
The correction values were set once per interlacing period, during which time a
star would cross just over one scan-field;

• the term �(tk), modelled as a zero-mean white noise term, collected all the high-
frequency irregularities, e.g. those resulting from phase quantization (binning).

Since the jitter component δψ (tk) could be assumed negligible, the above modelling
assumptions could be simplified to the following estimate:

p̂k =
2π
s

�
(k − 1280.5)T1ω̄ + δp[G(t̄i), H(t̄i )]

�
mod 2π, k = k1(i) . . . k2(i) [5.22]

where k1(i) and k2(i) are the first and last samples of the star within interlacing period
i and t̄i is the mid-time of the interlacing period; T1 = 1/1200 s is the IDT sampling
period.

Computation of scan velocity: The computation of the apparent scan velocity ω̄ =
dG(t) /dt at the mid-frame time t0 was based on the estimated attitude angles and rates
and on the calibrated transformation from the field angles (η, ζ) to grid coordinates
(G, H). The field-to-grid transformation was written:

G = sin η cos ζ + ∆G(η, ζ), H = sin ζ + ∆H(η, ζ) [5.23]

where the trigonometric terms account for the nominal transformation (Section 10.2)
and the additional terms represent the large-scale distortions, in particular the rotation
of the grid. Since the distortion terms had been calibrated, a pair of bi-cubic polynomials
g(η, ζ; p1) and h(η, ζ; p2) could be used to compute G and H as:

G = η + g(η, ζ; p1), H = ζ + h(η, ζ; p2) [5.24]

after calibration of the 10-component vectors p1 and p2. Truncation to the third degree
was justified since the fourth-degree terms were less than 1 mas at the field of view
borders. Therefore, the apparent scan velocity was computed as:

ω̄ = η̇
�
1 +

dg(η, ζ; p1)
dη

�
+ ζ̇

dg(η, ζ; p1)
dζ

[5.25]

evaluated for t = t0. During the data preparation (Chapter 4) the apparent coordinates
v(t0), r(t0) in the great-circle frame (see also Section 9.2) had been calculated for each
star observed in a frame. The three attitude angles ψ (t0), φ(t0) and θ(t0) were obtained
from the attitude reconstruction (Chapter 7). The field angles (η, ζ) at mid-frame time
t0 were computed from these angles according to the equations below, where the time
argument has been omitted for simplicity:

η = ψ − v ± 1
2 γ − arcsin (∆ / cos ζ)

ζ = arcsinfcos r[sin θ cos(ψ − v) + sin φ cos θ sin(ψ − v)] + sin r cos φ cos θg [5.26]

where the upper and lower sign refers to the preceding and following field of view. The
basic angle, as calibrated beforehand in the great-circle reductions of the ’First Look’
task, including a correction for chromaticity according to the colour index of the star, is
given by:

γ = γ0 + [(V − I ) − 0.5]γ1
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and a second-order correction in the small angles φ, θ and r can be expressed as:

∆ =
1
2

cos r
�
sin φ sin 2θ cos 2(ψ − v) +

sin2 φ cos2 θ − sin2 θ
1 + cos θ cos φ

sin 2(ψ − v)
�

+ sin r[sin φ cos θ cos(ψ − v) − sin θ sin(ψ − v)]

Unlike η, the transversal field angle ζ depends to first order on these angles.

Similar formulae give the angular field rates from the attitude rates φ̇(t0), θ̇(t0) and
ψ̇ (t0) also provided by the attitude reconstruction (Chapter 7). They were simplified by
assuming (without degradation of accuracy) that the rate ψ̇ (t0) of the FAST scan angle
was equivalent with the inertial rate around the third axis:

η̇ = cos φ cos θ
�

ψ̇ +
θ̇ sin φ + φ̇ sin θ
1 + cos φ cos θ

�
− θ̇ sin φ

+ tan ζ
�
sin (ψ − v)

�
θ̇ cos φ − ψ̇ sin φ cos θ

�
− cos (ψ − v)

�
φ̇ − ψ̇ sin θ

��
ζ̇ = sin (ψ − v)

�
φ̇ − ψ̇ sin θ

�
+ cos (ψ − v)

�
θ̇ cos φ − ψ̇ sin φ cos θ

�
[5.27]

In their application, these formulae were computed through sufficiently accurate power
expansions in the small angles φ, θ, and r.

5.5. Binning Techniques

At the time of the development and early implementation of the data reduction software,
it was essential to look for ways of limiting the time spent on the processing of the 1200
image dissector tube samples received every second. Both data reduction consortia
opted for a binning strategy, reducing the main processing tasks by a very considerable
factor in both computing time and complexity.

The binning strategy assigns a reference phase pi to all samples with phases pk falling in
a phase interval pi − dp to pi + dp. With pk = pi + δpkji , and ni samples falling in bin i,
the expected count in bin i can be expressed as a modification of Equation 5.1:

1
ni

X
Nkji = b1 + b2

1
ni

�
cos pi

X
cos δpkji − sin pi

X
sin δpkji

�
+ b3

1
ni

�
sin pi

X
cos δpkji + cos pi

X
sin δpkji

�
+ b4

1
ni

�
cos 2pi

X
cos 2δpkji − sin 2pi

X
sin 2δpkji

�
+ b5

1
ni

�
sin 2pi

X
cos 2δpkji + cos 2pi

X
sin 2δpkji

�
[5.28]

The advantage of the binning arises from the δpk being small, allowing approximations
to be made for the sin δpkji etc., and from the fact that the pi values remain constant,
and therefore need to be calculated only once for all transits.

Two different implementations were used: the FAST consortium applied a strategy
using 64 bins, and neglected the effect of δpk, in which case binning corresponded to a
quantization of the relative phase. It was estimated that the error on the relative phase pk

resulting from the binning should be less than ' 10 mas, in which case the quantization
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effects on the grid phase estimate would be negligible with respect to the photon noise.
The quantization noise σq for l bins was given by:

σq =
s

2
p

3l
[5.29]

where s is the grid-period of 1.2074 arcsec. For l > 35 it follows that σq < 10 mas. l
was rounded up to the nearest power of 2, i.e. l = 64, giving σq = 5.5 mas and a noise
contribution to the grid phase estimates less than 0.5 mas.

NDAC performed a substantial number of simulations and tests with various binning
strategies, using both noise-free and Poisson-noise simulated data. The results of these
tests showed that a substantial reduction in computing time without any significant loss
of accuracy could be obtained using l = 12 bins and carrying along up to second order
corrections for δpk. The noise contribution to the phase estimates resulting from the
binning this way, was less than 0.2 mas.

In the FAST approximation Equation 5.28 reduces to Equation 5.1, with pk being
replaced by the nearest pi and Ni =

P
Nkji being the total count per bin. In the NDAC

approximation the equations obtained are:

1
ni

X
Nkji = b1 + b2

1
ni

�
cos pi

X
(1 −

1
2

δp2
kji) − sin pi

X
δpkji

�

+ b3
1
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�
sin pi

X
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1
2

δp2
kji) + cos pi

X
δpkji

�

+ b4
1
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�
cos 2pi

X
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X

δpkji

�
+ b5

1
ni

�
sin 2pi

X
(1 − 2δp2

kji ) + cos 2pi 2
X

δpkji

�
[5.30]

This no longer required repeated trigonometric calculations, as these calculations were
the same for each transit.

Critical Binning Conditions

For certain values of the scan-velocity the relative grid phases pk would assume only a lim-
ited number of different values. At nominal scan velocity (168.75 arcsec s−1), the phase
shift from one sample to the next was 41.�92. At a scanning speed of 170.456 arcsec s−1,
the phase shift to the next sample was 42.�35, which meant that the phase shifts of 17
samplings fitted in exactly 2 complete modulation cycles. Similar situations happened
for scan velocities of 173.866 arcsec s−1 (25 samplings in 3 cycles) and 167.178 arcsec s−1

(26 samplings in 3 cycles).

In the case of 64 bins without phase correction, this left a large number of bins unoc-
cupied, and could cause systematic differences between assumed bin-phases and actual
mean bin-phases. The latter effect was, however, small with respect to other sources of
noise, most notably the Poisson noise on the photon counts.

The scan velocity was changing continuously, and a resonance situation similar to that
described above would normally not persist over more than a few frames. No measures
were taken to remedy these phenomena by FAST, while in NDAC they were implicitly
taken care of in the normal reductions. In FAST, the statistical index T (described later)
was able to detect a non-negligible bias in the grid phase, for example due to resonances.
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5.6. Solution of the Binned Equations

Five-Parameter Estimation by FAST

The parameter estimation aimed at performing the maximum likelihood estimation
of the five-parameter model (Equation 5.2). The solution equation was obtained by
looking for stationary points of the maximum likelihood functional (Equation 5.7):

∂ ln L
∂a

=
X

k

�
Nk − Ik(a)

Ik(a)
∂ Ik(a)

∂a

�
= 0 [5.31]

Equation 5.31 is non-linear in a, but a unique asymptotic solution exists if the model
were identifiable and error free. Under such assumptions, the above equations could be
interpreted as the solution of a Gauss-Markov estimation of a, performed on the zero-
mean uncorrelated residuals ek = Nk − Ik(a), having variance equal to Ik(a). However,
since the variance Ik(a) depended on the unknown a, the maximum likelihood could
only be solved by iterating the Gauss-Markov estimation and by disposing of a suitable
starting estimate of Ik(a). On the other hand, if Ik were linear in the parameters as it
is in Equation 5.1, then the Gauss-Markov estimator should correspond to weighted
least-squares.

These considerations led to the following procedure:

(1) estimation of b by Fourier transforming the binned counts Ni , providing a first
estimate b̃;

(2) weighted least-squares estimation of b, given the estimated variances Ik(b̃), hence
providing the pair (b̂, B) behaving like a sufficient statistic (even in the presence of
veiling-glare);

(3) non-linear transformation from the pair (b̂, B) to the pair (â, A); in the course of
this transformation it would have been possible to eliminate the biasing effect of
the veiling-glare, as will be shown later on. In fact, the veiling-glare correction was
performed just at the end of the image dissector tube processing;

(4) verification of the model hypotheses through statistical tests.

The Fourier transformation of the binned counts Ni used the equations:

b̃1 =
1
l

l−1X
i=0

Ni

b̃2 =
2
l

l−1X
i=0

Ni cos(2πi /l), b̃3 =
2
l

l−1X
i=0

Ni sin(2πi /l)

b̃4 =
2
l

l−1X
i=0

Ni cos(4πi /l), b̃5 =
2
l

l−1X
i=0

Ni sin(4πi /l)

[5.32]

The second estimation step also took advantage of the binning, by reducing the number
of observation equations to a fixed number (l = 64) of the following form:

u0

ib + ei = Ni , i = 0 . . . l − 1 [5.33]
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where ui = [ 1 cos(2πi /l) sin(2πi /l) cos(4πi /l) sin(4πi /l) ]0 is the vector of coefficients
for bin i. The variance of the residual ei was assumed to be σ2

i = (l /m)Ii(b̃), with m
being the total number of samples used. By collecting the l rows in Equation 5.33 in
matrix form, Ub + e = N, the weighted least-squares estimate was obtained as:

b̂ = (U0S−1U)−1U0S−1N [5.34]

where S is the diagonal covariance matrix of e.

The binning further simplified the computation of the (symmetric) Gram matrix G =
U0S−1U. 12 of the 15 different elements in G could be expressed as linear combinations
of the first three elements:

g11 =
m
l

l−1X
i=0

1

Ii (b̃)
, g12 =

m
l

l−1X
i=0

cos(2πi /l)

Ii (b̃)
, g13 =

m
l

l−1X
i=0

sin(2πi /l)

Ii (b̃)
[5.35]

By collecting the combinations of these three independent terms into a 12-element
vector  and the twelve remaining elements of G into a vector g, a linear set of twelve
equations results:

 = Hg [5.36]

the non-zero elements of which are detailed in the following equation:2
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This system can be easily solved for the unknown g = H−1 by exploiting the quasi-
triangularity (Hessenberg form) of the matrix H. The six rows with numerical coeffi-
cients, corresponding to the entries g22, g23, g25, g33, g35 and g45, arose from trigono-
metric equalities; the six rows having coefficients equal to the elements of b arose from
the weighted averaging of trigonometric functions sampled at regular steps.

Five-Parameter Estimation by NDAC

Each bin contributed one observation equation for the solution of the parameters b1 to
b5. Each observation equation was given a weight according to the total count

P
Nkji

in the bin:
Wi =

ni

1 +
P

Nkji
[5.38]

The addition of one in the denominator prevented an infinite weight for
P

Nkji = 0.
It can also be derived from an estimation of the most likely distribution to which
an observed count belongs: when a total count of zero is observed, the most likely
underlying distribution would have an expected value of one. Thus, in the NDAC
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Table 5.3. Definitions of astrometric and photometric parameters used in FAST and NDAC.

Parameter NDAC FAST

‘dc’ photometry β1 a1 − Ib
‘ac’ photometry β2 (M10a2 + M20a4) /(M2

10 + M2
20)

Reference phase β3 (1 − w)a3 + wa5

solution the only differences with treating every sampling on its own were the weight
applied and the (very small) approximation of the reference phase. Because only twelve
bins were used, the total number of samples per bin was usually not very low, and
provided a reasonable estimate of the expected variance in a bin.

Transformation of the Solution

The sufficient statistics (b̂, B) provided by the Gauss-Markov estimator were at the
end transformed without degradation into the statistics (â, A), defined by Equation 5.2
for FAST, or (�̂, Bβ ), defined by Equation 5.4 for NDAC. The transformation of the
parameter vectors was made according to Table 5.1 and 5.2. The transformation of B
to Bβ was made by means of the Jacobian J = ∂� /∂b0 according to:

Bβ = JBJ0 [5.39]

and a corresponding equation was used to calculate A.

The transformations from b̂ to �̂ (or â) led to biases in the amplitude estimates due to
accumulation of squared errors. This was most noticeable for fainter stars, where the
statistical correction led to an increase in the noise level on the transformed values. In
particular, the correction to be subtracted from β̂2 was given by:

∆β2 = (σ2
2 + σ2

3) /2β̂2 [5.40]

where σ2 and σ3 are the estimated errors on b̂2 and b̂3 respectively. Typical corrections
amounted to a few per cent for the faintest stars, and negligible corrections for brighter
stars.

The Photometric Parameters

The final solution, expressed as either Equation 5.2 or Equation 5.4 provided the input
for the further processing of the photometric data. The two consortia made slightly
different choices here: NDAC opted for simple parameters directly obtained from the
zero level and first harmonic Equation 5.4, while FAST used combined information
from the first and second harmonics for both the phase estimate used in the great-
circle reductions and the ‘ac’ component used in the photometric reductions. The
parameters, as used by the two groups, are summarised in Table 5.3, where M10 and
M20 stand for the predicted modulation coefficients as derived from the optical transfer
function calibration described in Section 5.9 and w was defined in Equation 5.6.
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5.7. Statistical Tests of the Five-Parameter Solution

Two test parameters were derived at this stage: F and T . The first of these, F , tested
the null hypothesis that no modulation was present in the signal, in other words, that
the observed photon counts collected for a transit were a stationary Poisson white noise;
hence F should appear significant when the photon-counts were sufficiently modulated.
The second of these, T , tested the null hypothesis that the residuals left after application
of the five-parameter model represented a zero-mean stationary white noise. Hence, T
should appear significant when the residuals were modulated (failure of the 5-parameter
model) or the original photon-counts were not Poisson distributed. The tests were
carried out on the binned counts.

The Index T

In NDAC, a χ2 value for the T statistic was derived for the binned mean counts,
assuming them to be represented by Ik(b̂):

χ2 =
lX

i=1

�
(1/ni )

P
Nkji − Ik(b̂)

�2
(1/ni )

P
Nkji

[5.41]

where l = 12 is the number of bins and where the denominator represents the expected
variance of the residuals. The χ2 value was transformed into a pseudo-Gaussian variable,
which under the null hypothesis should have a unit-normal distribution:

T =
r

9d
2

"�
χ2

d

�1/3

− 1 +
2

9d

#
[5.42]

where d is the number of degrees of freedom, normally equal to l − 5 = 7 for the T
statistic. Transits for which jT j > 4.0 were flagged in the Hipparcos Catalogue Epoch
Photometry Annex as suspicious.

In FAST, a binned mean square error was computed as:

s2 =
lX

i=1

�Ni − Ii (b̂)
�2

(l /m)Ii(b̃)
[5.43]

where l = 64 is the number of bins and m the total number of samples used. The statistic
T was then computed as:

T =
r

l − 5
2

�
s2

l − 5
− 1
�

[5.44]

Under the null hypothesis, s2 follows the chi-square distribution with l − 5 = 59 degrees
of freedom and T approaches asymptotically the unit-normal distribution. The null
hypothesis was rejected if jT j > 3.5, which happened in less than 0.5 per cent of all
transits.
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The Index F

In NDAC, a χ2 value for the F statistic was derived for the binned mean counts,
assuming them to be stationary:

χ2 =
lX

i=1

h
(1/ni)

P
Nkji − b̂1

i2

(1/ni )
P

Nkji
[5.45]

As for the T statistic, the χ2 value was transformed into a pseudo-Gaussian variable,
except that the number of degrees of freedom was d = 11.

In FAST the binned mean square of the estimated modulation components was com-
puted as:

p2 =
lX

i=1

h
Ii (b̂) − b̂1

i2

(l /m)Ii(b̃)
[5.46]

having four degrees of freedom. The statistical index F was then defined as a Fisher
ratio between the statistics in Equations 5.46 and 5.43:

F =
p2 /4

s2 /(l − 5)
[5.47]

Since l − 5 was rather large, 4F almost followed a χ2 distribution with four degrees
of freedom. Accordingly, the null hypothesis was accepted (no modulation found) if
F < 4.5. This happened in less than 1.5 per cent of all transits.

5.8. Veiling-Glare Correction by FAST

The purpose of the veiling-glare correction was to clean the five parameters of â j of
programme star j from the possible perturbations of the intensity and phase estimates
by brighter stars observed during the same frame. Such perturbations were due to the
instantaneous field of view sensitivity all over the field of view.

The image dissector tube efficiency was taken from on-ground calibration and repre-
sented by 9 functions centred on 9 regularly distributed points of the grid. Each function
was represented by 11 values given along radii every 30�. These values corresponded
to distances to the centre expressed in arcsec such that their logarithm grows regularly
from 1.5 to 4.0. The efficiency at a given point was computed by interpolating this
three-parameter table using linear or quadratic interpolation formulae.

The most general way to implement the veiling-glare correction would have been to
start from the observed data (b̂ j , B j ) for all transits in a frame, and directly estimate the
corrected data (â j , A j ). Under the following assumptions:

• veiling glare was only due to other programme stars observed in the same frame;

• all of the programme stars had the same motion component pk across the slits at
time tk;

• the instantaneous field of view was properly centred for each observed star;



68 Image Dissector Tube Data Processing

• the instantaneous field of view sensitivity profile Ψ(%) was perfectly known;

the resulting statistics would still have been sufficient. The basic formulae for correcting
an observation j for the influence of a brighter observation l would have been the
following:

â1 j = b̂1 j − f b̂1l

â2 j =
q

(b̂2 j − f b̂2l )2 + (b̂3 j − f b̂3l )2 , â3 j = arctan

 
−

b̂3 j − f b̂3l

b̂2 j − f b̂2l

!

â4 j =
q

(b̂4 j − f b̂4l )2 + (b̂5 j − f b̂5l )2 , â5 j = arctan

 
−

b̂5 j − f b̂5l

b̂4 j − f b̂4l

!
[5.48]

where f = Ψ(% j l ) is the instantaneous field of view attenuation factor depending on the
angular separation of the two pointings.

In practice the above corrections would have been seriously affected by calibration
uncertainties in the instantaneous field of view profile, which increased in relative terms
as the value of f decreased. Since the veiling-glare corrections were proportional to
Ψ(%), the quantity:

q =
d ln Ψ(%)

d%
σ%

indicates the relative precision of the corrections, given an estimate of the standard
deviation σ%, including uncertainties in instantaneous field of view positioning and
star distance. Since d ln Ψ(%) /d% < 0.05 arcsec−1 for % > 20 arcsec, the veiling-glare
correction could be effective also with σ% around 2 arcsec.

The procedure adopted by FAST made the correction only when necessary and directly
on the statistics (â, A), which required more complex formulae than those presented
above. The corrected phases â3 and â5 and the covariance matrix A were then used to
estimate the reference phase g0 and its variance σ2

0 according to:

ĝ0 = â3 + w(â5 − â3), σ2
0 = (1 − w)2A33 + w2A55 + 2(1 − w)wA35 [5.49]

where w was defined by Equation 5.6, and Aik are elements of the estimated covari-
ance A.

5.9. Optical Transfer Function Calibration and Three-Parameter Solution

The transit of a double or multiple component object consisted of the superposition
of two or more signals as described by Equation 5.2 or 5.4. This changes the values
observed for (µ, ν) or (β4, β5). For single stars, these values were a function of position in
the field of view and of the colour of the star and were described by the optical transfer
function. By calibrating the optical transfer function, it became possible to test the
hypothesis that the transit was due to a single star only.

Calibration of the Optical Transfer Function

In NDAC, the calibration of the optical transfer function was done using the values
for (µ, ν) or (β4, β5) collected over one orbital period of the satellite. The successful
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Figure 5.5. The behaviour of β4 and β5 as a function of position in the field at the beginning of the mission. The

scan direction is indicated by the arrow, the two graphs for β4 and β5 refer to the two fields of view. Scales for the two

fields of view are identical.

collection of data was always interrupted by the perigee passage of the satellite, where
observing conditions were very poor and no ground station control was available over a
period of 1 to 2 hours around perigee time. Thus, data collected during an orbit formed
a natural unit for many calibrations.

The frame transit data was associated with a position on the grid (G, H) at mid-frame
time, and with the colour index for the star observed. The calibration values obtained for
stars not known or found to be double were modelled with a two-dimensional third-order
polynomial in position, first and second order in colour index, and cross-terms between
colour and position on the grid, 14 parameters in total. The calibrations were done
independently for the two fields of view. Of the parameters, the positional dependence
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Figure 5.6. Evolution with time of the phase difference ν and the amplitude ratio µ. Data for the preceding field

of view are shown by filled symbols (points in the lower parts of the graphs), for the following field of view by open

symbols (points in the upper parts of the graphs). Features in the top graph around days 450 and 1020 are related to

variations in the satellite’s exposure factor, shown in Figure 8.3.

was the most important. An example of this dependence is shown in Figure 5.5. The
calibration was time dependent, as shown in Figure 5.6, and affected by refocusing of
the instrument. The colour dependence in the preceding field of view for β4 increased
during the mission by a factor 2, while for β4 in the following field of view and for β5 this
dependence was much less a function of time. The amplitude ratio µ decreased towards
redder stars, but could not be calibrated for the very red stars, as too few measurements
were available. At B − V = 2 the decrease was approximately 10 per cent in the following
field of view, less in the preceding field of view.

In FAST, the calibration of the optical transfer function was, as were most calibrations,
performed twice. For the image dissector tube data processing, the calibration was
done in Utrecht by the ‘First Look’ task once a week. The mean for a calibration period
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(as defined in Chapter 4) was then made and used by the image dissector tube data
processing as described in this chapter. In a second run, the five-parameter solutions
obtained in this processing were used in a more refined analysis intended to be used
by the multiple star and photometry tasks. About twenty orbits contributed to each
calibration period, chosen from those giving the best results in the great-circle reduction.

The procedure was as follows. All the results of the five-parameter solution were
examined and several tests performed in order to exclude known double stars, faint
stars (magnitude > 11), stars with an unknown colour, and all stars for which either
the ratio of the ‘ac’ to ‘dc’ photometry or the difference a3 − a5 suggested that the star
was double. Additional rejections were made from the analysis of histograms of these
quantities. The ‘ac’ intensity was computed and used to determine M1 and M2 from a2

and a4.

Each quantity M1, M2 and a3 − a5 for each field of view was expressed as a third-order
polynomial in the grid coordinates G and H plus a similar polynomial multiplied by
C − 0.5, where C is the colour index; this gave 20 parameters in total. The equations
were solved by least-squares giving for each a weight proportional to the intensity of
the star (a1). An a posteriori rms was computed as two rms residuals of the colour
independent part and of the colour dependent part.

In addition, the reference intensity response was calibrated for a mesh of 19 × 19 points
on the grid for three classes of colours and also by a polynomial of the third order in G
and H , second order in colour and some mixed terms.

The Three-Parameter Solution

In NDAC, the optical transfer function was applied to the (G, H) coordinates and star
colour of each frame transit to provide predicted values for β4 and β5. These provided,
together with the relevant elements of B−1

β , a χ2 estimate for the likelihood of the signal
being the result of one point source only:

χ2 = δβ2
4[B−1

β ]44 + 2δβ4δβ5[B−1
β ]45 + δβ2

5[B−1
β ]55 [5.50]

where δβ4 is the difference between the observed and predicted value of β4, and similarly
for δβ5. The χ2 values were collected per star for the purpose of double-star recognition.
This was done using a transformation of χ2 into a variable that has a flat distribution for
single point-source objects, but becomes increasingly skew for disturbed objects:

c = 8 exp(−0.5χ2) [5.51]

where the factor 8 allowed the accumulation into eight discrete bins by taking the
integer part of c as the index of the bin (from 0 to 7). A second criterion for detecting
similar problem cases was derived from the photometric reductions and is described in
Chapter 14.

In FAST the optical transfer function calibration allowed for the representation of the
signal through the three-parameter model, Equation 5.5. For a true single star transit,
the residuals Ik(b̂)− Ik(r̂) should be a zero-mean white noise, with the variance estimated
by s2 as in Equation 5.43. The statistical test used the Fisher ratio F35:

F35 =
p2

35 /2
s2 /(l − 5)

[5.52]
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where:

p2
35 =

mX
k=1

�
Ik(b̂) − Ik(r̂)

�2
Ik(b̂)

[5.53]

was estimated from the residuals of Equation 5.5. Also, in this case, the Fisher variable
2F35 could be assumed to be asymptotically distributed as a χ2 distribution having two
degrees of freedom. The null hypothesis (single star) was rejected when F35 > 3.5.
The F35 statistic became unreliable for stars of extreme colour, as these could not be
included in the calibration model as described above.

5.10. Comparisons

Comparisons were carried out before launch using simulated data, and after launch
in March 1991 using data from one orbit, covering roughly 11 000 frames and 50 000
individual transits. This comparison showed that differences in the reduction results
between the two consortia were very small and in all cases negligible. The comparison
exercise resulted in a relaxing of the instantaneous field of view pointing accuracy
criterion in NDAC from 7 to 10 arcsec and a correction of the bias in the estimate
of the first harmonic amplitude. Standard deviations of the differences between the
phase estimates were well below the expected photon-noise level, showing that both
consortia were producing results that were not significantly affected by any calibration
or modelling errors: the noise remaining on the estimated parameters was primarily the
result of the original photon noise on the counts, which was the same for both groups.

F. van Leeuwen, E. Canuto, F. Donati, J. Kovalevsky



6. STAR MAPPER DATA PROCESSING

The star mapper data formed the second data stream for the Hipparcos satellite.
Its primary goal was the provision of measurements for monitoring the attitude
of the satellite, using the transits of selected stars through two sets of four
slits. The recognition of transits and determination of transit times and signal
intensities is the subject of this chapter. The continuous data stream from the
same detectors was analysed as the Tycho data stream, of which the processing
is described in Volume 4.

6.1. The Measurement Principles

The Star Mapper Slits

Star mapper slits were situated on either side of the main grid, but only those preceding
the main grid in the scanning motion were used during the mission. There were two slit
groups, 4 inclined slits, followed by 4 vertical slits (as shown in Figures 6.1 and 6.2).
The uneven spacing of the slits made it possible to recognise a transit in absolute sense
(contrary to the regular main grid, where the transit time had an ambiguity of an integer
number of slit-intervals). The average width of each slit was 0.909 arcsec in the vertical
slit-group, 0.916 arcsec in the inclined slit-group upper branch, and 0.922 arcsec in the
lower branch. The variations in width were less than 0.1 per cent.

The star mapper signal was acquired from all information coming through the entire
grid. Thus, it mixed data from different parts of the sky, both due to the superposition
of the two fields of view as well as due to the size of the area covered. The signal was
split into a B and V channel, roughly equivalent to BJ and VJ channels, and referred
to as BT and VT , the T standing for ‘Tycho’ (see also Volume 1, Section 1.3).

The Data Sampling and Extraction

The data were sampled at a rate of 600 Hz simultaneously in the two channels. At
the nominal scanning rate of 168.75 arcsec s−1, the grid line spacings corresponded to
intervals of 40, 60 and 20 sampling periods. The extraction of samples for processing by
NDAC and FAST was based on the real-time attitude determination and the apparent
positions of the stars at the time of observation. This predicted transit time as well as
the star identifier formed part of the star mapper record.
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Figure 6.1. The star mapper slits (B) relative to the main grid (A). The scan direction, i.e. the motion of a star, is

indicated by the arrow. The fiducial reference line for the main grid is indicated by ‘a’, for the vertical slits by ‘b’ and

for the inclined slits by ‘c’.

Figure 6.2. The reconstructed slit response for a transit through the vertical slits in the preceding field of view. The

detector is the VT channel. The origin on the horizontal axis corresponds to the fiducial reference line.

In the telemetry, samples were grouped in batches of 25, and 10 of these groups were
extracted at ESOC for every star mapper transit record. In the NDAC processing, in-
formation from all 250 samples was used to optimise the detection of possible parasitic
transits, and for the processing of double stars. This could also improve the distinction
of data that could be associated with background measurements. In the FAST process-
ing 200 samples were extracted based on the predicted transit time, from 91 samples
before to 108 samples after the sampling closest to this transit time. Stars fainter than
magnitude B ' 10 mag were not included in this selection.
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Figure 6.3. The differences in 600 Hz sampling periods, between observed transit times and real-time attitude based

predictions, showing the convergence of only one field of view at the start, followed by both fields of view from frame 2400

onwards. Transits through the vertical slits are indicated by squares, for the inclined slits by triangles for the upper

branch, and stars for the lower branch. Filled symbols refer to the preceding field of view, open symbols to the following

field of view. Thruster firings are indicated by the dotted lines.

The use of the real-time attitude determination in the extraction process meant that
when the on-board attitude had not converged, the extracted photon counts could
entirely miss the stellar transit signal. The detection of the star mapper transits in
the provided extracts, and the comparison between the predicted transit time and the
transit time observed was therefore a powerful means of checking the performance of
the real-time attitude reconstruction at any time. In NDAC, graphs were made of
these differences for all data received, and time-intervals with bad attitude convergence
thus recognised were excluded from further reductions. The FAST consortium relied
primarily on the quality flag provided by ESOC for this purpose (see Section 5.1) which
was in the first year of the mission not able to recognise the convergence of one field of
view from the convergence of both fields of view. In this case transits went undetected
in at least one field of view. Obviously in such instances the involved transits between
two consecutive thruster firings were rejected by the attitude processing, the attitude
was not computed and no image dissector tube transits were processed. In addition
an a posteriori comparison of the grid abscissae computed on ground with the pointing
derived from the coil current (on-board computation) allowed poor pointing due to
either bad attitude or wrong celestial coordinates of the star to be detected and these
transits were removed from the photometric solution. Figure 6.3 shows an extract of a
monitor plot made by NDAC.

The average time interval between star mapper transits extracted for the attitude recon-
struction was set by the density of these stars on the sky (' 2 deg−2), the span of the star
mapper slits (0.667 deg) and the scan velocity of the satellite, 0.0469 deg per second.
This gave per slit group and per field of view on average one transit every 16 s. The
total data-stream thus consisted of approximately one transit every 4 s. This number
could vary by 20 to 30 per cent depending on the inclination of the scanning circle with
respect to the galactic plane. The total sky area as seen by the star mapper slits was
0.025 deg2. Down to about 10 mag, with close to 10 stars per square degree, an average
of 10 per cent of all transits were at least double. This number varied considerably with
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galactic latitude. Considering all possible transits that could be detected, originating
from about 1 million stars over the entire sky, the chances of getting a completely clean
transit were rapidly diminishing. However, most of the disturbing transits were too faint
to cause serious problems.

The Single-Slit Response Functions

The single-slit response functions represented the normalised intensity profiles caused
by a stellar image passing across a single slit at nominal scan velocity, integrated over
sampling periods of 1/600 s. The profiles were different for the two slit groups, and in the
case of the inclined slits, also for the upper and lower branch. They were also different
for the two fields of view and for the two photometric channels. The response functions
were obtained from selected transits of brighter, single stars (between magnitudes 4
and 8). Initially, at the start of the mission, data had to be reduced with pre-launch
estimated response functions. From this data the first calibrated response functions
were obtained. In NDAC, the final reductions were all done with a final set of evolving
response functions, based on data accumulated over intervals of 2 to 3 months.

As stated above, the calibration of the response functions used data from transits of
relatively bright stars. These transits, through all four slits, had been assigned a reference
transit time and a relative scan velocity (see Section 6.3). The positions of the four
slits as projected on the sky were known from the calibration described below. The
background signal had been derived in the data reduction (see Section 6.3 and 6.4).
The measured intensities, after subtracting the background signal, were assigned to
bins according to their distances from the assumed slit centre. Where the wings of
the intensity profiles overlapped, data were not used. Data were first accumulated for
individual slits at different positions along the slits, and then added for the four slits for
the different positions along the slits. Data from 30 000 to 40 000 transits were used
per calibration, describing the response functions at a time resolution of 9600 Hz (i.e.
16-fold oversampling) with some 2000 contributing data points per bin. The wings
were only followed to 4 arcsec from the centre of the slit, but it was clear from data for
very bright stars that the wings extended well beyond this range, albeit at a low level
(see also Volume 4, Section 4.2 and Figure 4.3).

The averaged data per bin were fitted with a spline function, which was subsequently
rescaled to give a maximum response of 1.0. The spline functions also provided the
derivatives of the response functions, which was essential for transit time estimates. The
fitted response functions are in the following represented by Rq(t − t0), where t0 is the
transit time at the designated slit centre, taken to be the point halfway between Rq = 0.5
on the rising and descending branches of the single-slit profile. The index q represents
one of the 16 different combinations of slit group, upper/lower branch, passband and
field of view. Examples of two fitted response functions and their derivatives are shown
in Figure 6.4.

The procedure described above was as applied by NDAC. The FAST procedure followed
the same general principles, but differed in the following respects:

(1) in selecting the transits, only photometric standard stars were retained for normal-
isation. In order to avoid contamination by double or parasitic stars, all transits
which showed a large deviation from the expected brightness, or failed any of the
statistical tests described in Section 6.5, were rejected;
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Figure 6.4. The single-slit response functions (left) and their derivatives (right) for the inclined slits (solid line) and

vertical slits (dotted line), upper branch, in the preceding field of view, recorded in the BT channel. The derivative is

given as change of response per 600 Hz sampling period. At nominal scan-velocity, one sampling period corresponds

to 0.28 arcsec.

Table 6.1. Calibrated distances between star mapper vertical slits compared with the groundcalibration values.

Interval arcsec mm ground (mm)

1 to 2 11.247 0.07638 0.07640

2 to 3 16.867 0.11455 0.11460

3 to 4 5.623 0.03819 0.03820

(2) the time resolution of the response function was 1/32 arcsec (5400 Hz) and the
table extended to ±2.3 arcsec (half of the smallest slit distance);

(3) the centre point was determined as in NDAC, but Rq was normalised to unity at the
centre point, leading to values slightly above 1.0 at the maximum for asymmetric
cases (1.005 maximum).

Some evolution of the response functions took place during the mission, possibly associ-
ated with the overall temperature of the spacecraft. There were no significant differences
found for stars of different colour index, although this could not be checked for very red
stars because of insufficient data.

Calibration of the Slit Spacings

The spacings of the slits were calibrated from cross-correlations between the data col-
lected for the individual slits. This showed the offset of the actual centres of the four
slits from the assumed centres. The response functions for the four slits were effectively
identical. Separate calibrations were obtained for the vertical slits and the upper and
lower branches of the inclined slits. The calibrated separations are shown for the vertical
slits in Table 6.1. In both consortia, individual slit distances were obtained for all cases
mentioned above.
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Similarly, the position of the inclined slits with respect to the vertical slits had to be
calibrated. In NDAC this was done as an optional part of the attitude reconstruction
software, which allowed also for the calibration of the slit orientations. In FAST, a full
calibration was performed as described in the following sections.

Medium-Scale Distortion Corrections

The star mapper slits were created through engraving transparent lines in a non-
transparent layer deposited on a piece of glass, which was spherically convex to match
the focal plane curvature. The engraving was made in small areas, referred to as scan-
fields. After the production of the grids they were measured for irregularities. This
produced the medium-scale distortion values, which together with the slit orientations
and relative positions provided a clean reference frame to which star mapper transit
times could be referred. In NDAC, the implementation of the medium scale distortions
(being not entirely unambiguous in direction and orientation) was checked using accu-
mulated residual transit times for star mapper transits, obtained after reconstruction of
the satellite attitude. The medium scale distortions were of the order of 0.01 arcsec,
with a maximum of 0.05 arcsec.

In FAST, the slit distortion, that is the difference between the theoretical positions of
the mean slits and their actual positions as projected on the sky (including consequently
the grid-to-field transformation) was split into two components:

(1) a slope with respect to the ideal orientation (vertical or at 45� inclination). This
was essentially due to the rotation of the grid with respect to its ideal position.
This linear slit model imposed a fixed intersection with the horizontal axis at the
following abscissae from the centre of the grid:

Gv = −0.009 370 100

for the vertical slit, and:
Gi = −0.015 443 305

for both inclined slits, the unit being grid radians;

(2) a shift ∆G with respect to the linear slit model along the horizontal direction was
defined for the 34 equal scan-fields dividing each half-grid.

During the first year of data reduction, the slope was deduced from the global grid
rotation determined by the great-circle reduction software run by the ‘First Look’ task
(see Chapter 4 and Volume 2, Section 9.2), while ∆G was taken from the measurements
made on the ground, the grid-to-field transformation being assumed known. Later, a
direct calibration of the slit distortion was performed.

FAST Slit Distortion Calibration

From the great-circle reduction task (Chapter 9), the following results were obtained
and used for the star mapper grid calibration:

• the smoothed along-scan attitude with an accuracy of the order of a few milliarcsec,
this then gave the scan velocity to significantly better than 1 mas per frame period
(T4 = 2.133 . . . s), except around thruster actuations;

• mean abscissae of stars to within a few milliarcsec accuracy in the same reference
frame.



Star Mapper Data Processing 79

In addition, improved star positions were available for most single stars from the pre-
liminary sphere solution so that, in the same reference frame, one could compute the
apparent coordinates of the star to a precision of a few milliarcsec in both coordinates.
The main uncertainty thus came from the star coordinates.

The next step was to determine the theoretical transit times on the ideal grid, using
the known attitude and star coordinates. The differences with the observed transit
times were transformed into the shifts ∆G. This quantity was stored together with the
perpendicular grid coordinate H of the star (Section 5.4) and the slit index q. Only ‘safe’
data were kept: all observations made within ±4T4 of a thruster firing were rejected,
as were stars known or suspected to be double, or having unknown magnitudes or
inaccurate positions and observations presenting a large ∆G. Each reference great-
circle set provided some 2000 to 4000 data points.

Twenty data sets were chosen from among the best in each calibration period of about
one month (see Chapter 4). These ' 50 000 data points were used to compute by linear
regression the slope of each half-grid system. Then, the residuals of this regression
were used to compute, for each scan-field, the medium-scale distortion. The resulting
precision was about 0.5 arcsec to 1 arcsec for the slopes and, for ∆G, 5 mas on the
vertical slits and 10 to 18 mas on the inclined slits. This precision was more than
sufficient for the needs of attitude reconstruction. The calibration also provided the
separation between the star mapper slit system and the main grid.

6.2. The Star Mapper Transit Signal

The star mapper photon counts Nk, collected at time tk by either channel c = BT , VT

during the passage of a star, were described as a sequence of statistically independent
and Poisson-distributed counts, having the following time-varying average:

E[Nk,c] ≡ Ik,c = Ib,c + Is,c

4X
j=1

Rq(tk − τ j ) [6.1]

where Ib,c and Is,c are the intensities of the background and star, respectively, Rq is the
single-slit response function, and τ j are the transit times at the four slits. Given Rq

and the observed counts, this model could be fitted to give the background and star
intensities and the four slit transit times. The transit time of the whole slit group was
then defined as the unweighted mean value, τ = hτ ji. However, this procedure would
only work if all four slit transits were available. Moreover, it does not take advantage
of the very precise knowledge of the slit spacings available from the calibrations. An
alternative method was therefore needed which incorporated the calibrated slit spacings.

Evidently the time τ corresponds to the transit of the star image across an imaginary
line situated at the mean coordinate, in the scan direction, of the four slit centres; this
defines the ‘fiducial reference line’ of the slit group (Figure 6.2). Let d j be the calibrated
positions of the slit centres from this line, such that

P
j d j = 0. Provided that the local

scan velocity vq is known from the attitude reconstruction, the slit transit times can
then be referred back to the fiducial line by means the formula τ = τ j − d j /vq, and the
group transit time can be obtained also from an incomplete transit. Alternatively, if
τ j = τ + d j /vq is substituted into Equation 6.1, the whole group transit may be fitted
with only the three parameters Ib,c, Is,c and τ.
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The calibration of the position of the fiducial reference line with respect to the main
grid by FAST is described in the preceding section. In NDAC, it was obtained from a
feed-back of calibration results from the great-circle reduction, which accurately related
star mapper based reconstructed attitude to the fiducial reference line on the main grid
(see Chapters 5, 9 and 10).

Scan Velocity

In the FAST solution, the four values τ j were estimated, and from their mean value
τ was derived. As long as all four values were available, this made the transit time
determination independent of the scan-velocity derivation. When only three values
were available, the scan velocity based on the real-time attitude determination was used,
which even under worst conditions introduced an error less than 20 mas, negligible with
respect to the requirements.

In the NDAC solution, the scan velocity was derived using gyro data (see Chapter 7),
which reduced the solution to an estimate of only one transit time parameter, τ. The scan
velocity had to be known for each field of view along, and perpendicular to, the scan-
direction. Variations with respect to the nominal scan-velocity amounted to a maximum
of 3 to 4 arcsec s−1, a few per cent of the nominal scan velocity of 168.75 arcsec s−1.
The main effect of the variations in scan-velocity was on the spacing of the slit transits
in time. The effect on the width of the response function was very small.

At a minimum accuracy of 0.05 arcsec s−1 for the gyro-based scan velocities, the maxi-
mum error on the slit spacing for the first and last slits was of the order of 0.002 arcsec,
giving maximum response estimate errors of 0.2 per cent, which were only relevant at
intensity levels where the photon counts were already affected by the much more dam-
aging effects of saturation. The accuracies obtained for the scan velocities from the gyro
data were therefore in normal conditions more than sufficient for the star mapper signal
processing. At times of gyro breakdown this was not always the case, and provisions
could have been, but were not, made to correct scan velocities for the very brightest
objects.

The effective spacings of the inclined slits were in addition affected by the rotation of the
grid by ' 5 arcmin. For the lower branch they became wider by 0.17 per cent, for the
upper branch narrower by the same margin. This was accommodated in the calibrated
slit spacings.

6.3. Signal Recognition and Background Determination by NDAC

The star mapper counts had to be searched for the presence of one or more transit
signals. For this purpose, the counts from the BT and VT channel were added, and
combined in pairs, so that the resulting signal contained 125 samples at 300 Hz. A
provisional background was subtracted from this signal to leave primarily counts related
to star transits:

J (k /2) =
X

c=BT ,VT

�
Ik−1,c + Ik,c − 2Īb,c

�
, k = 2, 4, 6 . . . 250 [6.2]
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Figure 6.5. NDAC processing of star mapper data for a transit of the double star HIP 51560/51561 through the

vertical slits. The first two bars show the original counts, the third bar the cumulated signal J , and the fourth bar the

filtered signal F . Between the VT and BT signals is indicated which samples were excluded from the calculation of

the background (all samples coinciding with the black line at b). Below F are indicated the recognised transits: here

the programme star transit is fainter than the companion. The arrows below indicate the predicted positions (as based

on the real-time attitude determination). The lower half of the graph shows the original B-channel counts folded with

the final signal fit. This fit was not made for the first 26 and last 35 samples, as undetected single transit peaks could

occur there.

All negative values of J (k /2) (counts below the estimated background level) were reset
to zero. This signal was subjected to a multiplicative filter. This filter consisted of
four Dirac functions, spaced like the expected slit responses. With a time resolution of
300 Hz no corrections for scan-velocity variations were needed, and the spacings were
fixed at 20, 30 and 10 intervals:

F (l) =

"Y
n

J (l + n)

#1 /4

, n = −30, −10, 20, 30 [6.3]

When l − 30 or l + 30 was outside the range covered by J , only three inputs were
considered; when two values were outside the range, only the remaining two were used.
Single peaks close to the start or the end of the 250 samples could not be detected.
Such samples were also a priori excluded from background calculations. This reduced
the signal of every star transit to one peak. An actual signal could be recognised as a
cluster of F (l) values different from zero. When more than one transit was present, then
each transit produced its own cluster. Due to the cumulation of the data before filtering
it was possible to recognise still relatively faint signals, and under normal conditions
(background typically 2 to 4 counts per sample of 1/600 s), there was no difficulty in
recognizing the faintest programme stars in the star mapper data stream, ' 10 mag.
Figure 6.5 shows an example of the various stages in the recognition and processing.

The individual clusters in F (l) provided first estimates of τ (as in Equation 6.1) as-
sociated with these possible transits. A special mechanism, similar to that used in
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automated star counts from plate scans, was designed to separate almost overlapping
peaks. Depending on the magnitude differences, separations down to 1.5 arcsec could
still be handled in the reductions. Similarly, up to three additional transit signals could
be present without losing the programme star signal. In such a case, the signal most
closely resembling the magnitude and colour of the programme star was identified as
the programme star, or, if this were ambiguous, the transit closest to the expected transit
time.

When known double stars were encountered, a prediction of the expected separation of
the transit signals was made, against which the observed signals were matched. This
allowed star mapper processing of some 1200 Hipparcos double stars with separations
more than 1.5 arcsec, resulting often in much improved coordinates, and occasionally
improved separations and orientations.

Background Determination

The estimates of τ, together with the slit spacings, defined where single-slit transit
signals could be expected in the original samples, and conversely, which samples were
most likely to represent only a background signal. The mean and standard deviation
of these background samples were determined, and checked for outliers due to spikes.
When, after four iterations, the observed standard deviation was still more than 1.25
times the expected standard deviation (assuming the background counts represented
a stochastic Poisson process, the expected standard deviation was equal to the square
root of the mean count observed), then the background was rejected and replaced
by the estimated background obtained from a running mean of earlier star mapper
background determinations. This running mean consisted of the mean of the last
successfully measured background and (up to) 9 times the previous running mean. The
running mean was also used as first background estimate in the filtering described above
(Equation 6.2).

Background data were accumulated independent of whether a signal was detected or
not. Levels of background varied considerably, primarily due to the sensitivity of the star
mapper detectors to high energy radiation from outside the satellite. The star mapper
background has provided a 3.5 year record of the radiation activity inside and outside
the van Allen belts during a period of high solar activity. Away from the radiation
environment, background levels varied between 1200 and 3600 Hz, or 2 to 6 counts per
sample interval of 1/600 s. During van Allen belt passages, however, it could increase
to several hundred counts per sample, and at times of high solar activity to well over
1000 counts and occasionally to complete saturation (see also Figure 2.2).

6.4. Signal Recognition and Background Determination by FAST

Efficient estimates could be provided by the maximum likelihood principle, if all star
mapper samples Nk,BT and Nk,VT were the realization of a Poisson stochastic process with
the average as defined in Equation 6.1, i.e. a superposition of a background signal and
the four peaks of the programme star signal. Owing to parasitic transits and overlapping
programme star transits, as well as to spikes in the data, this was in general not true
for all photon counts in a record. A detection procedure was therefore implemented to
extract the sequence C of model-consistent samples. Then the model parameters could
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be estimated by maximizing the logarithm of the likelihood function, restricted to the
model-consistent samples:

ln L(τ1 , τ2, τ3 , τ4, Ib,B , Ib,V , Is,B , Is,V )

=
X

c=BT ,VT

X
k2C

�
Nk,c ln Ik,c − Ik,c − ln(Nk,c!)

�
[6.4]

Moreover, since the four slit transit times τ j were sufficient statistics for the transit time
τ, they in turn provided an efficient estimate for τ.

To extract the model-consistent sequence C the detection process had to separate the
star mapper record into three subsets of samples:

(1) the background samples, i.e. samples consistent with the hypothesis Hb: Ik,c = Ib,c
of a constant intensity;

(3) the (single) star samples, i.e. samples consistent with the composite hypothesis Hs:
Ik,c = Ib,c + Is,c

P4
j=1 Rq(tk − τ j );

(3) the samples biased by parasitic or overlapping stars, i.e. samples not consistent with
any of the above models (composite hypothesis Hp).

All the different tests applied to a generic sample m to discriminate among the above
hypothesis were based on five variables Tj (m), j = 0, 1 . . . 4, obtained from the convo-
lution of the cumulated counts of the BT and VT channels with the single-slit response
function:

Tj (m) =
X

c=BT ,VT

X
k

Nk,cRq(tk − tm − d j /vq) [6.5]

where tm is the mean time of the sample m, and d0 = 0. Figure 6.6 shows a record
of photon counts for a 6.6 mag programme star, and the corresponding convolution
T0(m). By comparing the convolution with a suitable threshold s, the value of which
depended on the hypothesis that had to be verified, the boolean test variables Lj (m)
were obtained: Lj (m) = 0 if Tj < s, Lj (m) = 1 otherwise (see Figure 6.7).

The convolution and channel cumulation allowed the effect of photon noise on the tests
to be reduced. It should also be noted that, under Poisson statistics, the convolution
Tj (m) tends to the log-likelihood ratio as Is /Ib ! 0, and it yields a good approximation
when Is /Ib ' 1, i.e. when the star intensity is comparable to the background. This
case represented the most critical situation for separating purely background samples
from star-biased samples since, for the faintest programme stars included in the star
mapper data stream (' 10 mag), the star intensity was normally of the same order as
the background.

The further processing of the star mapper data was partitioned into three main steps:

(1) detection of background samples and background determination;

(2) detection of programme star samples (if any); when a single star could be detected,
a first estimate of the four slit transit times and the star intensity was obtained;

(3) maximum likelihood estimation of the transit time and of the star intensity for both
channels.

Item (1) is described hereafter, while (2) and (3) are covered, respectively, in Sections 6.5
and 6.7.
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Figure 6.6. Top: a photon count record of a 6.6 mag star (HIP 47115) through the vertical slit-group, with the

estimated average signal superimposed. The abscissae are in sample units (1 /600 s), the ordinates in counts per sample.

A spike, which occurred in the VT channel, is indicated by an arrow. Bottom: the corresponding convolution T0(m).

-

+
Tj(m)

s

Nk,B+Nk,V

0

1

Lj(m)Tj(m)-s

Figure 6.7. A sketch of the construction of the basic test variables.
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Background Detection and Estimation

Background estimation for both channels was made independently from subsequent
processing (star intensities and transit time determinations). The background in the
star mapper signal was defined as a Poisson-like stochastic process having constant aver-
age for a single transit but variable from one transit to another: the sky background was
variable and the photomultipliers were sensitive to the radiation environment (van Allen
belts). The background detection process compared two alternative hypothesis: the
null-hypothesis Hb (constant background) and the alternative hypothesis Hs [Hp (pro-
gramme or parasitic star signal).

A generic sample m was accepted as a background sample if L0(m) = 0 and jm − nj > n0

for all n such that L0(n) = 1. The first condition, L0(m) = 0, occurring when T0(m) <
s0, detected the samples acceptable as background samples. The second condition,
depending on the integer threshold n0, rejected in addition those which were likely to
be biased by star signals. This refinement of the detection process aimed at reducing as
far as possible the risk of attributing a star-biased sample to background and avoid its
overestimation. The expression of the significance threshold s0 was the following:

s0 = T̄0 + 2.3S0 [6.6]

where T̄0 = Īb
R

Rq(t)dt was the average and S2
0 = Īb

R
R2

q (t)dt the variance of the
convolution T0(m) under hypothesis Hb. Here, Īb designates the running background
estimate explained below. The numerical factor 2.3 was set by fixing the risk of rejecting
a background sample. The risk was fixed to a value not particularly low, about 1 per
cent, since the major concern was to minimise the risk of attributing a star-biased
sample to background. This risk was further reduced by removing the background
samples biased by a star transit signal. Accepting such samples as background samples
would otherwise have resulted in an overestimation of the average background, with the
risk of not detecting faint programme stars in subsequent processing. The background
samples detected in a record were then averaged to produce the (local) background
estimates for the transit:

Îb,VT =
1
n

X
k2A

Nk,VT , Îb,BT =
1
n

X
k2A

Nk,BT [6.7]

where n is the number of accepted background samples and A is their sequence in the
record.

Since the detection test assumed known background statistics, a running estimate of the
background, Īb, was maintained during the whole data set (between 5 and 8 hours). This
allowed the risk of rejecting background samples as described above to be increased,
without hampering the precision of background estimates as based on the samples from
successive and semi-contiguous records.

The running estimates were updated at each transit i from the local estimates Îb,BT (i)
and Îb,VT (i). A first-order Kalman filter was used for each channel:

Īb,c(i) = [1 − K (i)]Īb,c(i − 1) + K (i)Îb,c(i) [6.8]

where the time varying gain was set to K (i) = n(i)/(n(i )+250), depending on the number
n(i) of detected background samples, but restricted to the range 0.05 ≤ K (i) ≤ 0.5. This
range was designed to trade off between two contrasting goals: attenuating the photon



86 Star Mapper Data Processing

 Reset? 

Estimation

Detection

Estimation

 Few
samples 

Accurate

No

Yes

Yes

 Reset

No

  Reset 

Detection

Estimation

 Few
samples 

No

Yes

Initial 

Local 

Local 

Running
Estimate 

 End 

No

bo(i)

bk(i)

b(i)

successful unsuccessful 

i=i+1 
 Record count 

Figure 6.8. Flow chart of the background detection and estimation.

Figure 6.9. The estimated background intensity over an orbit on 10 June 1991, coinciding with a period of very high

solar activity. The background levels detected at apogee (centre of the graph) were one order of magnitude higher than

under normal conditions. The top curve represents the VT channel, the lower curve the BT channel. The van Allen

belt crossings are indicated by VA, resets of the Kalman filter by arrows.
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noise error (typically when the background was low and few samples could be detected),
and tracking the real background variations. The processes described above are also
shown in a flow diagram in Figure 6.8. An example of the running background estimate
for a time interval with particularly strong background variations is shown in Figure 6.9.

Under normal conditions, i.e. when the running estimate Īb = Īb,VT + Īb,BT of the total
background was assumed to be accurate and reliable, the significance threshold s0 of the
detection test was computed as a function of Īb according to Equation 6.6. When the
running estimate was likely to have lost accuracy, e.g. after a large interruption in the
observations (more than 1 minute), it had to be reset. In that case, since no background
estimates were available, an iterative and converging detection was implemented, pro-
viding also the initial values of the running estimates. Running estimates could fail in
case of too few background samples being available, but such events were very rare.

6.5. Programme Star Detection by FAST

The Multi-Step Detection

The aim of this processing step was to detect in a star mapper record the signal, if present,
of the programme star whose transits were expected to be sufficiently accurate for the
attitude determination. So, the objective was to detect an isolated and unperturbed
transit per record generated by the programme star—a transit of this kind was referred
to as an attitude star transit. To meet this objective, an attitude star had to be detected
not only with respect to the background, but very often among different star signals
generated by overlapping parasitic or programme stars. This situation caused two main
risks of not reaching the objective:

(1) the multiple star risk: the risk of detecting more than one candidate star without
being able to select the expected programme star. In this case, a potentially useful
transit might have to be rejected to the detriment of the attitude estimation process,
in particular when few transits were available or when the attitude underwent quick
variations. This risk could be reduced for the transits of bright stars by isolating in
the record only sufficiently bright signals;

(2) the false transit risk: the risk of obtaining one isolated but false programme star
detection and hence generating an erroneous transit time for the attitude recon-
struction. This risk was particularly high in the records of faint programme stars,
owing to the relatively large number of potential parasitic stars of similar magnitude.
For those transits, it was preferable to increase the chance of detecting more stars,
in order to accept more isolated programme stars.

Such a complex detection problem could not rely only on accepting or rejecting single
samples of the convolution T0(m), but instead, it demanded a multi-step detection
procedure applied to a suitable group of samples. The main steps are described below,
further details are shown in the flow chart in Figure 6.10:

(1) detecting a star: any group m of four samples separated by the calibrated slit
spacings d j was tested for how many samples could be accepted as generated by the
same star. Note that m indicates the sample corresponding to the fiducial reference
line. The four convolutions Tj (m), j = 1 . . . 4 represented the four slits at the
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distances d j relative to the reference line for sample m. As already explained, each
one was associated with a boolean variable Lj (m) indicating whether the signal was
above the given threshold s. By adapting the threshold to the star magnitude, the
test was made more or less selective, according to the objectives assigned. The four
variables Lj (m) were added to produce the variable H (m), having values from 0 to
4 according to the number of accepted samples. H (m) was defined only when all
Tj (m) were defined, i.e. when all four slit responses were contained within the 200
samples record;

(2) detecting a single star: when m coincided with the transit time of a star, H (m)
was equal to 4. Some neighbouring values of H (m) would also be equal to 4, in
particular for a bright star. Thus, when a position m̂ was found with H (m̂) = 4, the
neighbouring samples m̂ + k, k = . . . − 1, 0, 1, . . . were checked until H (m̂ + k) < 3.
This set of samples, S(m̂), constituted the detection of a transit with provisional
transit time equal to tm̂. When still other samples were detected with H (m) = 4,
without being contiguous to S(m̂), the record was assumed to contain more than
one transit and was rejected;

(3) detecting a single, unperturbed transit: transit signals could be perturbed by spikes
or closely overlapping other transit signals, in a way that could not be detected in
the preceding step. To discriminate unperturbed transit signals, suitable two step
χ2 tests were applied to the convolutions Tj (m̂);

(4) detecting an attitude star transit: when only one transit was detected in the record,
and this transit was accepted as single and unperturbed, the transit was accepted
as the result of the attitude star transit and used for the attitude reconstruction
process.

Some of these steps are now described in more detail.

Detecting a Stellar Transit

To detect a transit, the four tests Tj (m) ≥ s1 ( j = 1 . . . 4) were applied to each sample
group m, resulting in the boolean variables Lj (m). The tests discriminated between two
hypotheses H�

s and H0 [ H�
p , where H�

s is the composite hypothesis that the sample is
biased by a transit signal from a star as bright as or brighter than the expected programme
star (the so-called candidate stars). For each transit record, the detection threshold was
computed as:

s1 = max(s0 , T�), T� = Īb

Z
Rq(t)dt + Is

Z
R2

q (t)dt [6.9]

where s0 is defined in Equation 6.6, T� is the lower limit of the convolution average under
hypothesis H�

s and Is the a priori estimate of the programme star intensity for channels
BT and VT together. This threshold was designed to reduce the risk of accepting as a
candidate transit a too faint, and hence probably parasitic, transit. At this stage, Is was
computed from the (uncertain) catalogue magnitude M and colour index B − V , with
a safety margin applied to account for the uncertainty in these values:

M0 = M + 0.5(B − V ) + 0.5, M0 ≤ M + 1.25 [6.10]

As the expected magnitude approached the highest programme magnitudes (9 to 10),
the threshold s1 was less and less effective in reducing the multiple star risk, in agreement
with the objective of avoiding false transits. Since those magnitudes were comparable
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Figure 6.10. Flow chart of the programme star detection.

to background, the threshold s1 had to be more effective in separating star samples from
background samples and consequently was forced to be equal to s0.

Perturbed Transits

Quite frequently a star-transit signal was partially perturbed by the transit of a brighter
programme star or by unpredictable spikes. This could lead to an inaccurate transit
time estimate. To reduce this risk, the following strategy was applied:

(1) the four convolutions Tj (m) for a transit were tested through a χ2 test, χ2
4 ≥ 16, to

detect outliers. When the test was significant, the higher outlier, e.g. the convolution
Ti (m) corresponding to photon-counts collected during the passage of slit i , was
dropped from the subsequent processing. Otherwise the transit was accepted as
unperturbed;

(2) the remaining three convolutions were tested again for χ2
3 ≥ 9. When this test was

significant too, the transit was rejected.
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In the case of spikes outside the star signals, two risks had to be managed:

(1) the risk of accepting it as background—this was managed by the background de-
tection process;

(2) the risk of accepting it as part of a star signal—this risk happened to be very low, as
most spikes could only yield a test variable H (m) = 1.

First Transit Time and Intensity Estimates

When a single and unperturbed transit had been detected, a first estimate of the four
transit times τ j and of the stellar intensities Is,VT and Is,BT was obtained. The four
samples m̂ j of the group m̂ detected as the maximum of the test variable H (m) in the
set S(m̂) of the single transit, were taken as a first estimate of the slit transit times τ j . All
the peak samples around m̂ j were then used to provide the first estimate of the stellar
intensities in both channels.

6.6. Transit Time and Intensity Determinations by NDAC

The estimation of the transit time τ and intensity Is were linked in an iterative loop. All
estimates were obtained through linear least-squares. In the first iteration step, equal
weights were used. In subsequent iteration steps the weights were derived from the
estimated values of the preceding preliminary solution. Effectively, this was equivalent
to a joint maximum likelihood estimation of the two parameters.

Successive estimates of the transit time and its standard error were obtained from
corrections to the previous values. The differences between the observed counts Nk,c and
a preliminary model fit, using the transit time τ̃, were related to the required correction
∆τ in the transit time estimate through the derivative of the single-slit response function,
R0

q = dRq(t)/dt (see Figure 6.4). Excluding the noise term, Equation 6.1 gives:

Nk,c − Ib,c − Is,c

4X
j=1

Rq(tk − τ̃ − d j /vq) = −Is,c

4X
j=1

R0
q(tk − τ̃ − d j /vq)∆τ [6.11]

Equation 6.1 was used for solving Is,c using estimated values of τ, while Equation 6.11
was used for obtaining corrections to τ̃ using the estimated values for Is,c. Estimating
all the parameters at the same time proved hazardous due to disturbances of the star
mapper signal. Spikes, possibly caused by cosmic rays, could not always be recognised
before processing started, but were able to distort a solution with too many degrees of
freedom. Thus, the above-described iterative approach was adopted. Solutions gener-
ally converged rapidly. Figures 6.11 and 6.12 show the astrometric and photometric
precision reached with these reductions. Also shown in each case is the slope of a relation
where the error is proportional to the photon noise on the signal. This does not apply
to faint stars, where the relative error is larger due to the significant contribution of the
background signal. From Figure 6.11 it is clear that the majority of star mapper transits
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Figure 6.11. The noise levels on the transit times (στ , in arcsec) as a function of the total signal intensity. The graph

shows the results for 9400 reduced star mapper transits obtained over a period of 9 hours in the beginning of 1990. The

horizontal scale presents the observed counts as approximate magnitudes.

contributing to the attitude reconstruction process had transit time errors between 0.1
and 0.01 arcsec.

The approach described above allowed for the solution of the parameters for more
than one signal. This was used for double stars and for recovery of transits disturbed
accidentally by another transit (usually from the other field of view). In the case of
double stars the predicted separation was used to recognise the signal. Only double
stars with separations larger than 1.5 arcsec were treated this way. As it was not known
generally where an accidentally superimposed transit originated (which slit group, field
of view, etc.,) the correction procedure was not ideal, being unable to implement the
proper scan velocity and single-slit response functions for the stray transit.

6.7. Transit Time and Intensity Estimation by FAST

Transit Time Estimation

In principle, the first estimate m̂ j of the transit times provided by maximizing the
photon count convolutions (Equation 6.5), and having the resolution of the samplings
(0.28 arcsec), could have been refined by interpolating Tj (m) around the maxima.
Unfortunately, convolutions are not an acceptable approximation of the log-likelihood
function (Equation 6.4) for this task, since they tend to the log-likelihood function
only when Is /Ib ! 0. Therefore a better approximation, still independent of the star
intensity, was used, with the constraint of accurately approximating the log-likelihood
function at least for the faintest programme stars, i.e. Is /Ib ' 1. The new function can
be shown to be the convolution of the photon-counts with ln[1 + IsRq(t)/Ib] (see also
Perryman et al. 1989, Volume III, Chapter 3). Moreover, by imposing Is /Ib = 1, the
approximate likelihood function is made independent of star intensity and reads:

ln L(τ j ) =
X

c=B,V

X
k

Nk,c ln[1 + Rq(tk − τ j )], j = 1 . . . 4 [6.12]
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Maximizing this function with respect to τ j , using a sufficient time resolution, provided
efficient transit time estimates τ̂ j for at least the faintest programme stars. Moreover,
by quadratically interpolating ln L(τ j ) around the maxima, the negative inverse of the
second derivative (Hessian) could be computed, providing the variance of the transit
time estimate.

A suitable χ2 test, with a low risk (0.1 per cent) of the first kind, was then applied to the
four estimated times τ̂ j to detect any possible outlier which could arise due to partial
overlapping by a parasitic transit. When the test was significant, the outlier was dropped
from subsequent processing. The transit time τ across the fiducial reference line was
then estimated from the model:

τ̂ j = τ + d j /vq + � j [6.13]

where the index j denotes the peaks of the transit signal accepted by the detection
procedures (a minimum of three), and � j their estimation error. In the normal case of
four accepted measures, the estimate of the transit time was given by:

τ̂ =
1
4

4X
j=1

τ̂ j [6.14]

The residuals of the above estimation were calculated a posteriori, using accurate esti-
mates of the scan velocities, to assess the accuracy of the transit time estimator. Under
the assumption of a known scan velocity vq, Equations 6.13 could be transformed by
the following orthogonal matrix T:

T =
1
4

0
B@

1 1 1 1
1 −1 −1 1
1 −1 1 −1
1 1 −1 −1

1
CA [6.15]

The first row of the transformed equation yielded the transit time estimate as in Equa-
tion 6.14; the other three rows yielded three uncorrelated residuals having the same
variance as the transit time estimation. By collecting such residuals, the a posteriori
standard deviation of the transit time was assessed.

Intensity Estimation

After the transit of an attitude star had been detected, and the transit time was estimated,
the log-likelihood function (Equation 6.4) could be solved for the photometric param-
eters through the following gradient equations (one set for each channel c), applied to
the sequence C of model-consistent photon counts:

∂ ln L(Is,c , Ib,c)
∂ Is,c

=
X

j

X
k2C

Nk,c − Ik,c

Ik,c
Rq(tk − τ̂ j ) = 0 [6.16]

and:
∂ ln L(Is,c , Ib,c)

∂ Ib,c
=
X
k2C

Nk,c − Ik,c

Ik,c
= 0 [6.17]

Since the above equations are not linear in the unknown parameters, they would have
required an iterative solution. In practice, a single-step solution was used, after obtaining
estimates for the weight wk,c = 1/Ik,c from the available background estimates and the
first estimates of the star intensities provided by the detection step. This simplified
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procedure corresponds to the weighted least-squares solution of the following linear
equations:

Nk,c = Ib,c + Is,c

X
j

Rq(tk − τ̂ j ) + �k,c , Var(�k,c) = Ik,c [6.18]

which proved to be accurate enough for the photometric parameters.

6.8. Comparisons

Several comparison exercises were carried out in the beginning of 1991 at the Royal
Greenwich Observatory, involving star mapper reduction results obtained by NDAC,
FAST (main processing and ‘First Look’) and TDAC. At that stage there was very good
consistency with transit time and intensity determinations. Since then, some changes
have taken place in the software, most notably by FAST. No direct comparisons were
done with results obtained after implementation of those changes, although indirectly the
star mapper transit time results were checked in the attitude reconstruction comparisons,
described in Chapter 7.

6.9. Star Mapper Astrometry

The reduced star mapper data in combination with the reconstructed attitude contained
positional information for the observed stars. The standard errors of the positions
provided by the Hipparcos Input Catalogue were 3 to 6 times larger than the possible
standard error of the attitude fit. As a result, the differences between the predicted
positions (based on the Input Catalogue) and the observed positions (based on the
transit times and the reconstructed attitude) represented at least partially the positional
errors that were present in the Input Catalogue.

In the NDAC data reductions these differences were accumulated in a ‘working cata-
logue’, containing next to a priori data several small information arrays, representing
least-squares solutions of positional and magnitude corrections. These were updated
using a Householder transformations based mechanism every time new data became
available, and could be solved for the updates at any time. During the first 18 months
of the mission this information was used to improve the stellar positions used by the
satellite for its real-time attitude determination, leading to a considerable improvement
in performance.

6.10. Star Mapper Photometry

The star mapper intensity estimates were used to derive the BT and VT magnitudes,
which were used during the mission to improve the colour information made available
through the Input Catalogue (which was in many cases only an estimated value). The
intensities were calibrated with respect to a set of standard stars constructed for the
Tycho photometric reductions.
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Figure 6.12. The noise levels on the accumulated VT and BT magnitudes for constant stars.
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The calibrations were carried out in relative intensity scale. The magnitudes of the
calibration stars were converted to a pseudo intensity by:

Ic = 10−0.4(M−10) [6.19]

where M = BT or VT was the magnitude of the calibration star. The calibration used
the following model:

Is /Ic = a1 + a2C + a3C2 + a4z + a5z2 + a6Cz [6.20]

where C = (BT − VT ) − 0.7 stands for the colour of the star, and ai are the unknown
parameters. z is the vertical coordinate of the transit. Calibrations were done over data
accumulated for an average of 2 to 3 days. They were done separately for the inclined
and vertical slit groups, preceding and following fields of view and for the BT and VT

channels, giving 8 calibrations in total. The star mapper detectors were much less
affected than the image dissector tube detector by transmission loss due to radiation.
This meant that longer stretches of data could be used in the reductions.

A ‘running solution’ was used, where the solution obtained for the preceding data
interval was used as additional, down-weighted, observation equations, again using a
Householder transformations based least-squares routine.

As the effective integration time for a star mapper signal was fixed, the errors on the
individual photometric measurements were proportional to the inverse of the square
root of the intensity. This is evident in Figure 6.12, where the log(σM ) is plotted against
magnitude, showing also the expected relationship. The increase in errors for faint
magnitudes is due to background contributions, on the bright end due to modelling
inaccuracies. The errors on the mean magnitudes are on average a factor 10 smaller.
Variable stars were excluded from the diagrams.

The response in the star mapper channels decreased by an average of 3 per cent per
year, a total of about 12 per cent over the mission (see also Volume 2, Figure 10.2). This
compares with a decrease of around 40 per cent in the image dissector tube detector
(see Chapter 14). The response in the vertical slits was sensitive to focus variations.

More details on star mapper photometry can be found in Volume 4, Chapter 8.

F. van Leeuwen, E. Canuto, F. Donati, J. Kovalevsky
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7. ATTITUDE RECONSTRUCTION

The attitude reconstruction turned out to be one of the most complex and
challenging data reduction tasks, not least due to the complications caused
by the elliptical orbit the satellite was forced to use and the resulting torque
variations. There were also disturbances caused by the radiation received
while passing through the van Allen belts, both direct (increased background
levels in the star mapper detectors, preventing the recognition of signals) and
indirect (damage to the gyro electronics and the on-board computer). In
the reconstruction of the attitude the two consortia proceeded along very
different strategies, both having their advantages and disadvantages. Generally,
they were both designed to achieve the accuracy required for the reduction of
Hipparcos data at the great circle level. The FAST method turned out to be
more stable in particular near thruster firings, while the NDAC method was
better equipped to deal with the more extreme behaviour (such as torques near
perigee, gyro tests and accidental hits). Comparisons showed good agreement
between attitudes computed by both methods even in the most difficult cases
and both produced results well within the specifications.

7.1. The Attitude Reconstruction Problem

The aim of the attitude reconstruction was the determination of the attitude of a tele-
scope reference frame as defined by the star mapper grid calibrations. The accuracy
required by the Hipparcos mission was a standard deviation of the error better than
0.1 arcsec. During further processing in the great-circle reductions the along-scan atti-
tude was further improved to a standard deviation of a few mas, which was acceptable
also for the Tycho data reductions.

The on-ground attitude reconstruction was a very complex task and it is not possible
in this short chapter to present in detail all the work done by the two consortia, which
adopted different attitude models and different estimation procedures. The aim of this
chapter is to present in a compact way the main lines of the estimation methodology
followed, the assumptions introduced, and the quality of the results obtained.

Data Available for the Reconstruction of the Attitude

The attitude reconstruction relied primarily on the star mapper transit time determina-
tions, described in Chapter 6. It also required the timings and lengths of the thruster
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firings in order to recognise sudden changes in rotation rates and in order to provide
boundary conditions linking data intervals between thruster firings. Other data sources
available were the real-time attitude determination, providing the on-board estimates of
the orientation and rotation rates of the satellite, and the gyro data, providing a constant
record of the rotation rates. The gyro data and the real-time attitude determination
were partly correlated. For the final attitude reconstruction results from the great-circle
reductions could also be used.

The star mapper data stream, an average of one star every 4 seconds, was regularly
interrupted for a period of 200 to 1000 seconds because of an occultation by the Earth
or the Moon: shutters were closed when the image of the Earth or the Moon came too
close to one of the fields of view. As no image dissector tube data was collected over
these intervals either, there was no need for a reconstructed attitude over those intervals.
Collection of gyro data continued during these intervals. Occultations were particularly
long when the satellite was close to perigee.

Reconstructed attitude data was required for the processing of the image dissector tube
data (see Chapter 5) and for the great-circle reductions (see Chapter 9). The required
accuracy was 0.1 arcsec, and was set by great-circle reduction requirements. The
accuracy of the rotation rates and the acceleration around the spin axis could influence
the image dissector tube reductions, in particular for brighter stars (see Chapter 5).
The attitude was also required for the Tycho data processing, which benefitted from the
higher accuracy that was in fact obtained (see also Volume 4).

Principles of the Attitude Reconstruction

The attitude is given by three angles, suitably defined, which are semi-independent
time functions. In the attitude reconstruction process three fundamental steps can be
outlined: the attitude modelling, the attitude estimation and the hypothesis verification.

The attitude modelling is the step in which the attitude angles were defined and their
variability in time was modelled by a finite set of unknown variables (degrees of freedom).
Since in the most general case the above time functions presented an infinite continuous
set of degrees of freedom, the attitude modelling had to introduce an approximation of
the reality motivated by physical reasoning, numerical simulations and experience, in
order that the modelling error remained negligible with respect to the globally required
accuracy.

Assuming that the model error is negligible, an estimation procedure was developed,
which allowed the number of degrees of freedom of the attitude model to be estimated
from the available measurement data. The same estimation procedure, again with the
assumption that the model error is negligible, computed the covariance matrix of the
estimated unknown variables and then of the reconstructed attitude angles.

The goodness of the approximate mathematical model, that is the assumption that the
model error was negligible with respect to the estimation error, was assessed on the
basis of the measurement data by suitable statistical tests. When the acceptance of the



Attitude Reconstruction 99

Figure 7.1. Flow chart of the NDAC attitude determination procedure.

above hypothesis had too high a risk, the attitude model was adapted by increasing the
number of degrees of freedom.

Given the complexity of the problem, involving the estimation of continuous functions
of time representing the satellite’s response to a wide spectrum of quasi-random pertur-
bations, it is not surprising that the reduction consortia proceeded along very different
paths. Briefly, these can be characterised as follows:

The NDAC approach: The dynamical model adopted by NDAC and described in
Section 7.2 attempted to represent all the significant torques acting on the satellite
(assuming it to be a rigid body), for which the parameters were calibrated as presented
in Section 8.5. This approach resulted in a good physical view of why the satellite
behaved as it did, and had the great advantage of producing values of the torques which
were a great help to ESOC in forecasting the attitude after the passage at the perigee
and, even more important, to be the basis of ESOC observing procedures when only two
gyroscopes were left. In contrast with FAST, NDAC worked differentially with respect
to the nominal scanning law (Section 7.3). The attitude modelling together with the
estimation procedure are given in Section 7.4. Figure 7.1 summarises the structure of
the NDAC attitude determination procedure.

The FAST approach: The FAST attitude model is given in Section 7.5. It was derived
from theoretical considerations supported by accurate numerical simulations based upon
dynamical models. It can be noted that, at least between gas jets, this independent
approach led to a model very close to the one currently used in astronomy for the
rotation of natural bodies. It was proven later, that the whole model is conformable to the
classical approach in Celestial Mechanics, even if gas jets occur within the representation
interval. Two different models were used: Fourier series and polynomials. They are
schematically represented in Figure 7.2.

The main advantage of the NDAC approach was that it permitted the origin of torques
to be traced. This allowed ESOC to minimise the time of recovering the attitude after
perigee passages. It has also been the basic tool with which it was possible to continue
the mission when only two gyroscopes were functioning. The main advantage of the
FAST approach was that it could apply to any kind of torque whatever the origin, and
this within a very large domain including the recognised torques, with the exception
of gas-jet actuation effects for which a specific dynamical treatment was adopted. The
second advantage was that no numerical integration was necessary to determine the



100 Attitude Reconstruction

Figure 7.2. Flow charts of the FAST attitude reconstruction models.

attitude and the treatment, quite simply, reduced to fitting observations to adequately
chosen parameterised expressions.

In conclusion, it is important to stress that both approaches were based on dynamical
considerations and that, finally, both converged to numerical descriptions which were
assessed as being comparable and well within the margins set by the requirement that
the attitude errors should not introduce biases in the reduction on great circles or in
Tycho consortium procedures.

7.2. Physics of the Attitude of the Satellite

The satellite attitude describes the positions of the three major axes of the satellite as
a function of time. It also describes the rotation rates around these three axes. The
positions and rotation rates were affected by a wide range of internal and external
torques. The internal torques were caused by the spinning motion of the satellite
combined with velocity changes around an axis perpendicular to the main spinning axis.
Torques were also caused by an interaction between the rotation axes of the gyros and
the spin axis of the satellite, and became particularly noticeable during gyro test runs,
when the tested gyro was spun up and spun down. In addition, there were short thruster
firing torques. The external torques arose primarily from three sources: solar radiation,
gravity gradient and interaction between the magnetic moment of the satellite and the
Earth magnetic field. The satellite was also hit a few times by external objects, and was
subject to drag, but these occured only at times very close to perigee when observations
were not possible anyway. Partial heating of the outer surface during very low perigee
passages seems to have played a role too.
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Table 7.1. The inertia tensor, in kg m2, for the Hipparcos satellite. The reference epoch is day 70 in 1991,

and t is measured in years from that epoch. The inertia tensor was scaled to a fixed value of Ixx .

x y z

x 534.220 + 0.000t 3.459 − 0.469t 2.031 + 0.082t

y 3.459 − 0.469t 590.680 + 0.209t −0.806 + 0.005t

z 2.031 + 0.082t −0.806 + 0.005t 459.420 − 1.390t

The motion of the satellite is described by the Euler equation (assuming that the satellite
can be considered as a rigid body):

I
d!
dt

= N − ! × I! [7.1]

where I is the inertia tensor of the satellite, N the sum of the external torques, and ! the
angular velocity vector. These are all expressed in the satellite reference frame, i.e. with
respect to the axes x, y, z assumed to be fixed in the satellite (Figure 7.3). The (partly
calibrated) values for the inertia tensor are given in Table 7.1. Calibration was only
possible for the ratios between the diagonal elements and for the relative contributions
of the off-diagonal elements. All inertia tensor elements were therefore scaled to a fixed
adopted value for Ixx, based on the post-launch ground-based estimate for this value
(including the effect of the full fuel tank for the apogee boost motor). The calibrations
are described in Chapter 8.

The descriptions in the following sections are based on results obtained from the recon-
structed attitude as well as theoretical considerations.

Solar Radiation Torques

The solar radiation reflected and absorbed by the outer surface of the satellite caused a
force working on the satellite which was not balanced with respect to its centre of mass,
and therefore resulted in torques. The size of these torques depended on the orientation
of the satellite with respect to the direction to the Sun, and because the satellite had a
basic three-fold symmetry, the torques caused by the solar radiation were predominantly
a function of 3Ω, where Ω is the angle between the direction to the Sun and the satellite
x axis (as in Figure 7.3). The nominal scanning law (see Volume 2, Chapter 8) kept
the z axis of the satellite within a 10 arcmin margin from a fixed distance of 43� from
the direction to the Sun. The relative position of the x axis, given by the angle Ω, was
therefore sufficient to describe these torques.

The periodicity at multiples of 3Ω applied only when the torques were seen in a reference
frame fixed with respect to the solar direction. Let [ x̄ ȳ z ] be such a reference frame
with z along the satellite nominal spin axis, x̄ on the great circle through z and the
direction to the Sun as seen from the satellite, and ȳ = z × x̄ completing the triad. The
solar radiation torques can be described in this frame as:

N̄R =

 0
b0

0

!
+

mX
n=1

 an sin 3nΩ
bn cos 3nΩ
cn sin 3nΩ

!
[7.2]
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The torques NR as experienced in the satellite reference frame were obtained through a
rotation by Ω around the z axis:

NR =

 cos Ω sin Ω 0
− sin Ω cos Ω 0

0 0 1

!
N̄R [7.3]

As a result, the solar radiation torques around the satellite x and y axes can be repre-
sented as:

NRx = b0 sin Ω +
1
2

mX
n=1

(an − bn) sin(3n − 1)Ω

+
1
2

mX
n=1

(an + bn) sin(3n + 1)Ω [7.4]

and:

NRy = b0 cos Ω +
1
2

mX
n=1

(bn − an) cos(3n − 1)Ω

+
1
2

mX
n=1

(an + bn) cos(3n + 1)Ω [7.5]

This defined the coefficients characteristic for torques caused by the solar radiation.

A further peculiarity of these torques was the fact that their strength varied inversely
proportional to the square of the distance between the Earth and the Sun, i.e. by about
±3.5 per cent. The solar radiation torques around the x and y axes were of the order
of 2 µNm, which translated into accelerations around these satellite axes at a level of
2.3 mas s−2. Around the z axis the torque and acceleration were about a factor 3 smaller.

The solar radiation torques disappeared during eclipses, and the transitions from sun-
lit to eclipse were among the most difficult to describe in the attitude reconstruction,
in particular as this transition was accompanied by changes in the magnetic moment
of the satellite (see below). In addition, during and shortly after a transition, sudden
(small) torques occurred, possibly related to the attachments of the solar panels (see
also Volume 2, Section 11.4).

Gravity Gradient Torques

The gradient of the Earth’s gravitational field across the satellite caused a torque de-
scribed by:

NG =
3GE

r3
r̂ × I r̂ [7.6]

where r̂ = hri is the unit length vector indicating the geocentric direction to the satellite’s
centre of mass, and r = jrj is the geocentric distance of the satellite (the position vector r is
the same as g0 in Chapter 12). GE is the geocentric gravitational constant (Table 12.1).
r̂ was described in the satellite coordinate system [ x y z ] by means of the two angles ξe

and Ωe:

r̂ =

 sin ξe cos Ωe

sin ξe sin Ωe

cos ξe

!
[7.7]
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These angles were computed from the geocentric ephemeris r, given in equatorial
coordinates, and the components of the satellite axes, also expressed in the equatorial
frame, by means of the relations:

cos ξe = z0r̂ [7.8]

and:
cos Ωe = x0r̂ / sin ξe , sin Ωe = y0r̂ / sin ξe [7.9]

Both ξe and Ωe varied with the position of the satellite in its orbit, but near apogee
(t0) the variations in ξe were relatively small and Ωe varied mainly because of the spin
of the satellite, Ω̇e ' Ω̇. Substituting Ωe = Ωe0 + Ω̇t in Equation 7.7 and evaluating
Equation 7.6, while considering that the inertia tensor I is dominated by the diagonal
elements, one finds:

NG =
3GE

r3

 (Izz − I yy) sin 2ξe sin(Ωe0 + Ω̇t)
(Ixx − Izz) sin 2ξe cos(Ωe0 + Ω̇t)
(I yy − Ixx) sin2 ξe sin 2(Ωe0 + Ω̇t)

!
[7.10]

Thus, around apogee the characteristic coefficients for the gravity gradient torque could
be recognised by a periodicity with Ω for the x and y axes, and with 2Ω for the z axis,
showing a phase shift with respect to the solar radiation torques.

The geostationary transfer orbit in which the satellite was stuck complicated this repre-
sentation considerably. The amplitude of the torque, ξe, and Ωe became complicated
functions of orbital position. This resulted in a signal that was no longer periodic
with the rotation period of the satellite, and which was in addition strongly variable in
amplitude.

The size of the gravity gradient torque was of the order of 0.2 µNm at apogee, increasing
by a factor 200 towards perigee, and dominating the torques from 1.5 hours before to
1.5 hours after the perigee passage.

Magnetic Torques

During the data analysis and the calibrations described in Chapter 8, it was found that
the satellite had a distinct magnetic moment of about -2.7 Am2 directed along the y
axis. There also appeared to be a similar size magnetic moment directed along the z
axis, existing only during eclipses, when satellite power had switched from solar panels
to batteries. The torque caused by the interaction of the magnetic moment vector m̄
and the Earth’s geocentric magnetic flux density vector B̄ is given by:

N̄M = m̄ × B̄ [7.11]

As seen from the satellite reference frame B̄ is rotating. In the satellite reference frame
the flux density vector is expressed as:

B =

 cos Ωm sin Ωm 0
− sin Ωm cos Ωm 0

0 0 1

!
B̄ [7.12]

where Ωm describes the instantaneous orientation of B with respect to the satellite x axis.
Within the satellite reference frame m was assumed constant. This gave the following
relations:

NM =

 myBz − mzB y

mzBx − mxBz

mxB y − myBx

!
[7.13]
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Table 7.2. For each of the five gyros, the table gives: (a) orientation of the input axes times the scaling

correction factor; (b) the angular momentum (10−2 Nms); and (c) the nominally induced torque (µNm).

Gyro x y z

1 a –0.54090 0.89363 –0.00030

b 1.102 0.675 0

c –5.52 9.01 0

2 a 0.52620 0.86930 0.00013

b 0 –1.3 0

c 10.06 0 0

3 a 1.05650 0.00057 –0.00090

b 0 0 –1.3

c 0 0 0

4 a –0.00060 0.00080 1.05430

b –1.102 0.675 0

c –5.52 –9.01 0

5 a 0.00154 0.00091 1.05443

b –1.102 0.675 0

c –5.52 –9.01 0

where at apogee the torques around all three axes were approximately modulated by Ω.
Away from apogee this modulation became disturbed due to the changes in B̄, and both
the amplitude and the period were varying strongly.

The description for B̄ used the 1985 coefficients of the International Geomagnetic
Reference Field (IGRF) (Barraclough 1985), describing the magnetic field as a series
of spherical harmonics. The most important (dipole) coefficient is proportional to r−3.
The magnetic torques were slightly smaller on average than the gravity gradient torques,
but increased in a similar fashion with decreasing distance to the Earth. No corrections
were applied for compression or stretching of the field due to interaction with the solar
wind. The analysis of the data indicated, however, that such effects were probably
present.

Gyro Induced Torques

The five gyros on-board the satellite had ‘fixed’ spin axes within the satellite reference
frame (see Chapter 8). Three of the five gyros were normally active, and each of these
would cause a torque on the satellite, depending on the orientation of the spin axis with
respect to the satellite spin axis. The orientations of the spin axes and input axes are
summarised in Table 7.2. Spinning-up a gyro in addition caused a torque around the
spin axis of the gyro. The sum of the torques of the active gyros entered Equation 7.1.
The gyros selected for most of the mission were 1, 2, and 4 or 5. The resulting torques
from this combination were relatively small.

Thruster Torques

Thruster torques were of very short duration, and intended to change the rotation rates
around the satellite axes such as to keep the satellite close to its intended scanning
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law. Pulses lasted between 2/75 s and 45/75 s, except close to perigee when longer
pulses were permitted. The average ∆ω caused by a pulse of one unit of 1/75 s was
0.1 arcsec s−1. The thruster firing strategy changed over the mission, as described in
Chapter 8 and in Volume 2, Chapter 13. Thruster firings always took place at the start
of an observational frame, and would normally last for no more than 0.25 times the
length of a frame. The intervals between firings varied from 200 to 1200 observational
frames. Close to perigee the intervals became much shorter. Thruster firings were
recorded in the telemetry with the timing and length of the firing for each axis, but
information could become ambiguous or get lost due to telemetry problems. Chapter 8
describes the thruster firing calibrations.

Incidental Micrometeoroid Hits

Incidental hits due to micrometeoroids (see Volume 2, Chapter 6) had the same appear-
ance as thruster firings, except that they were evidently not recorded in the telemetry
and not tuned to the start of an observational frame. Two fairly serious hits and many
minor hits were detected from examinations of the gyro read outs. They were also
conspicuous in the course of the great-circle reductions (see Chapter 9).

Miscellaneous Effects

A torque possibly related to thermal radiation from the satellite after perigee passages
was noted in the examinations of the accelerations of the satellite (see Chapter 8, Fig-
ure 8.16). Depending on the height of perigee, which varied between 440 and 580 km
above the Earth surface, the satellite was more or less affected by drag. As the rotation
period of the satellite was relatively long with respect to the time the satellite was ex-
posed to drag, this affected the satellite in an unbalanced way. After perigee, the satellite
had been warmed up on one side and started losing this excess heat through radiation,
which due to its distribution over the surface, could cause a small torque. The size of
this effect was at most of the order of 0.02 µNm.

7.3. The Nominal Scanning Law and Real-Time Attitude Determination

The scanning of the sky by the satellite proceeded along a pre-determined nominal
scanning law. This scanning law had been designed such as to optimise the coverage of
the sky, while avoiding the sunlight to affect the measurements. As this was a scanning
satellite, this meant that scanning circles always had to be inclined with respect to the
ecliptic plane. The scanning law is for this reason described in the ecliptic coordinate
system. The details of the scanning law can be found in Volume 2, Chapter 8. Here
the importance is in the relation between the equatorial coordinates and the satellite’s
main axes. These relations are described by a series of orthogonal rotations. If we
denote by Ri(α) the rotation of a coordinate triad around axis i by an angle α, then
for the transformation from equatorial direction cosines e to satellite coordinates s the
following relation applies:

s = R3(−Ω)R2(ξ −
π
2

)R1(
π
2

− ν)R3(−λ�)R1(−�)e [7.14]

where � is the inclination of the ecliptic plane for equinox J2000.0, and λ�, ν, ξ and Ω
are the angles in which the nominal scanning law was described. They were referred to
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Figure 7.3. The heliotropic angles (λ�, ν, ξ , Ω) and the satellite axes (x, y, z) in the ecliptic reference frame. The

ecliptic is indicated by ‘E’, the scanning circle by ‘G’. The two fields of view (PFOV, FFOV) and the basic angle γ are

also indicated.

as the ‘heliotropic angles’ and are shown in Figure 7.3. Of these, all but ξ were time
dependent.

The inertial rates resulting from the nominal scanning law were accordingly given by:

!n =

 − cos ξ sin ν cos Ω − cos ν sin Ω sin ξ cos Ω − sin Ω 0
cos ξ sin ν sin Ω − cos ν cos Ω − sin ξ sin Ω − cos Ω 0

sin ξ sin ν cos ξ 0 1

!0BBB@
λ̇�
ν̇

ξ̇

Ω̇

1CCCA [7.15]

where in this case ξ̇ = 0.

The real-time attitude determination was provided in the form of three small rotation
(Tait-Bryan) angles relative to the nominal attitude. These Tait-Bryan angles could
be added to the nominal attitude heliotropic angles to provide a new set of heliotropic
angles, giving the actual rather than the nominal satellite attitude. The Tait-Bryan
angles were given by Θ1, Θ2 and Θ3. The following quantities are defined:

A = cos Ω sin Θ1 cos Θ2 − sin Ω sin Θ2

B = (cos Ω cos Θ2 − sin Ω sin Θ1 sin Θ2) sin ξ − cos ξ cos Θ1 sin Θ2

C = sin ξ sin Ω cos Θ1 − cos ξ sin Θ1

D = (B2 + C2)1/2 [7.16]
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These define the new heliotropic angles as:

λ̂� = λ�
ξ̂ = arcsin D

ν̂ = ν + arcsin(A /D)

Ω̂ = Ω + Θ3 + arcsin C [7.17]

The real-time attitude determination operated on-board the satellite and provided a
record of the satellite in Tait-Bryan angles. The process of updating the Tait-Bryan
angles was based on a mixture of gyro data and star mapper transit times. The gyro
data were transformed to inertial rates, then corrected for the inertial rates resulting
from the nominal scanning law and then transformed into corrections to the Tait-
Bryan angles. Correctly recorded star mapper transits were used to control and correct
the resulting Tait-Bryan angles. The rate estimates supplied as part of the real-time
attitude determination were based on the evolution of the Tait-Bryan angles and could
be badly affected by a sudden change in these angles, such as caused by an update from
the ground. These updates were required to assist the satellite in recovering attitude
convergence after long gaps in the observations, in particular after a perigee passage.

7.4. Attitude Modelling and Estimation by NDAC

By integrating numerically the Euler equation, using the full representation of the inertia
tensor and the most accurate approximations of the torques, an accurate description was
obtained of the rates of the satellite. These rates would normally include an offset caused
by an error in the starting point. This error was largely removed by adjusting the rates
to the observed gyro rates through linear offsets. The rates could then be integrated
to provide a first approximation to the actual attitude angles. This integration was also
affected by an error in the starting point, as well as by minor errors in the original model.
These last adjustments were corrected using star mapper transit data. By calibrating the
thruster firing performance, it was possible to carry the integrations across the thruster-
firing discontinuities in the velocities and acceleration. This was basically the method
adopted by NDAC.

The a priori detection of any discontinuities in the rotation rates was very important.
Most discontinuities were known: they were due to thruster firings, for which informa-
tion was stored in the telemetry. Some discontinuities were, however, not recorded in
the telemetry. In order to find these, the gyro rates were examined for every data set for
the coincidence of thruster firings and rate discontinuities. Through these examinations
thruster firings were detected for which information was lost due to telemetry problems,
as well as sudden rate changes due to the satellite being hit by a micrometeoroid. Also
the start and end time of gyro spin-up and spin-down events were recognised. All such
events were entered into the data stream as pseudo thruster firings. The attitude solu-
tion would not cross these events but instead provide solutions up to, and starting from
these instances.

The calibrations used in the NDAC attitude reconstruction made it necessary to repeat
the process two to three times: the reconstructed data was used to improve the calibra-
tion results which were subsequently reused in the reconstruction. At the same time,
improved reference positions for the star mapper stars were introduced. A schematic
flow chart of the NDAC attitude determination procedure is given in Figure 7.1.
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Integration of the Torques to Inertial Rates

The first step in the NDAC attitude reconstruction consisted of estimating, by integrat-
ing the Euler equation (Equation 7.1), the rotation rates around the three satellite axes,
over intervals between thruster firings. The torques were obtained from calibrations
using earlier reconstructed attitude results. This integration needed as a starting point
a relatively accurate estimate of the rotation rates at the start of the interval, which was,
for the first interval considered, obtained from gyro data. For subsequent intervals it
was obtained by integrating across thruster firings (see below). In normal mode (no
thruster firings), the accelerations were calculated in time steps of 0.71 s (at reference
times −1.066 s, −0.355 s, +0.355 s with respect to the centre of an observational frame
of 2.133 s). The accelerations were numerically added to the rotation rates (at refer-
ence times −0.71 s, 0.0 s, +0.71 s). All three rotation rate estimates per observational
frame were stored. Experiments with shorter integration times showed that for normal
conditions the time step used was sufficiently small.

The time step for the integration of the Euler equation was set by the rate of change of the
cross product ! × I! in Equation 7.1. This was partly accommodated by provisionally
extrapolating ! to the central time of the integration interval. The rate of change of !
was within a range of ±3 mas s−2, which gave a change in the accelerations, resulting
from the cross product, of the order of 2.5 × 10−4 mas s−3. The uncertainty in the
accelerations resulting from the estimates of the external torques was approximately 10
times larger. Using time steps of 0.71 s the error on the velocities obtained from the
integration generally accumulated to no more than about 1 to 2 arcsec s−1 over a time
interval between thruster firings (ranging from 300 to 2000 s), except for cases where
the initial rate estimates at the start of the integration had been very uncertain due to
excessive gyro noise or telemetry problems. Due to uncertainty of the reconstructed
external torques, decreasing the time steps would have increased precision without
improving accuracy.

Integrations were carried out in this manner until a thruster firing or an interruption
was encountered, at which point the first inertial rate estimates !t over an interval had
been obtained, described by three estimates per observational frame.

The rates !t obtained from the torque integration were adjusted to the observed (and
calibrated) gyro rates by applying an offset and a linear correction with time. When
available, the rate around the z axis was also fitted with scanning rates derived from
the great-circle reduction. The gyro data were corrected for drift and orientation (see
Chapter 8) and weighted according to the specific gyro noise levels. As gyros were
recording rotation rates coming from all three axes, one solution was made for the three
axes together. Thus, the equations solved by the method of least-squares were:

a + (t − t0)b = T(g − g0) − !t + �g [7.18]

where g represents the gyro observations, which were corrected for drift (g0) and trans-
formed to rotation rates around the three satellite axes through matrix T, obtained from
Table 7.2. The time t was measured in units of 100 s relative to a reference time t0

halfway into the thruster firing interval. The errors on the gyro readings were given by
�g, for which the variances were known from the gyro calibration process described in
Chapter 8. These variances had been determined over an entire data set (6 to 8 hours of
observations), and compared for consistency with neighbouring data sets. The square-
root variances for the gyro data ranged from 0.008 arcsec s−1 to 0.1 arcsec s−1. With
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the errors at the low end of the range the gyro data were contributing to the attitude
solution, while with errors at the high end of the range, the contribution was effectively
restricted to providing estimates of the star mapper scan velocities (see also Section 8.3).

The variance observed over an interval between thruster firings was used as an indica-
tion for the data being sufficiently well described by Equation 7.18. There was also the
possibility of rejecting outliers in the gyro data, but this was rare under normal condi-
tions, and had to be suppressed under bad conditions (noise bursts). When the variance
observed over an interval was higher than expected, the gyro data were examined for
discontinuities. Many such cases revealed instances when the satellite had been hit by
a micrometeoroid, causing (mostly small) discontinuities in the rotation rates. At such
discontinuities, an artificial thruster firing event was added to the data set to account
for the discontinuity, which then split the solution over the interval investigated into two
separate intervals.

The solution of Equation 7.18 led to !g = !t + a + (t − t0)b, the estimated inertial rates
based on the integrated torques and gyro data. These rates were used in the star mapper
reductions (see Chapter 6) for the determination of the effective slit spacings. Using!g ,
an estimate of the rotation rates at the end of the thruster-firing interval was obtained,
providing the rates at the start of the next thruster firing.

The integration of Equation 7.1 was carried across the thruster firing using information
obtained from the thruster calibrations. Here, however, the time step was much shorter
in order to accommodate the very rapidly changing rotation rates. Every 0.71 s interval
used in the normal integration was subdivided into 160 intervals of 1/225 s, still pro-
viding the three estimates of the rotation rates per observational frame. The ‘cross-talk’
effect of the thrusters (described in Chapter 8 and primarily resulting from the shift in
the position of the centre of mass due to the full apogee boost motor tank), was fully
taken into account, as were the ‘zero points’. Thus, a firing on the z axis would also
cause small velocity changes for the x and y axes rotations. At the end of a thruster
firing integration, estimates of the rotation rates for the start of the next thruster firing
interval had been obtained.

The solutions for Equation 7.18 over all intervals contained in a uninterrupted stream
of data (interruptions could be due to gaps in the data containing one or more thruster
firings, or so-called pseudo thruster firings, representing various discontinuities in the
rotation rates) were all connected through conditions describing the expected changes
in the rotation rates across thruster firings relative to the corrections already applied.
The final solutions for Equation 7.18 were obtained from such a chain of simultaneously
solved, linked least-squares solutions, and applied to the estimates !t .

Integration of the Rates

Given an estimated a priori orientation of the satellite axes, the inertial rates could be
used to evaluate those orientations as a function of time, providing the first estimate
of the satellite attitude. The attitude at this stage was described with respect to the
nominal attitude in the form of Tait-Bryan angles. This allowed some incorporation of
data from the real-time attitude determination, which was described in the same way.
If the satellite were to follow exactly the nominal scanning law, then this would result in
inertial rotation rates given by !n (as described in Section 7.3, Equation 7.15). These
rates were, however, described in a slightly different coordinate system: the coordinates
of the nominal scanning law, with respect to which the satellite was displaced by the
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Tait-Bryan angles. Thus, in order to evaluate the evolution of the Tait-Bryan angles
relative to the nominal attitude, the difference δ! = !g − R!n had to be integrated,
where R = R3(Θ3)R2(Θ2)R1(Θ1). The integration to position angles needed a starting
point. At the start of an interval, a real-time attitude determination position was used as
such. However, the real-time attitude determination was not always converged at such
a point. This was shown in the data from the examination of the star mapper reduction
results (see below). In such a case the interval was rejected, and the integration started
again for the next interval, until the attitude appeared to have converged. From then on
the integration could proceed unaided by real-time attitude determination data.

The transformation from δ! to increments of the Tait-Bryan angles � were obtained
from:

d�
dt

=

 cos Θ3 / cos Θ2 − sin Θ3 / cos Θ2 0
sin Θ3 cos Θ3 0

− cos Θ3 tan Θ2 sin Θ3 tan Θ2 1

!
δ! [7.19]

where the time step dt was 1/22.5 s for normal observational frames (2.133 s), and
1/225 s for the first half of an observational frame starting with a thruster firing (thruster
firings never lasted for more than half an observational frame, and mostly did not last
for more than 0.5 s). In the numerical integration δ! was calculated for the central time
of the integration interval, using the three estimates of !g per observational frame in the
form of a second order polynomial describing the estimated inertial rates at any time
during the frame. For frames with thruster firings the estimates of the rates also used
the lengths of the firings on each axis. Experiments with time steps of different lengths
had shown that there was no significant loss of accuracy for the time steps used (the
numerical accuracy over a thruster firing interval was much higher than the expected
accuracy of the attitude angles).

In the first solution of the attitude, when star mapper transit times were still to be
determined, the estimated Tait-Bryan angles were fitted to the real-time attitude de-
termination Tait-Bryan angles, providing a kind of smoothed and stabilised real-time
attitude estimate. These fits were done with only an offset or at most a linear time de-
pendence in order to preserve the dynamical model. Such a fit was only needed in order
to produce predicted star mapper transit times, which could be compared with observed
transit times. The comparison, which was preserved in the form of a graph for data
in every orbit, showed the convergence of the real-time attitude determination in both
fields of view as a function of time. This allowed the detection and early elimination of
bad convergence time intervals from the data (see Figure 6.3).

The results of the integration were stored in the form of heliotropic angles (see Equa-
tions 7.16 and 17), at the three reference times per frame that were earlier used for the
inertial rates (see above).

Final Attitude Corrections

The preliminary attitude angles obtained this way were used together with star mapper
transit times to determine the actual satellite attitude angles. The three estimates per
observational frame of the heliotropic angles were represented through second order
polynomials, describing the angles and their rates of change at the exact time of the
transit. When star mapper transit times still had to be calculated, the rates of change
of the heliotropic angles were translated into inertial rates around the satellite axes,
using Equation 7.15, and subsequently into inertial rates along the scan direction and
perpendicular to the scan direction for each field of view. These rates were then used
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in the determination of star mapper transit times (see Chapter 6), and the heliotropic
angles were recalculated for the observed transit time.

The heliotropic angles and the apparent stellar coordinates, were used to calculate the
predicted coordinates (η, ζ) in the field of view. These coordinates were related to the
expected coordinates, defined by the star mapper geometry. The differences between
the observed and predicted value for η, δη, were expressed in three coordinates: a
correction to the scan phase (δψ ), and corrections to the attitude angles perpendicular
to the scan-direction in the preceding (δθp) and following field of view (δθ f ):

δψ + g δθp, f + �η = δη [7.20]

Here g = 0 for the vertical slit group and ±1 for the inclined slit group of the upper
and lower branch respectively, and suffix p or f applies according to the field of view of
the transit. The variance of the error on the transit time, �η, was known from the star
mapper processing.

The corrections δψ , δθp and δθ f were expressed as polynomials in time, with the order
depending on the length of the interval, the amount of data available, and the demands
placed by the observations. The polynomial degree was always initialised at a minimum
level (usually 1 or 2), and increased when the observed variance indicated that the
solution was inadequate, up to a point where it was considered that insufficient data was
available for any further increments. The need for increments was determined on the
basis of the observed unit weight variance. Although one solution was made for the three
coordinates together, variances were calculated for each coordinate separately, and also
increments of polynomial degree were decided independently. Preliminary solutions
were made over intervals between thruster firings. Boundary conditions were imposed
that linked these solutions across the thruster firings. These boundary conditions forced
approximate, and not exact, continuity of the solutions across thruster firings, thus
accommodating the uncertainties imposed by the thruster firing calibrations. The final
solution was made over all intervals and boundary conditions without further iterations.

The estimation standard errors on the reconstructed attitude were calculated from the
local (thruster firing interval) normal equations matrix, A, of the fitted attitude param-
eters through a convolution with the basis functions at the centre of every observational
frame. These estimated errors agreed also with the requirements of the Tycho data
reductions, which used the NDAC reconstructed attitude results. Thus, if f (t) was the
vector of basis functions for one of the attitude angles in the interval considered, and
the unit weight error of the solution was u, then the uncertainty in the attitude angle
was given, as a function of time, by:

σ(t) = u
�
f (t)0A−1f (t)

�1/2
[7.21]

When the uncertainty was above 0.3 arcsec the data was flagged as ‘bad’. In the error
evaluation, only this last solution was relevant: all preceding steps provided the smooth
background relative to which the final solution was made.

The final transformation from δψ , δθp and δθ f to corrections of the heliotropic angles
was given by: eλ� = λ̂�

ξ̃ = ξ̂ + (δφ sin Ω − δθ cos Ω)

ν̃ = ν̂ − (δφ cos Ω + δθ sin Ω) / sin ξeΩ = Ω̂ + δψ + (δφ cos Ω + δθ sin Ω) tan ξ [7.22]
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where δφ = (δθp − δθ f ) /2 sin(γ /2), δθ = (δθp + δθ f ) /2 cos(γ /2) and γ is the basic angle
between the fields of view. The incremental angles δψ , δθ and δφ were approximately
the same as those used in the attitude reconstruction by FAST.

In conclusion, the NDAC attitude was determined by using star mapper transit data to
determine small corrections relative to a dynamical model for the satellite, which was
supplemented with gyro observations.

Basic Angle and Star Mapper Geometry Calibration

Three components of the star mapper geometry were calibrated using the attitude
reconstruction processes: the orientation of the slits with respect to the scanning circle
(defined as the great circle going through the intersecting points of inclined slits in
the preceding and following fields of view), the separation between the vertical and
inclined slits and the basic angle between the two fields of view for the vertical slits
(due to projection and distortion effects this was slightly different from the basic angle
for the main grid). These calibrations were carried out using star mapper transit time
residuals obtained from the attitude reconstruction solution, accumulated over 2 to 3
days. The residuals were accumulated in histograms (68 bins) as a function of vertical
coordinate H of the transit. Each bin coincided with a scan-field, the basic element
used in manufacturing the grid. Medians in each bin were fitted with an offset and
a linear function of the H coordinate. These fits were made for the two slit groups
and the two fields of view separately. The offsets measured were of the order of 10
to 30 mas, representing small basic-angle corrections and corrections for the slit-group
separation. The rotations (relative to the main 5 arcmin rotation) were of the order of
0.3 to 0.7 arcsec.

The remaining residuals were accumulated in a histogram to provide the medium-scale
distortion corrections. These corrections were of the order of 0.1 arcsec or less, and
were further improved in the Tycho data reduction (see Volume 4, Section 7.3). The
final correction, describing the position of the star mapper slits with respect to the main
grid reference line, was provided by the great-circle reduction, presented in Chapter 9.

7.5. FAST Attitude Model

Assuming an attitude model with a finite number of degrees of freedom, the model
error is defined as the difference between the true attitude and the attitude that could
be reconstructed by using in an optimal way the degrees of freedom of the model if
measurement data without any error were available. Then, according to an attitude
estimation method, which was based on this model, the estimation error is defined to be
the effect on the attitude reconstruction of the actual measurement errors, if the models
were perfectly correct.

The model error can be evaluated by simulations assuming the true system is perfectly
known, however it cannot be evaluated by experimental data corrupted by measurement
errors. In this latter case the model error can be monitored by significance tests, which,
assuming by hypothesis that the model is correct, gives the a priori probability of getting
the resulting test values. When this probability is too low the hypothesis tested is usually
rejected. On the other hand, the estimation error caused by the measurement errors
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can be evaluated by the estimation procedure, assuming, of course, that the model error
is negligible.

For these reasons it was required that the model error should be negligible with respect
to the estimation error, setting its maximum limit, evaluated by simulations, to the order
of several mas. It is generally possible to reduce the model error by increasing its number
of degrees of freedom, but, of course, the estimation error increases with the number of
degrees of freedom. The research was oriented to get the required model accuracy with
the smallest possible number of degrees of freedom.

The use of the rigid body equations to describe the satellite motion was excluded because
it was considered that it was too difficult to calibrate, with the required accuracy, the
telescope reference frame position with respect to the inertial axes of the satellite, and to
maintain such an accuracy throughout the mission. Similarly the use of torque models
derived from physics was excluded because at the level of the required accuracy they
would require too large a number of degrees of freedom, and above all because it is never
possible to be sure that all the non-negligible causes have been taken into account. This
method was nevertheless successfully implemented by NDAC (see previous section).

Particular attention was devoted to the choice of the attitude angles. In fact, the various
sets of three angles are related among themselves by non-linear transformations so that
their choice influences the simplicity of the attitude model, the estimation method, and
accuracy.

FAST Attitude Angles

The FAST attitude representation was described relative to the reference great-circle
frame (Section 11.2), defined by the position of its pole in ecliptic coordinates, λR and
βR. This pole was selected as the position of the z axis in the nominal scanning law
for a reference time halfway between the start and the end of the data set concerned.
Relative to this reference system, three attitude angles were defined: ψ , θ and φ. They
are related to the classical 3-2-1 Euler angles ψe, θe and φe by:

φ = φe , θ = θe , ψ = ψe − arctan
�

sin θ sin φ
cos θ + cos φ

�
[7.23]

The choice of the angle ψ was motivated by the fact that it models the scanning motion
better, because its rate of change is much closer to the rotation rate around the satellite
z axis. It was in addition proven that estimation results obtained with these angles were
significantly better than those obtained by keeping ψe.

Approximate Motion Equations

The φ, θ, ψ attitude angles are modelled as the outputs of the following two indepen-
dent systems of differential equations, which were obtained as an approximation of the
satellite dynamic equations in the case of small perturbations:

ω̇z = δz(t)

ψ̇ = ωz
[7.24]
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and:
ω̇x = δx(t)

ω̇ y = δ y(t)

φ̇ = −ω0θ + ωx

θ̇ = ω0φ + ω y

[7.25]

where ω0 is a constant parameter equal to the nominal spin rate.

The functions δx(t), δ y(t), δz(t) are the derivatives of the rate components ωx, ω y, ωz. In
a first rough approximation they model the effect of the torque acting on the satellite, but
more precisely they have been introduced not only to model the torque effect but also to
compensate for the approximation introduced by using the above simplified equations to
model the telescope motion. It is well known that any given set of three continuous time
functions φ(t), θ(t), ψ (t) can be obtained as the output of the above dynamic system
by the application of a suitable set of input functions δx(t), δ y(t), δz(t) and by initial
conditions. Then, in principle, the model error can be reduced as much as required by
attributing a sufficient number of degrees of freedom to the input functions.

System Input Functions

The system inputs δx,y,z(t) are decomposed into the sum of two terms, respectively the
control inputs ux,y,z(t) and the disturbances dx,y,z(t). The control inputs are introduced to
describe the effects of the on-board attitude control: they are assumed to be a sequence
of ideal pulses (Dirac functions) of unknown amplitude applied at the central time of the
gas-jet actuations. The disturbances are introduced to describe the effects produced by
the perturbing torques and to keep into account, at the same time, the difference between
the above simplified dynamic system and the reality. The disturbances are expressed
by different mathematical models (Fourier and polynomial models) depending on the
length of the time interval considered and the satellite perturbing conditions. In the
case of Fourier models the disturbances are described by a Fourier series with unknown
coefficients and the response of the system is computed on the basis of the above
differential equations. In the case of polynomial models the system forced response to
the disturbances is directly described by polynomial series. The resulting attitude model
is presented in the two cases in Figure 7.2. The following models were used:

• long-term Fourier model: this was the standard model, used in normal operating
conditions over a time interval corresponding to a full rotation around the satellite
z axis, i.e. 128 min. Independently from the actual duration of the considered time
interval, the disturbances are described by a Fourier series whose fundamental
harmonics have the frequency ω0 corresponding to the satellite nominal spinning
rate used in the approximate equation of motion (Equation 7.25). In this case the
forced solution of the differential equations has the form:

φd (t) = bs0t sin ω0t + bc0t cos ω0t +
nX

k=2

[bsk sin(kω0t) + bck cos(kω0t)]

θd (t) = cs0t sin ω0t + cc0t cos ω0t +
nX

k=2

[csk sin(kω0t) + cck cos(kω0t)]

ψd (t) =
mX

k=1

[ask sin(kω0t) + ack cos(kω0t)]

[7.26]
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A different number of harmonics in the range 12 to 36 was used in modelling ψ
(m) and in modelling θ and φ (n). The number of harmonics was determined by an
adaptive method based on the computation of the Fisher-Snedecor test (Cramér,
1946). The adaptation was made by increasing the number of harmonics by 3 at a
time, starting from 12. The optimal number was the maximum number for which
the Fisher-Snedecor test value was still above a given threshold;

• intermediate term Fourier model: this model was used over intervals of 30 min to
115 min. The perturbing torques were modelled as above by a finite Fourier series
of unknown amplitude harmonics (Equation 7.26), but without the mixed terms
for φ and θ (describing the torque caused on φ through the change of θ and vice
versa). Here the fundamental period was chosen equal to the length of the time
interval, and the minimum number of harmonics at the start of the computation
was determined by the interval length. They were increased by one at a time,
followed by the tests described above, until a test value within a given threshold was
obtained;

• short-term polynomial model: this model was used for the shortest considered
time intervals, namely a period between two thruster firings (varying from a few
minutes to more than half an hour, but on average about 12 to 15 minutes). The
perturbing torque effect was modelled by Legendre polynomials, the degree of
which was adapted to the considered case, independently for ψ and for θ and φ.
The polynomial degrees were increased by one at a time until the Fisher-Snedecor
test value obtained was within a given threshold;

• short-term polynomial model in penumbra: while the satellite was in penumbra,
before and after an eclipse, the solar radiation torque followed a transient from high
values to very low or vice versa. Conditions during different transients were similar
but never the same. The transient was modelled as a stochastic process for which
a Karhunen-Loève expansion (Papoulis 1991) was computed. This provided an
ordered set of orthonormal functions, of which each one was approximated by a
Legendre polynomial representation. The first 10 (ψ ) and 15 (θ and φ) functions
were stored. The order of the Karhunen-Loève expansion used was adapted to
the particular case considered, starting from a minimum value determined by the
number of star mapper transits available, up to the maximum number of stored
functions, applying at each step the Fisher-Snedecor test.

7.6. FAST Estimation Procedure

The Different Attitude Estimation Algorithms

The uncertainty with which the attitude can be determined depends upon the precision
with which star positions are known. Since the positions provided by the Input Cat-
alogue had not the required accuracies, an iterative procedure was adopted by FAST
for the Hipparcos data reduction based upon successive improvements of star positions
which, in turn, were used to improve the attitude (see Chapter 4). This required the
implementation of three different attitude reconstruction algorithms.
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First year attitude reconstruction (OGARO): Input Catalogue errors were taken
into account modelled as uncorrelated random variables with known variance. The star
coordinates were estimated together with the attitude angles.

Standard attitude reconstruction (OGAR): After the first Hipparcos catalogue con-
struction, the errors affecting the apparent coordinates, whether they were improved or
not, were no longer considered as unknowns. An equivalent standard deviation of the
transit time was introduced which was obtained by the combination of errors in the star
mapper transit time measurements, the star mapper calibrations, and the star coordi-
nates. The software estimated the attitude angles only, assuming that the apparent star
coordinates were perfectly known.

Iterated attitude reconstruction (OGARI): The satellite rotation around the z axis
obtained by the great-circle reduction was used as additional input data, together with
the star mapper transit times. This mode was used for the final iterations of the catalogue.

These estimation algorithms are not significantly different from the point of view of their
methodology. They will be illustrated as applied to OGAR.

Principle of Attitude Estimation

The only types of data used for the attitude reconstruction were the star mapper transit
times and apparent star coordinates, with their respective standard deviations, and the
central time instants of thruster firings. Gyro measurements and real-time attitude
data were not used, as these data were not found to be accurate enough to give a
useful contribution to the attitude reconstruction accuracy both because of the gyro
measurement errors and the errors of the position of their axes in the telescope frame.

Assuming the attitude model given in Section 7.5 and the availability of the above
measurement data, a measurement equation was written for each star transit obtained
by star mapper data processing (Chapter 6). Such equations require that the measured
transit time is equal to the sum of an ideal transit time, expressed by a function of the
attitude angles, star coordinates and calibrated star mapper geometry, and of the errors
resulting from the star mapper data processing, the star catalogue used and the star
mapper calibrations.

The attitude model was then inserted into the measurement equations, yielding a set
of equations where the unknown variables were given by the degrees of freedom of the
attitude model. The data was divided in time segments, always starting and ending
with thruster actuations. The attitude was reconstructed for each segment in one step
through the solution of a set of simultaneous equations, using the maximum likelihood
estimation criterion to determine the unknown parameters by maximization of the
measurement error probability. A Gaussian distribution of the errors was assumed
and the solution was obtained working at a second-order level with the Gauss-Markov
method. The unknown parameters of the attitude model and their covariance matrix
were estimated and used to calculate the attitude angles and their standard deviations.

The rest of this section gives a more detailed account of the processes outlined above.
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Measurement Equation and Estimation Procedure

For each detected star mapper transit the following data were available:
• the transit time τ̂ and its standard error as evaluated in the star mapper data

processing. Using the instantaneous rotation rate, the standard error could be
expressed as an error angle �;

• the apparent stellar coordinates (v, r) in the reference great-circle frame, with their
standard deviations whenever they came from the Input Catalogue and were not
improved by an intermediate sphere solution;

• the field of view index ( f = +1 for preceding and f = −1 for following) and the
slit-group index (g = 0 for vertical, g = +1 for upper inclined, g = −1 for lower
inclined);

• the reference position of the slit group, η0( f , g). This position consists of f γ /2
(where γ is the basic angle) and the distance between the fiducial reference line for
the main grid and the reference line for the slit group (Gv or Gi in Section 6.1);

• the calibrated grid-to-field transformation for the star mapper with its standard
deviations (see Chapter 6).

On the basis of the above data the following measurement equations were written for a
vertical slit transit:

ψ = v + η0( f , g) + ∆η f g(φ, θ, r) + �v [7.27]

and for a transit through the inclined slits:

−φ f g sin η0 − θg cos η0 = v + η0( f , g) − gr − ∆η f g(φ, θ, r) − ψ + �i [7.28]

where the attitude angles refer to the observed transit time τ̂. �v and �i are random
variables due to the errors in transit time estimate, apparent star coordinates, and the
star mapper calibration. Their standard deviations were calculated from the input data.
∆η f g are complicated non-linear functions of φ, θ, r including corrections from the
calibrations. The terms ∆η f g have small derivatives with respect to the variables φ, θ,
r in all their admissible range. This particular property allowed these equations to be
considered as linear in the variables φ and θ, and to be updated in an iterative procedure.

When a time interval and an attitude model had been selected the attitude angles φ(t),
θ(t), ψ (t) were computed as functions of the degrees of freedom of the model by solving
the differential equation system, Equations 7.24 and 7.25. Since the system is linear,
the attitude angles were obtained from the linear measurement Equations 7.27 and
7.28, and a set of equations was obtained in the unknown variables corresponding to
the degrees of freedom of the model. As already pointed out, ∆η f g could be computed
from tentative values of φ and θ, so that the above system of equations could be assumed
linear in the unknown variables.

The unknown variables were solved according to the maximum likelihood criterion,
maximizing the probability of the random variables �v and �i . Since it was known that
these variables have a Gaussian distribution, the maximum likelihood criterion was
implemented by iterative application of the Gauss-Markov method.

The procedure started by assuming θ(t) = φ(t) = 0, from which the first approximation
of ψ (t) was calculated, using only vertical slit transits. Subsequently, the inclined slit
equations were considered and a first approximation of θ(t) and φ(t) was obtained. The
procedure was iterated until it converged to a stable solution.
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The Gauss-Markov method allowed the estimated values of the unknown parameters
and an estimate of the covariance matrix to be obtainied simultaneously, from which
the standard deviation of the reconstructed attitude was computed for each observation
frame. A simplified approach was adopted in order to reduce the computing time.

Time Segmentation and Model Selection

In normal conditions, i.e. in the absence of eclipses, occultations or other events dis-
turbing the data, the long-term Fourier model was used. Intervals of a length close to
a rotational period of the satellite were considered, starting and ending with a thruster
firing. An overlap of at least one thruster firing interval between neighbouring solu-
tions was used to avoid discontinuities in the attitude reconstruction. This was the
preferred solution which was applied whenever possible, introducing occasionally large
overlapping in order to allow this type of solution.

Occultation periods during which the thrusters were not fired could be included in the
long-term model. When thruster firings took place during the occultation, then the data
before and after the occultation could not be included in the same model. When, due
to the presence of long occultations, it was not possible to select a time interval of the
order of one satellite rotation (115–130 minutes), then, for intervals of a duration in the
range of 30–115 minutes, the intermediate-term Fourier model was used.

When the satellite was in penumbra the short-term polynomial model in penumbra was
imposed, interrupting the long- and intermediate-term models.

The short-term polynomial model was used only for single thruster firing intervals that
could not be joined up with other time intervals.

Both polynomial models required a large number of degrees of freedom in consideration
of the length of the time interval and they presented an estimation error larger than the
one obtained by the Fourier model. Thus, they were used only in the case of penumbra
or anomalous behaviour, when the application of the Fourier model could give non-
negligible model errors.

Significance Test and Anomalous Situation Detection

The residuals for all observations were computed and subjected to a χ2 test to assess
the validity of the assumptions made: the goodness of the estimated variances of the
measurement errors and the goodness of the parametric model used. Since the variances
of the estimated star mapper transit time errors were very well assessed, the χ2 test was
mainly used to control the goodness of the attitude model, but it also allowed the star
mapper data to be automatically rejected when the residuals were grossly inconsistent
with its variance (as in the case of the observation of a wrong star or very erroneous star
positions).

The χ2 test permitted also the detection of situations in which the perturbing torque
acting on the satellite had an anomalous behaviour. In such situations the short-term
polynomial model was imposed, but this model was so general that it was rather suitable
for any torque behaviour.



Attitude Reconstruction 119

Table 7.3. Typical rounded a posteriori standard deviations expressed in mas obtained by the three attitude

determination procedures. For OGARI, σψ is obtained by the great-circle reduction.

Procedure σφ σθ σψ

OGARO 200 100 60

OGAR 60 30 15

OGARI 30 20 2

Convergence of the Iteration Process

The improvement of the attitude at different iterative stages was essentially due to two
factors:

• each iteration involving either more observations or being just a re-iteration with
the same data provided improved star positions for more and more stars (OGAR
and OGARI);

• the determination of the attitude in ψ by the great-circle reduction permitted the
assumption that this angle is perfectly determined so that only θ and φ remained
to be computed, allowing them to be decorrelated from ψ (OGARI). In addition
(see Section 6.1) its high precision meant that remaining transit time residuals
reflected primarily the star mapper geometry corrections, which could therefore be
calibrated, providing another means of improving the attitude.

The improvement obtained during this iterative procedure is illustrated by Table 7.3,
which gives typical orders of magnitude of the a posteriori standard deviations for the
three angles as obtained in the mean by each of the attitude determination procedures.

7.7. Performance Comparisons

A comparison of the reconstructed attitude results obtained by FAST and NDAC was
carried out on suitably selected sets of reference great circles. The aim of the com-
parison was the assessment of the attitude reconstruction accuracy and the level of
agreement between the results obtained by the two consortia, pointing out any unjustifi-
able disagreements. The comparison involved also results obtained with the great-circle
reduction. The comparison was carried out along the following steps.

Preparation and Synchronization of the Data

The attitude reconstruction results produced by NDAC and FAST were expressed in
different variables and referred to different celestial frames, as was described in the
preceding sections. The attitude results were collected in data sets, describing the
satellite axes positions and rotation rates for every observational frame. The criteria for
accepting and deleting data were slightly different between the consortia, and gaps of
different lengths occurred in the data. The first step in the comparison exercise was
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therefore to synchronize the data, to extract a common sampling time set. Such a set
contained typically 12 000 samples.

Differential Rotations

The reconstructed attitude can be represented by an orthonormal matrix, describing
the attitude by the direction cosines of the equatorial coordinates at J2000 of the satellite
(or instrumental) axes:

A j (i) = [ x j (i) y j(i) z j (i) ] [7.29]

where i denotes the sampling time instant and j = 1, 2 the two consortia.

The differences between the two sets of attitude data were expressed by 3-2-1 Euler
angles, corresponding to the three rotations φ(i), θ(i), ψ (i) through which A2(i) was
obtained from A1. The rotation vector r(i) = [φ(i) θ(i) ψ (i)]0 described the attitude
reconstruction differences with respect to the on-board instrumental reference frame,
the satellite axes. The same difference can be expressed with respect to the celestial
reference frame through the transformation:

rc(i) = Ar(i) [7.30]

where A can refer to either A1 or A2 without any significant difference.

The differential rotation vector r(i) was decomposed as the sum of systematic and ran-
dom differences. Two possible sources of systematic differential rotations were consid-
ered: the definitions of the celestial and the instrumental reference frames respectively.

The instrumental reference frame was defined by the star mapper geometry calibrations.
Differences between the consortia in this calibration would cause a differential rotation
that is constant in the instrumental reference frame. This constant rotation was denoted
by the vector:

r0 =

 mφ

mθ

mψ

!
[7.31]

The celestial reference frame was defined by the positions of the star mapper stars as
used in the attitude reconstruction. The two consortia determined and applied different
corrections to the original Input Catalogue positions, resulting in slight differential
rotations between the celestial reference frames used. This rotation was constant when
expressed in celestial coordinates and described by the vector:

rc0 =

 mx

my

mz

!
[7.32]

Thus, the differential rotation vector could be described by:

r(i) = r0 + A−1(i)rc0 + e(i) [7.33]

where e(i) denotes the residual random term.

The systematic differential rotations could be estimated in principle by applying an
ordinary least-squares method, but a collinearity problem arises, not allowing a rotation
of the instrumental reference frame about the body z axis to be distinguished from a
rotation of the celestial reference frame. Considering the fact that the calibration of the
body reference frame with respect to rotation about the z axis was verified at the level
of the great-circle reduction (see Chapter 9), it was assumed in the attitude comparison
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that mψ = 0, leaving only the variables mφ , mθ , mx, my, and mz to be estimated by a
Householder procedure.

Estimation of Variances

Once the estimated values were computed it was necessary to verify if the hypothesis
that they were different from zero could be accepted, or if the resulting values were to
be retained as incidental effects, produced by the random error e(i). Actually, while a
statistical model for FAST attitude reconstruction was available, this was not the case
for NDAC. So, an a posteriori approach was applied, based on the computation of the
entropy of the signal r(i) (Donati & Sechi 1992). The distribution function equivalent
number of the signal was computed and the separator thresholds were derived and
used to establish the significance of the systematic components mφ , mθ , mx, my, and
mz of r(i) obtained by applying the least-squares method to the system of equations
(Equation 7.33).

Global Evaluation of the Standard Deviations

Then, modelling r(i) by a second order stochastic process with a uniform distribution
of energy in a suitable orthogonal basis of dimension equal to the already evaluated
equivalent number of degrees of freedom, the standard deviations of these components
were evaluated:

� =

 σφ

σθ

σψ

!
[7.34]

Denoting by σ1q and σ2q the standard deviations of the two attitude reconstructions to
be compared, in any of the angles (q = φ, θ or ψ ), the following holds:

σ2
q = σ2

1q + σ2
2q − 2ρσ1qσ2q [7.35]

where ρ is the correlation coefficient between the two realisations of the attitude. The
correlation is close to +1 because both are obtained from the same star mapper observa-
tions and their Poisson noise. Given σ1q and σ2q, this relation allowed the construction
of a test of the hypothesis that both attitude reconstructions were within given limits.
This had to be satisfied for an acceptable value of ρ. The test could, of course, not
exclude that both reconstructions were affected by some large correlated errors.

Results of the Last Attitude Comparison

The last attitude comparison was carried out on a set of 24 orbits chosen among those
having some critical problems such as spin-up of the redundant gyro, redundant gyro
running, well covered eclipse, reference great-circle pole close to the ecliptic plane,
strong perturbing torques.

Systematic differences were found both in the instrumental and in the celestial reference
frames. The first were explained by some differences in the star mapper calibrations,
and the second by differences in the celestial reference frames adopted by the consortia.
These differences were taken into account by the catalogue merging procedure. Assum-
ing that the term mψ is negligible since it was determined by the great-circle reduction,
the effects in each frame were evaluated. The results are presented in Table 7.4. In
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Table 7.4. Estimated values and standard deviations of the rotation components, expressed in mas.

Component Estimate (mas)

mφ −12 ± 14

mθ +98 ± 23

mx +15 ± 6

my +17 ± 6

mz −13 ± 5

Table 7.5. Estimated standard deviations of the random terms in the differential rotation in body axes,

expressed in mas. Column (a): all frames included; (b): excluding outliers, i.e. random terms exceeding ±3σ.

Component Estimates (mas)

(a) (b)

σφ 129 ± 90 82 ± 24

σθ 81 ± 47 54 ± 14

σψ 12 ± 10 3 ± 3

addition, Table 7.5 shows the standard deviations σq of the components (q = φ, θ, ψ ) of
the differential random rotation e(i) along with their estimated standard deviations σσq .

The results shown in Tables 7.4 and 7.5 correspond to the most difficult cases, presum-
ably subject to the largest errors. However, in normal cases found in the great majority
of great circles, they happen to be also comparable to the figures given in Table 7.3.
The interpretation is that attitude reconstructions made in both consortia show a gen-
eral agreement which is of the order of the requirements and is sufficient to avoid the
introduction of significant differences in the results of the great-circle reduction—the
primary objective of the attitude determination activities. The uncertainties in the final
NDAC attitude were in addition estimated in the Tycho data reductions as being at least
7 mas along scan and 30 mas perpendicular to the scan, much better than the 100 mas
expected before launch for the latter quantity.

F. van Leeuwen, F. Donati, J. Kovalevsky



8. TIMING AND CALIBRATIONS FROM
THE ATTITUDE RECONSTRUCTION

The attitude reconstruction processes, described in Chapter 7, permitted the
calibration of a variety of instrumental and environmental influences acting on
the satellite to an accuracy that had not been previously possible. This was
a result of the accuracy demanded from, and achieved by, the attitude data,
in particular the star mapper transit times combined with the accurate stellar
positions provided by the Hipparcos mission. It allowed precise calibration of
orientations, scales, drifts and noise levels of gyro readings (used and imple-
mented in the real-time attitude determination), thruster performance (used
in the on-ground attitude reconstruction), the detector grid geometry (used in
real-time and on-ground attitude reconstruction) and also the inertia tensor
(used in on-ground attitude reconstruction). Further analysis of the attitude
results also showed what torques were acting on the satellite, and how these
torques evolved during the mission. Accurate timing of the measurements was
very important for certain aspects of the mission, in particular for minor planet
observations and the description of the satellite orbit; the associated calibration
procedures are described.

8.1. Characteristics of the Orbit

The satellite described a perturbed elliptical orbit (the geostationary transfer orbit with
increased perigee height) with average elements as given in Table 8.1. The decrease
rates in semi-major axis and period were directly related to passages through the outer
layers of the Earth’s atmosphere, and were three to four times higher than the average
value when perigee was low, and much smaller when perigee was high. Perigee height
varied according to the orientation of the major axis of the orbit with respect to the
direction of the Sun as seen from the Earth.

The orbital period had been chosen close to 5 rotational periods of the satellite (38400 s);
9 orbital periods covered close to 4 days. This resulted in semi-periodic patterns of
ground-station visibility. In the data processing the successive apogee passages received
a monotonically increasing ‘orbit number’ o (see Volume 1, Section 2.8), helping to
relate data reduced by the two reduction consortia for comparison exercises. Successive
orbits for which om = mod(o, 9) were equal, were generally very similar in characteristics.
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Table 8.1. Characteristics of some of the elements of the satellite orbit: mean value, secular rate of change

(unit per year) and amplitude of periodic variations.

Element Mean value Change/yr Amplitude Unit

period 38340 −20.4 ±4.5 s

semi-major axis 24582 −8.2 ±2.5 km

eccentricity 0.7196 0.000 ±0.005 –

perigee 6890 −3.0 ±140 km

Figure 8.1. The orbital eccentricity (top) and orbital period (bottom) over the mission. The orbital period is given

relative to the intended nominal period for the recovery mission.

Figure 8.1 shows the evolution of two of the main orbital parameters over the mission.
Figure 8.2 shows characteristics of the orbit that directly affected the temperature and
other aspects of the satellite: the height, longitude and local time of perigee, reflecting a
period of 588.7 days between successive conjunctions of the satellite at apogee and the
Sun.



Timing and Calibrations from the Attitude Reconstruction 125

Figure 8.2. The local geographic longitude for perigee passages (top), the local solar time in hours at perigee (middle)

and the perigee height above the Earth’s surface (bottom). The numbers in the top graph refer to orbit numbers modulo

9 and show the repeating pattern over 9 orbital periods (4-days) interval. The longitude of apogee falls halfway between

successive perigee longitudes. The dashed line in the central graph represents mid-day.

The local longitude at perigee drifted according to the relation between the orbital
period and precession rate of the satellite and the orbital period of the Earth. As the
orbital period of the satellite decreased, those drifts changed. Also the precession rate
varied according to the orientation of the orbit with respect to the Earth and the Sun.
From Figure 8.2 it can be seen that around day 1030 that drift was almost zero. At
that time the orbital period was around 38327 s, giving a precession rate for the orbit
of 0.�30 per day, at a time when the perigee passage took place close to mid-day local
time. The average precession rate over the mission was 0.�37 per day.
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Figure 8.3. The eclipse lengths (top) and exposure factor (bottom) over the mission.

As could be expected, the lowest perigee passages took place near mid-day local time,
when the satellite orbit was stretched away from the Sun. During these low passages
the satellite was subjected to increased friction from the Earth’s atmosphere.

In addition to the effects due to the satellite orbit around the Earth, the effects of the
Earth’s orbit around the Sun were also clearly noticeable. Variations of around ±3.5 per
cent in radiation received by the satellite due to the ellipticity of the orbit of the Earth,
were reflected in temperature sensitive instrumentation on-board as well as in the solar
radiation torques. The radiation received was further affected by the occurrences and
lengths of eclipses, shown in Figure 8.3.

To describe the combined effect of eclipses and the solar radiation variations, a quantity
Ex, the exposure factor, was introduced and defined as:

Ex =
1
d2

�Torb − Tecl

Torb

�
[8.1]
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Table 8.2. The on-board time and the (nominal) time intervals used during the mission. Abbreviations:

FOV = field of view, IDT = image dissector tube (main detector), OBT = on-board time, RTAD = real-time

attitude determination, SM = star mapper.

Time-span Frequency Name Alias Use

921.6 kHz Oscillator frequency Basis for all timing

230.4 kHz Clock frequency Input for OBT

0.000833 s 1200 Hz IDT sampling period T1 Integration time for main detector

0.001667 s 600 Hz SM sampling period Integration time for SM detectors

0.006667 s 150 Hz IDT slot T2 Allocation of observing time

0.013333 s 75 Hz Thruster firing time interval unit

0.041667 s 24 Hz Telemetry frame Basic unit of telemetry data

0.133333 s 15/2 Hz IDT interlacing period T3 Star switching cycle time

0.416667 s 2.4 Hz Length of SM extract

1.066667 s 15/16 Hz Gyro integration time

2.133333 s 15/32 Hz Observational frame T4 IDT observations, RTAD data

10.66667 s 3/32 Hz Telemetry format Main unit of telemetry data

20.625 m Time between crossing of the FOVs

2.1333 h Rotation period of satellite

10.650 h Orbital period of satellite

where Torb is the orbital period of the satellite, Tecl the time during an orbit with the
Sun eclipsed by the Earth and d the distance between the Earth and the Sun expressed
in astronomical units. The variation of Ex, shown in Figure 8.3, was the driving force
behind the long-term temperature variations in the spacecraft.

8.2. The On-Board Time

As all the main processing took place using the on-board time as reference, it was
necessary to investigate the relations between the on-board and ground-station time.
This section deals with the various effects that were observed to influence this relation.

Time Units

All actions on-board the Hipparcos satellite were controlled by timings provided by the
on-board time, which derived its signal from a 921.6 kHz crystal controlled oscillator
in the bus controller of the central terminal unit, situated on the spacecraft platform
almost halfway between the entrance pupils of the two fields of view. Table 8.2 shows
the time intervals used, their relationships and the way they were referenced. The basic
frequency for the Hipparcos observations was 1200 Hz, equal to the sampling time for
the image dissector tube detector (T1).

The basic frequency for the telemetry was (3/32) Hz, the time of one telemetry format,
built up from 256 equal length (24 s−1) telemetry frames. The extraction of star map-
per counts was closely related to the telemetry organisation, and the same applied to
recordings of thruster firings.



128 Timing and Calibrations from the Attitude Reconstruction

The first stages in the data reductions (star mapper processing, attitude reconstruction,
image dissector tube processing, great-circle reduction) were done using the on-board
time scales, while carrying along UTC time as provided by the ground stations through
time tagging. UTC time was used for the calculation of ephemerides of planets, minor
planets and the moons of Jupiter and Saturn and had to be reliable to 0.01 s. It was
also used for the calculation of the ephemerides of the satellite, the Earth, Moon and
Sun, for determining the barycentric velocity of the satellite and for describing eclipse
and occultation conditions.

Satellite to Ground-Station Delays

Delay times between satellite and ground station were calculated from the satellite
ephemeris at epoch of observation and the geocentric coordinates of the receiving an-
tenna. These corrections were of the order of 0.01 s to 0.1 s, and were calculated once
per telemetry format (see Table 8.2). The calculation involved the following steps:

(1) calculate the Greenwich Mean Sidereal Time (GMST) for the time of observation;

(2) using the GMST and the antenna coordinates, calculate the equatorial station
coordinates (a);

(3) using the satellite ephemeris, calculate the geocentric equatorial satellite coordinates
(g0);

(4) calculate the vector e = g0 − a from the antenna to the satellite;

(5) check if the satellite was above the horizon (observations could continue with the
satellite just below the horizon);

(6) calculate the delay time from the length of e;

(7) subtract the delay time from the ground-station time.

The coordinate vectors used for calculating the delay were expressed in the equatorial
system of the mean equinox of date, in which the satellite ephemeris was originally pro-
vided by ESOC (see Section 12.1). The satellite ephemeris used in the data reductions,
e.g. for calculating stellar aberration, was transformed into the J2000 system.

Ground-Station Delay Time Checks

The behaviour of the on-board time was checked with respect to the ground-station
time for short (minutes) and long (weeks) time drifts. During these checks it became
apparent that ground-station delay times were not as accurate and stable as they were
claimed to be, and for some stations were affected by equipment changes. The ground-
station delay time described the time interval between the signal reaching the receiver
and the moment of tagging the signal. The signal tagging was tuned by using a 1-second
block signal from the satellite, to which the ground station had to lock-in. Occasional
lock-in errors did occur, causing an error of 1 (and once 2) seconds in the relation
between ground-station time and on-board time. These errors were detected from the
examination of the evolution of the differences between ground-station and on-board
time, and subsequently corrected for. A total of 11 such cases were detected, one from
Perth, 4 from Kourou and 6 from Goldstone.
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Figure 8.4. Relative time-delay corrections derived for the Goldstone ground station, excluding the full second

corrections.

The ground-station time delay for the Goldstone receiver was rather unreliable, with
sudden changes of several tens of milliseconds, an order of magnitude more than the ac-
curacy that was initially requested. The Goldstone time delays were re-calibrated for the
entire mission relative to the much more reliable Odenwald and Perth timings. Ground
station change-overs during observations were used for most of these calibrations: the
gap in coverage of the observations usually lasted less than a minute. In such a case the
relation between on-board time and ground-station time was represented with a simple
second-order polynomial over a short stretch covering data before and after the station
switch. Two zero points were used in the solution, one for each station. The difference
of these zero points was a measure of the relative ground-station delay correction. Com-
parisons between various determinations showed the most likely source of a correction.
Figure 8.4 shows the corrections added by NDAC to the provided Goldstone time delay
values (excluding the full second corrections).

On-Board Time Drifts

After adjusting for all the relative ground-station delay corrections, the drift of the
on-board time could be determined. This was done by fitting spline functions to
the differences between ground-station and on-board time over undisturbed intervals.
Almost discrete shifts in these differences occurred when heater problems developed on
board the spacecraft, and no solutions could be made across such data. The clock drift
was given by the derivative of the spline functions. The drift turned out to consist of two
short-time-scale components (the orbital period and the rotation period of the satellite)
and a long-time-scale component, related to the orbit of the Earth and the relative
position of the satellite orbit with respect to the positions of Sun and Earth. All these
effects were caused by temperature changes. Local changes in the case of the rotation
period, global changes in the case of the satellite orbit, and longer lasting changes
related to the Earth’s orbit and the orientation of the satellite orbit with respect to Sun
and Earth. Figure 8.5 shows the evolution of the long-term changes, and a comparison
with Figure 8.3 identifies beyond reasonable doubt that temperature variations (due to
the exposure factor) were the main contributor to the rate variations. The rate variations
in Figure 8.5 represent variations of the on-board time at apogee.
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Figure 8.5. Long-term variations in the on-board time. The top graph shows the measured differences between

on-board time (OBT) and ground-station time (GST) over the mission. The bottom graph shows the derivative of the

top graph, the rate of change of the time difference OBT–GST, caused by the drift of the on-board time. A comparison

between the bottom graph and Figure 8.3 shows that the frequency of the crystal controlled oscillator, which regulated

the on-board, increased when the spacecraft cooled down.

The same relation between on-board time drift and temperature changes can also be
seen in Figure 8.6 for the short-term changes, where in this case the spacecraft cools
down during eclipses and heats up again outside the eclipses. On top of this variation is
a modulation caused by the rotation of the satellite, which causes variations in the local
exposure to sunlight. Figure 8.7 shows the effect of heating-up during a perigee passage,
and how alternate orbits are more similar in behaviour than consecutive orbits. This is
due to the longitudes of the perigee passages as shown in Figure 8.2: for alternate orbits
the difference in longitude is much smaller than for consecutive orbits. The density of
the Earth’s atmosphere at high altitude varies considerably, leading to different amounts
of heating up of the spacecraft for perigee passages at different longitudes. This heating
up was noticed very clearly when comparing clock drift during periods of low perigee
with periods of high perigee.
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Figure 8.6. Short-term variations (covering four orbital periods) of the difference between on-board time (OBT)

and ground-station time (GST) during a period with long eclipses. The top graph shows the time differences, the lower

graph the rate of change in the time difference. The times of eclipses are indicated by the raised sections of the line at

the bottom of the lower graph. Cooling down of the spacecraft during eclipses caused the clock to run faster.

The changes in on-board time drift could be as much as 1 × 10−6 over a period of less
than an hour, but was generally at the level of 5 × 10−7 to 2 × 10−7 over one orbit. The
maximum drift of the on-board time over one orbit was approximately 0.07 s, which
took place when eclipses lasted for almost 90 minutes and the spacecraft cooled down
significantly.

FAST derived a third-order polynomial to describe the relation between on-board and
ground-station time over one orbit and applied only the full second corrections to the
ground-station delay times, while NDAC tagged every observational frame with the
corrected ground-station time, corrected for ground-station delay times, determined
as described above. The study presented above showed that in both cases sufficient
accuracy was obtained for relating the on-board time to Terrestrial Time (TT).

8.3. Gyro Calibrations

The reconstructed attitude provided measurements of the inertial rates of the satellite
that could afterwards be compared with the gyro readings for the benefit of the real-time
attitude determination and some aspects of the ground-based attitude reconstruction.
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Figure 8.7. Short-term variations (covering four orbital periods) of the difference between on-board time (OBT) and

ground-station time (GST) during a period of low perigee passages. The heating up of the spacecraft during perigee

passages, caused the clock to run slower. Details of the variations repeated between alternating orbits, for which the

change in local longitude of perigee was relatively small, as shown in Figure 8.2. The 2.13 hour rotation period of the

satellite is also clearly seen.

The comparison described the gyro readings g as a function of the inertial rates ! and
the gyro drift gd :

g = A! + gd [8.2]

where the matrix A takes care of the orientation and scaling of the gyro readings.
Equation 8.2 was solved for each gyro independently. Noise levels on the various gyros
could be very different as well as variable. In order to avoid correlations between the
drift and the z axis component of the two gyros in the xy plane, the component ωz in the
solutions for the first two gyros was corrected for the mean scan velocity of the satellite.

Drifts were found to reflect short-term variations due to temperature changes during
solar eclipses, and were of the order of 0.1 to 0.4 arcsec s−1. Long-term variations were
avoided through the use of thermostatically controlled gyro heaters. Noise levels on the
gyro readings were more related to the general deterioration of the gyro electronics over
the mission. The evolution of the gyro drifts over the mission is shown in Figure 8.8. The
background of the drift variations is unknown. The drifts are given here as measured per
gyro, rather than as measured per input axis (as was done in Figure 13.4 in Volume 2).

The gyro readings were made once every 16/15 second (half an observing frame), and
were added in pairs, giving one measurement per observing frame. The readout quanta
in the operational fine mode were 9 × 10−6 degrees, or 0.03 arcsec per 1.06 s. On a
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Figure 8.8. Variations in the drifts of the five gyros (indicated in the graphs by their numbers) over the length of the

mission. The noisy region around day 450 is associated with the very long eclipses and large temperature fluctuations

around that time. As a result, the measured drift depended on the time coverage of a data set. The discontinuity in

the bottom graph around day 545 is due to the change from gyro 4 to gyro 5. For the last part of the mission only two

gyros were in operation. The top graph shows the effects of gyro 1 breaking up between day 1260 and day 1320. In the

final part of the mission, starting from day 1390, gyro 1 had been replaced by gyro 3, for which the heater had earlier

broken down, leading to the relatively large drift and sensitivity to temperature changes in the spacecraft, as shown by

the offset around day 1450 to 1460, when the satellite operated in sun-pointing mode.

single reading this would produce a quantization noise of approximately 0.01 arcsec s−1,
and on a pair of measurements a noise of approximately 0.007 arcsec s−1. The standard
deviations observed for the gyro readings varied from 0.008 to 0.100 arcsec s−1, with
the exception of noise associated with gyro failures. This meant that the quantization
noise was in some cases (in particular for gyro 2) a major noise contributor, and that
the actual gyro readings in such a case could have been much better. At the noise level
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of 0.008 arcsec s−1 or less the gyro data could contribute significant information to the
attitude reconstruction process, in particular for the z axis position.

Gyro data could obviously only contribute information to the time derivative of the satellite attitude. The

contributions of gyro data and the star mapper data to the attitude solution can be estimated from the total

data volume Wn for a polynomial coefficient of degree n:

Wn =
X

i

t2n
i

h�2
i i

+
X

j

n2t2n−2
j

hν2i

where the first part represents the contribution by the star mapper data and the second part the contribution

by the gyro measurements. The variance of the noise on the star mapper transit time determinations is given

by h�2
i i, the variance of the noise on the gyro readings by hν2i. The density of star mapper transits (see

Section 6.1) is one every 8 s for the vertical slits, and one every 16 s for the inclined slits in each field of view.

The typical error on a transit time was 0.05 arcsec. The possible contribution of gyro data thus depended on

the length of the stretch of data considered, the number of star mapper transits available, and the noise level

on the gyro readings. The number of star mapper transits available was influenced by density variations on the

sky and by background level variations. When gyro noise levels were low (at a level of 0.008 arcsec s−1), gyro

data could contribute significant information to the attitude reconstruction process, in particular in situations

where the star mapper data was reduced in quantity and/or quality.

The contributions to the standard deviations obtained from the solution of Equation 8.2
consisted of a combination of readout and repositioning noise. Correlations between
errors on successive gyro readings were expected and observed, although the exact
behaviour was often difficult to understand. The correlation between errors on gyro
readings originated from the measuring mechanism: the input axis was to remain ‘fixed’
with respect to the satellite axes. Thus, a measurement of a rotation angle by a gyro
was followed by a resetting of that gyro by the measured angle. It was this resetting
that caused the gyro induced torque acting on the spacecraft. Errors on a reading
were transmitted to the resetting, and the next reading contained both the error on the
resetting and its own error on the reading. In addition, the resetting itself was affected
by its own error. As a result of this, consecutive gyro readings had correlated noise, with
a correlation coefficient of approximately −0.2. These correlation coefficients could
change dramatically with the deterioration of the gyro electronics. When readout noise
became dominant, the correlation coefficient could increase to −0.5.

In the case of gyro 3, used over the last 6 months of the mission, the situation was
worse. Here, due to a failure of the gyro heater, a wave of amplitude 0.025 arcsec s−1

was noticed. The frequency at which it was detected, 0.1488 Hz, could have been an
alias of the real frequency with the frequency of observations, 15/32 Hz.

The gyro readings were, especially later in the mission, occasionally disturbed by so–
called noise bursts. These were sudden and often dramatic increases in the noise level
on the readings of one gyro without an apparent reason. Such changes in noise could
not be properly accommodated in the overall calibration of the gyro noise levels, due to
their erratic appearance.

During the mission all but one of the gyros broke down, the remaining one operating
without a heater. The breaking down of gyro 4 early in the mission was characterised
by changes in torques acting on the spacecraft, noticed in the rates measured primarily
around the x axis. This could have been caused in two ways: the rotation axis of gyro 4
was changing position significantly, or by changes in the angular momentum of gyro 4.
The second of these options seems the more likely one, as it would require rather large
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displacement variations of the gyro 4 rotation axis to cause noticeable torque variations.
Similar problems were encountered later in the mission when gyro 4 was running in
parallel with gyro 5 and at later stages when gyro 5 failed.

The non-operational gyros were tested once every month. A gyro de-storage was not
recorded in the telemetry and only the day at which it took place was recorded in the
two-weekly operations reports. The examination of the gyro data allowed for an accurate
reconstruction of the start of the spin-up, end of spin-up, start of spin-down and end
of spin-down times, which were accounted for in two ways: at each of these points
an artificial thruster firing was inserted, and the interval between end of spin-up and
start of spin-down was recorded in a separate file for use in the torque analysis: while a
redundant gyro was running, the torque on the satellite would be quite different. The
intervals between start and end of spin-up or spin-down (approximately 1 minute each)
were discarded: these intervals were too short with too rapidly changing rates, which
made a proper reconstruction of the attitude impossible and modelling not very useful.

8.4. Thruster Firings

The nominal attitude described the planned path of the satellite’s z axis on the sky and
the associated spin velocity. It was designed so that the scanning of the sky took place
in a smooth way, suppressing variations in scanning density across the sky as much as
reasonably possible. The satellite was subject to a variety of torques (see Chapter 7), all
of which disturbed the pointing and motion of the satellite. Through cold-gas thruster
firings the satellite pointing was kept to within 10 arcmin from the nominal attitude.

The firing lengths were calculated on-board the satellite, using a very much simplified
model of torques acting on the satellite, the estimated current rotation rates and error
angles (real-time attitude determination, see Chapter 7), and the time span over which
these error angles were to be brought back to zero. Thruster firings always took place
at the start of an observational frame, and lasted an integer number of 1/75 s intervals.
At the start of the mission, the minimum time was 0.05 s (4 units) and the maximum
time 0.5 s (42 units). Close to perigee longer on-times were allowed. Later in the
mission the minimum on-time was reduced to 2/75 s. Initially when one of the error
angles was found approaching its limit, all thrusters were fired, later in the mission the
z thrusters were only fired if there was the need for at least a minimum length firing of
8/75 s: zero-length z-firings are the most common during that period. A number of
times during the mission, due to an update of the Tait-Bryan angles (see Section 7.3)
from the ground, the offset between actual and nominal attitude was recognised to be
well beyond 10 arcmin. The control software on-board the satellite was not prepared
for such a situation, which would have been very rare under nominal conditions. The
result of this was a repeated violation of the control condition for the nominal attitude,
and minimum length firings of the thrusters in every observational frame (in alternating
directions) until the satellite had returned to within the 10 arcmin margin from the
nominal attitude. Such data stretches, which could last for several minutes, could not
be used in the reductions.

By describing the relation between velocity changes and thruster firing lengths, boundary
conditions could be included in the attitude reconstruction software, that allowed for
attitude modelling across thruster firings. The relations between thruster firing lengths
and velocity changes around the three axes of the satellite were calibrated by means of
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Figure 8.9. The evolution of the torques produced by the cold-gas thrusters. Thrusters producing positive velocity

changes are indicated with filled symbols, those producing negative changes with open symbols. The discontinuity is

due to a change of gas tank, the drift is due to the emptying of the gas tanks and a slight over-compensation for loss of

pressure.

on average two days of data. Using the reconstructed attitude the changes in velocity
on all three axes across a thruster firing were measured. Separate calibrations were
made for thrusters causing positive velocity changes and for thrusters causing negative
velocity changes, 6 components in all. In a least-squares solution these changes were
expressed as linear functions of the recorded on-times of the thrusters and an offset.
Table 8.3 shows for each thruster the measured offsets, expressed as zero points in the
on-time. Slow increases in the zero-point values were observed, as well as some increase
coinciding with the gas-tank change-over. In general, the zero points were stable to
within 5 per cent of 1/75 s.
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Table 8.3. The zero points in the thruster on-times, given in units of 1/75 s.

Axis +Thrust −Thrust

x 0.65 0.90

y 0.70 0.90

z 0.60 0.70

The linear relation between the change in rotation rate dv and the thrust t activated over
an interval τ describes the acceleration caused by the thruster involved, which, using the
arm-length of the thruster and the inertia tensor of the satellite, can be translated into a
torque. Figure 8.9 shows the evolution of the torques produced by the 6 thrusters over
the mission. The sudden change at day 900 is due to a change of gas tank. The increase
in torque over the mission is due to depletion of the gas tanks, with the decreasing
pressure being over-compensated. Further modulations were related to temperature
variations of the spacecraft. This is most notably so for the peak around day 450,
which is related to the minimum in the exposure factor shown in Figure 8.3: with the
spacecraft cooled down, the pressure in the gas tanks was diminished, and automatically
over-compensated to give a higher resulting torque. The thruster torque specified by
the manufacturer was 20 mN.

In the nominal situation (geostationary orbit, empty apogee boost motor tank) the mass
centre of the satellite would have coincided with the plane in which the z thrusters were
situated. However, with a full tank the mass centre was shifted by 72 cm, which resulted
in the z thrusters also causing torques on the x and y axes. The calibration values
obtained for the z thrusters confirmed the estimate of the mass centre of the satellite by
the manufacturer to within a few mm. Figure 8.10 shows the x and y components in
the z thrusters as calibrated in comparison with the values predicted from the positions
of the thrusters and the mass centre.

The noise level left after fitting the thruster firing lengths against the changes in rotation
rates was an indication of the precision to which this information could be used in the
reductions. The figures observed changed significantly from 0.01 arcsec s−1 for the first
gas tank to 0.02 arcsec s−1 for the second tank. That means that after a thruster firing
the uncertainty in the rotation rates is at least at a level of 0.01 to 0.02 arcsec s−1, and
at most at the level of 0.1 arcsec s−1. The noise was independent of firing length. The
increase in the noise level while using the second gas tank could be due to stronger
temperature fluctuations resulting from a different position in the spacecraft.

8.5. Inertia Tensor and Torque Calibrations

Basic Model

The calibration of the inertia tensor and of the environmental torques relied on the
fact that the attitude reconstruction results were available for all three axes in the form
of rates, and when differentiated, in the form of accelerations. If we assume that the
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Figure 8.10. The relative torques caused by the z thrusters on the x and y rotation rates. Nominally, a firing by the

+z thruster, giving a velocity change of vz, also gave a velocity change of −0.028 vz on the x axis, and +0.086 vz on

the y axis (solid symbols). Similarly, a firing by the −z thruster, giving a velocity change of −vz, also gave a velocity

change of −0.089 vz on the x- and −0.019 vz on the y axis (open symbols).

Hipparcos satellite was a rigid body moving freely in space, then the relation between
the rates and the accelerations was described by the Euler equation:

I
d!
dt

= N − ! × I! [8.3]

where I is the inertia tensor, N the external torques and ! the inertial rates around the
satellite axes. Thus, ! and d! /dt were observed, and N and I were to be calibrated.
In principle one should first orthogonalize the left-hand side of Equation 8.3, but using
the ground-based starting values of the inertia tensor, this orthogonalization would have
very little effect (considering also that the magnitudes of the acceleration rates for the
three axes are not very different). Thus, it was assumed that in a first approximation
the left-hand side of Equation 8.3 could be expressed as:

I
d!
dt

=

 Ixxω̇x

I yyω̇ y

Izzω̇z

!
[8.4]

where Ixx, I yy and Izz are the diagonal elements of the inertia tensor. The off-diagonal
elements of I were approximately 100 times smaller than the diagonal elements (see
Table 7.1). Small changes in the inertia tensor elements were most likely related to the
depletion of the cold-gas tanks.
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The same approximation could not be made for the second term on the right-hand side
of Equation 8.3. Developing this term for the x coordinate gives:�

! × I!
�

x
= ω yωz(Izz − I yy) − ω2

z I yz − ωxωz Ixy + ω2
y I yz + ωxω y Ixz [8.5]

Because the diagonal elements enter as a difference, the contributions by the off-diagonal
elements become relatively more significant. Also, the rotation rate around the z axis
was about 100 times the average rotation rate around the x and y axes. For this reason
we can ignore the last two terms in Equation 8.5, but have to account for the first
three. Of these, the second varied relatively very little and was strongly correlated with
a constant torque. Similar considerations for the other two axes led to the following
equations:

! × I! '

 ω yωz(Izz − I yy) − ωxωz Ixy

ωzωx(Ixx − Izz) + ω yωz Ixy

ωxω y(I yy − Ixx) + ωxωz I yz + ω yωz Ixz

!
[8.6]

where the first term in the equation for the z axis is fully defined by the first terms for the
x and y axes. As this term is also, due its small size, badly determined, it was not solved
for. In the implementations it was derived from the other calibrations and implemented
as such. The complete calibration equations expressed in the observed quantities thus
became:

d!
dt

=

 Nx / Ixx

Ny / I yy

Nz / Izz

!
+

 ω yωz(Izz − I yy) / Ixx − ωxωz Ixy / Ixx

ωzωx(Ixx − Izz) / I yy + ω yωz Ixy / I yy

ωxωz I yz / Izz + ω yωz Ixz / Izz

!
[8.7]

It is clear from this equation that only the ratios of the elements of the inertia tensor can
be calibrated, not the absolute values. This was no problem, as similarly the application
of the inertia tensor was primarily as ratios between the elements. In practice the
elements were scaled to a fixed value for Ixx (see Table 7.1).

Calibrations were first carried out on data collected over one orbit at a time, for the
inertia tensor elements and the external torques. The gravity gradient torque NG (see
Section 7.2) was subtracted using an approximate a priori inertia tensor (correct to
within a few per cent). Subsequently, the calibrations were repeated for the other
external torques, applying the full, calibrated inertia tensor in Table 7.1: Nx / Ixx

Ny / I yy

Nz / Izz

!
=

d!
dt

+

 (! × I!)x / Ixx

(! × I!)y / I yy

(! × I!)z / Izz

!
−

 NG,x / Ixx

NG,y / I yy

NG,z / Izz

!
[8.8]

where NG is given by Equation 7.6 in Section 7.2.

The coefficients which remained to be calibrated were those related to solar radiation
and the magnetic moment of the satellite, as well as effects related to temporary localized
heating of the outer surface of the satellite. Thus, the remaining torques were expressed
as a set of harmonics, related to Equations 7.2, 7.4 and 7.5, and linked coefficients re-
lated to Equations 7.11 and 7.13. Some additional coefficients were required too, some
possibly related to deformation of the Earth’s magnetic field, others as yet unexplained.

Torques Related to Solar Radiation

Torques caused by solar radiation could be identified in three ways: they appeared
as coefficients of specific trigonometric terms, related to the three-fold symmetry of
the satellite (see Section 7.2), they disappeared during eclipses and sun-pointing mode
observations, and they were subject to an annual variation resulting from the ellipticity
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Table 8.4. The solar radiation related torque components as observed in the accelerations. The observed

values, after having been corrected for Sun–Earth distance variations, were fitted to a linear function of time

with day 800 as reference point. The coefficients (at day 800) are measured in mas s−2 and the derivatives in

mas s−2 yr−1.

Axis Term Coefficient Derivative

x sin Ω −2.28005 ± 0.00031 −0.00980 ± 0.00042

x sin 2Ω 0.59429 ± 0.00012 −0.00895 ± 0.00016

x sin 4Ω −0.20310 ± 0.00008 −0.00028 ± 0.00010

x sin 5Ω 0.09826 ± 0.00008 −0.00230 ± 0.00011

x sin 7Ω −0.01112 ± 0.00009 0.00039 ± 0.00012

x sin 8Ω 0.00375 ± 0.00009 −0.00025 ± 0.00012

x sin 10Ω 0.01143 ± 0.00009 0.00218 ± 0.00012

x sin 11Ω 0.00271 ± 0.00009 0.00074 ± 0.00012

y cos Ω −2.16908 ± 0.00024 0.01662 ± 0.00032

y cos 2Ω −0.64572 ± 0.00011 −0.00968 ± 0.00015

y cos 4Ω −0.17513 ± 0.00008 0.00319 ± 0.00011

y cos 5Ω −0.09407 ± 0.00010 −0.00099 ± 0.00013

y cos 7Ω 0.00948 ± 0.00011 0.00152 ± 0.00014

y cos 8Ω −0.00562 ± 0.00010 0.00000 ± 0.00013

y cos 10Ω 0.01117 ± 0.00009 0.00020 ± 0.00011

y cos 11Ω 0.00205 ± 0.00008 0.00036 ± 0.00011

z sin 3Ω −0.77013 ± 0.00022 0.00261 ± 0.00029

z sin 6Ω −0.12250 ± 0.00008 0.00337 ± 0.00011

z sin 9Ω −0.02593 ± 0.00006 0.00049 ± 0.00008

z sin 12Ω −0.01035 ± 0.00006 0.00106 ± 0.00007

of the Earth’s orbit. In fact, the torque variations may allow a measurement of the
eccentricity value of the Earth’s orbit to better than a few per cent.

Figure 8.11 shows the principal solar radiation torque related coefficients before cor-
rection for the varying distance to the Sun, Figure 8.12 shows the same after correction
for this effect. There were drifts observed for most solar radiation related coefficients.
These drifts can probably be explained as due to changes in the structure of the outer
surface of the satellite due to exposure to radiation.

During periods of sun-pointing observations, the solar radiation torques virtually dis-
appeared. With the z axis pointing towards the Sun, the radiation forces were almost
completely balanced with respect to the centre of mass. The torques around the z axis
were found to be more variable at times of long eclipses, possibly related to the cooling
of the outer surface of the satellite during the eclipse, and the heating up during the
perigee passage. The results for the solar radiation torques, normalised to a distance of
1 AU, are summarised in Table 8.4.

Calibration of Magnetic Moments

The magnetic moments around the satellite axes were calibrated in a simultaneous
solution for the observations on all three axes, using Equation 7.13. The x component
was, however, difficult to determine as it was for most of the orbit strongly correlated
with other coefficients. Figure 8.13 shows the observed values for the magnetic moments
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Figure 8.11. The primary components of solar radiation torque observed in the accelerations around the three axes.

over the mission. Magnetic moments were noticed clearly around the y and z axes, at
a level of −2.7 Am2 and +0.3 Am2 respectively. The y axis component was very stable
over the mission, the z axis component drifted slowly and showed more variation.

An additional z axis component, at −2.2 Am2, was noted during eclipses. This com-
ponent appeared to be related to the change in power supply from the solar panels to
the batteries, although all cabling associated with the power supplies appeared to be
properly shielded according to the design drawings. This component was given a fixed
value if insufficient data covering an eclipse was available.

Remaining Coefficients

Four coefficients were used in the z axis torque representation that had no immediate
explanation in terms of solar radiation: cos Ω, sin Ω, cos 2Ω and sin 2Ω. The first two
may be related to the Earth’s magnetic field, but were not removed with a magnetic
moment around the x and y axes. They may possibly represent a distortion of the
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Figure 8.12. As Figure 8.11, but corrected for the varying distance between the Earth and the Sun.

magnetic field: their variation resembles the period of 57 days (the spin period of
the rotation axis of the satellite) and the period of 588.7 days between two successive
conjunctions between the Sun and the satellite at perigee. Another indication that these
coefficients represent the magnetic field distortion comes from their correlation with
variation on the constant in the x coordinate solution, which indicates that it could be
the y axis magnetic moment that gives rise to these coefficients. Figure 8.14 shows these
three coefficients.

The other two coefficients for the z axis are more difficult to explain. Their variability
shows a semi-regular behaviour with a period of 28 days, half the spin period of the
rotation axis of the satellite. This kind of behaviour would be expected from a gravity
gradient related coefficient (see Equation 7.8). The sin 2Ω, however, is also likely to be
related to the solar radiation torques, as seems to be indicated by the way it changed
when the satellite went into sun-pointing mode. There is also a resemblance in behaviour
between these two coefficients and the cos Ω coefficient for the x axis.
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Figure 8.13. The measurements of the magnetic moments of the satellite. The y-component is most clearly present.

There is probably also a z-component during normal observing conditions (middle graph) and there appears to be a

significant z-component during eclipse conditions (bottom graph). The eclipse related component could only be solved

for under good conditions: converged attitude during most of an eclipse and at least two complete revolutions of the

satellite outside the eclipse.

The constant for the y axis (Figure 8.15) showed a long-term exponential decrease, a
57 day modulation with varying amplitude, and short-term variations explained below.
The exponential decrease was probably related to changes in the outer surface of the
satellite due to exposure to solar radiation. The exact zero point for this term is badly
determined as it depends strongly on the value used for the component I yz of the inertia
tensor (see Equation 8.5). The modulation is probably related to a magnetic moment
on the x axis, although entering this as a degree of freedom in the solutions did not give
a consistent result (partly due to correlations with other coefficients). The points near
days 1000, 1300 and 1450, which are offset by about 0.2 mas s−2, are related to sun-
pointing mode observations. Their offset indicates that the constant on the y axis could
be solar radiation related, and representing a spinning motion driven by an insufficiently
balanced torque around the y axis. The gap around day 750 is due to the running of
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Figure 8.14. Three coefficients, showing through their variability a possible link with the magnetic moment of the

satellite and a distortion of the Earth’s magnetic field at high altitudes. The short-period variation is probably related

to the spin period of the satellite z axis (57 days). The long-period modulation appears to be related to the period

between two conjunctions of the Sun and the satellite at apogee (588.7 days).

gyro 4 in addition to gyros 1, 2 and 5. This caused additional torques on the x and y
axes (see Section 8.6).

A number of coefficients show short-term variations with correlations between alternate
orbits, in particular when the perigee of the satellite orbit was low. The longitude of
alternate orbits changed by only 40�; between successive orbits the change was 160�.
Thus, the conditions around a perigee passage for alternate orbits were likely to be
more similar than between successive orbits, in particular concerning the results of
friction by the outer layers of the atmosphere. One of the finest examples is shown in
Figure 8.16 for the constant torque on the y axis. A constant torque either originated
in the spacecraft (gyro-induced) or represented a local (on the spacecraft) external and
unbalanced torque. It appears that the satellite was heated up on one side during a
perigee passage, with the amount of heating depending on the conditions of the outer
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Figure 8.15. Long-term variations in the constant for the y coordinate, showing a kind of exponential decrease as

well as a 57 day modulation.

Figure 8.16. Short-term variations in the constant for the y coordinate, showing the effect of alternating local

longitudes of the perigee during a period with very low perigee height. Orbits with even numbers are indicated with a

cross, odd-numbered orbits with an open square, and have been connected to show their correlation.

atmosphere of the Earth and therefore being correlated between alternate orbits. During
the orbit following the perigee passage the local heat loss from the satellite produced the
windmill effect.

8.6. Miscellaneous Effects

The remaining effects were of short, or even impulse, nature. They concerned hits of
the satellite by external objects (two fairly major ones, causing rotation rate changes
of the order of 2 arcsec s−1, and 10 to 15 smaller ones); gyro de-storage, causing
temporary torques during spin-up and spin-down procedures, and, during operations
of the additional gyro, an offset in the constant related to the inertia tensor, the spinning
rate of the satellite and the angular momentum of the additional gyro. In the case of
gyro 4, the offsets observed were 2.200 mas s−2 in the x coordinate, and 3.305 mas s−2 in
the y coordinate. Using the inertia tensor values given in Table 7.1, this gives values of
−5.70 µNm and −9.45 µNm for the nominal induced torque of gyro 4, compared to the
values given in Table 7.2: −5.52 µNm and −9.01 µNm, indicating that the orientation
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of the rotation axis was correctly recovered, but that the angular momentum of gyro 4
appeared to be 4 per cent higher than expected (unless the much less likely possibility
that the entire inertia tensor is 4 per cent too low).

The final source of disturbances came from the reaction of the solar-panel hinges on the
temperature changes when the satellite moved into an eclipse. These were noticeable
only in the great-circle reduction, described in the next chapter, and caused a small
saw-tooth like behaviour of the spin-phase.

8.7. Conclusions

The calibration results presented above show some of the problems encountered when
trying to operate satellites with very high pointing accuracy in one-axis-stabilised mode.
In the case of Hipparcos these problems were largely aggravated by the orbital condi-
tions, but the same orbital conditions allowed the recognition of some contributions (in
particular the magnetic moment) that would otherwise have been difficult to observe.
Important improvements in the torque modelling would probably be obtained with the
full implementation of the correct inertia tensor and a description of the deformation of
the Earth’s magnetic field (for which some models are available). In addition, torques
as produced by the gyros were not strictly smooth, but rather like a semi-regular string
of small impulses and it still needs to be investigated to what precision the current
approximation as smooth torques was valid.

F. van Leeuwen



9. GREAT-CIRCLE REDUCTIONS

The great-circle reductions combined the observations obtained in a time in-
terval of up to nine hours into a set of one-dimensional coordinates of the
objects, the so-called abscissae, defined along a designated reference great cir-
cle. These were the main input to the subsequent sphere solution, in which the
astrometric parameters of the stars were derived. The great-circle reductions
also determined the geometrical instrument parameters, including the basic
angle, transforming the observed signal phases into true angles on the sky, and
the accurate along-scan attitude needed for the Tycho astrometry. This chapter
describes the principles of the great-circle reductions and their practical im-
plementation by FAST and NDAC. Great-circle results obtained by the two
reduction consortia are presented. The early results were found to be affected
by systematic errors, which however disappeared after several iterations of the
great-circle reductions, by using improved star catalogues from previous itera-
tions, fine tuning of the instrument description, and special treatment of star
outliers. The final quality of the results was confirmed by intercomparisons
between the consortia.

9.1. Introduction

In the Hipparcos great-circle reduction semi-contiguous batches of grid coordinates,
each computed from image dissector tube data collected over an observational frame
(see Chapter 5), were combined in so-called reference great-circle sets and processed
together. A reference great-circle set contained the data collected over one orbit of the
satellite and generally covered 2 to 4 revolutions, or 4 to 9 hours of data. All such data
were referred to a reference frame, corresponding to a great circle chosen somewhere in
the middle of the band on the celestial sphere scanned during the reference great-circle
set. The abscissae of the stars contained in the reference great-circle set and an improved
along-scan attitude were computed in this intermediate reference frame, together with
instrument parameters, by a least-squares adjustment.

Data obtained from the Hipparcos main grid provided along-scan information only.
Therefore, and because of the small inclination of the scanning circles with respect to the
reference great circle, the great-circle reduction could only determine one component
of the star position and spacecraft attitude in the reference great-circle frame: the star
abscissa v along the reference great circle and the along-scan attitude ψ . The star
ordinate r and the two transverse attitude components θ and φ could not be estimated.
Hence they did not participate in the least-squares adjustment, but were used as obtained
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from the attitude reconstruction results (see Chapter 7), using the (updated) Input
Catalogue. No effort was made at this stage to estimate the proper motions and parallax:
they could not be estimated due to the very limited time span of the reference great-
circle sets. The final great-circle reductions were all carried out with respect to a star
catalogue based on preliminary reductions of all the Hipparcos data, providing stellar
coordinates with errors that were negligible for the purpose of the great-circle reduction
process.

9.2. Great-Circle Reduction

The great-circle reduction forms a geometric adjustment problem on the sphere with
grid coordinates as observations. Semi-contiguous batches of up to 70 000 grid co-
ordinates, gathered during about 2–4 revolutions, were processed together, producing
one observation equation for each grid coordinate. The observation equations were
solved by a least-squares adjustment with a diagonal weight matrix for the grid coordi-
nates. The unknown parameters were roughly 1800 star abscissae, forming our prime
objective, up to 15 000 along-scan attitude parameters, and some 24 instrumental pa-
rameters. In fact two types of along-scan reconstructed attitude were produced. At
first a geometric along-scan attitude was estimated, consisting of one parameter for each
observational frame of 2.133 . . . s. Later the attitude was smoothed to form a continuous
representation using about 500 B-splines (one every ' 2 minutes). Smoothing of the
attitude also improved the quality of the star abscissae, although excessive smoothing
could introduce systematic errors. This was verified by statistical tests; when necessary,
the number of B-splines, and the location of knots, were adjusted.

Observation Equations

The geometric direction to a star in the reference great-circle frame at set mid-time
was expressed by two angles v (abscissa) and r (ordinate). The determination of the
abscissae v were the prime objective of the great-circle reduction. The abscissa–ordinate
pair (vi , ri ) for star number i was related to the grid coordinate Gik observed for the star
in frame number k, in three steps. First, (vi , ri ) were transformed into the apparent (or
‘proper’) star direction at the time of observation, expressed either in the celestial refer-
ence frame (Section 12.3) or directly in the reference great-circle frame (Section 11.2),
using the known orientation of the reference great circle. Secondly, the direction to
the star was transformed into the instrument reference frame, yielding the field angles
(ηik, ζik) or field coordinates (wik, zik), as defined in Section 10.2. Thirdly, the field
angles or field coordinates were related to the observations Gik which were defined with
respect to the modulating grid by means of the field-to-grid transformation, described
by the instrument parameters (Section 10.2).

The transformation of the reference great-circle frame into the reference frame linked
to the instrument was described by the three angles (ψk, θk, φk) corresponding to the
spacecraft attitude. The angles θk and φk were rotations around the y and x axes of
the instrument, and specified the direction of the z axis. The angle ψk specified the
orientation of the instrument around the z axis. The notation used here for these
angles corresponds to that used in the FAST attitude model (Equation 7.23), but
the presentation below is valid for any representation of the attitude in which (θk, φk)
describe the ‘transverse attitude’ (in NDAC given by the heliotropic angles ξ and ν;
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see Section 7.3) and ψk describes the ‘along-scan attitude’ (in NDAC given by the
heliotropic angle Ω).

The transformation from field coordinates to grid coordinates, including corrections
to the basic angle, is described in Chapter 10 (see also Volume 2, Chapter 10). It
usually required 24 or more instrument parameters, which for notational convenience
are collected in a vector d (see Section 9.6).

The relation between the grid coordinate and geometric position was written symboli-
cally as:

Gik = G(vi , ri , ψk, θk, φk, d, . . .) + �
0

ik [9.1]

with �
0

ik representing the photon noise effect on the grid coordinates. The parameters
needed to correct for aberration, relativistic effects, residual proper motion and parallax
are not mentioned explicitly in the equations. More details about these computations
can be found in Chapter 12.

Linear observation equations, needed for the least-squares estimation, were obtained
by taking the truncated Taylor expansion of Equation 9.1 in a point Gcalc

ik calculated
from a provisional star catalogue, star mapper attitude and instrument calibration. The
linearized equation is:

∆Gik =
∂Gik

∂vi
∆vi +

∂Gik

∂ψk
∆ψk +

∂Gik

∂d0
∆d +

∂Gik

∂ri
∆ri

+
∂Gik

∂θk
∆θk +

∂Gik

∂φk
∆φk + . . . + O(∆2) + �

0

ik [9.2]

with ∆Gik = Gobs
ik − Gcalc

ik . The ∆-quantities on the right hand side were the unknown
corrections to the provisional, or approximate, values for the parameters used in the
calculation of Gcalc

ik . The term O(∆2) represents the linearization error, which is of
second order in the corrections. When the grid coordinates were expressed in angular
units (radians), the partial derivatives with respect to vi and ψk were close to −1 and
+1 respectively. The partial derivatives in ri , θk and φk were much smaller in absolute
value (<~ 10−2), but not zero. The reason is that the grid coordinates G only referred
to the along-scan component, while the other component H was not measured, so
that information on the star ordinate and the transverse attitude components was only
available through the inclination of the scan circles with respect to the reference great
circle. This inclination was at most about ±1.�5 through the choice of the reference great
circle close to the mean scanning direction in the data set.

Therefore, only the corrections ∆vi , ∆ψk and ∆d were computed during the least-squares
adjustment; no attempt was made to estimate ∆ri , ∆θk and ∆φk in the great-circle
reduction. The observation equations were consequently reduced to:

∆Gik =
∂Gik

∂vi
∆vi +

∂Gik

∂ψk
∆ψk +

∂Gik

∂d0
∆d + �ik [9.3]

In this equation �ik is a general noise term including:

(1) the photon noise error �
0

ik;

(2) the projection error on the reference great circle:

�
00

ik =
∂Gik

∂ri
∆ri +

∂Gik

∂θk
∆θk +

∂Gik

∂φk
∆φk [9.4]
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(3) various modelling errors (e.g. instrument, attitude, residual proper motion and
parallax);

(4) the linearization error O(∆2).

The first component is the most important. At the great-circle level it could be modelled
as Gaussian noise.

Least-Squares Solution

The observed grid coordinate differences ∆Gik were collected in a vector y of length
m, and the unknown corrections in a vector x of length n. Equation 9.3 could thus be
written in matrix notation as:

y = A x + e

= ASxS + AAxA + AIxI + e [9.5]

with the m × n design matrix A of partial derivatives. This system of equations was
partitioned in a star part, an attitude part and an instrument part, denoted respectively
by suffix S, A and I in Equation 9.5. The sub-matrices AA and AS were very sparse,
each of them containing only one non-zero element per row. AI on the other hand was
almost completely filled.

Although Equation 9.5 had many solutions, it was not difficult to select a unique
solution, x̂, namely one for which A x̂ was as close as possible to the observed data
y. The well-known least-squares solution follows from minimising the residual sum of
squares E = ê0Q−1

y ê, with ê = y − A x̂ the vector of least-squares residuals, and Qy the
covariance matrix of the observations y. The least-squares solution x̂ was computed by
solving the normal equations:

(A0Q−1
y A) x̂ = A0Q−1

y y [9.6]

It deserves to be emphasized that the vector of observations y was, from a statistical
viewpoint, a stochastic variable; consequently the least-squares estimate x̂, the residuals
ê, and other functions of these variables, such as E , were also stochastic. The errors in
the observations were dominated by photon noise, and could therefore be assumed to
be uncorrelated. Consequently a simple diagonal covariance matrix Qy could be used.

The least-squares solution was computed using Cholesky factorization of the square
symmetric (semi-)positive definite normal matrix A0Q−1

y A. Once the Cholesky factor
had been computed, the equations were rewritten in two triangular systems, which
were solved by simple forward and backward substitution. The actual computation was
organised in the following steps:

(1) elimination of the attitude unknowns;

(2) Cholesky factorization of the (block partitioned) normal equations, solution of the
equations by forward and backward substitution, and computation of the variances;

(3) solution of the attitude parameters, computation of the residuals to the observations,
and testing of the solution.

The star part of the normal matrix was, even after elimination of the attitude parameters,
very sparse (Figure 9.1). In the software only the non-zero elements of this matrix were
stored and numerical operations were performed only on these elements. However,
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Figure 9.1. Non-zero elements in the star part of the normal matrix (lower triangle) and envelope of the Cholesky

factor (upper triangle) after elimination of the attitude parameters. The star parameters have not been re-ordered (left)

or have been re-ordered by the modulo 60� algorithm (right) described by van der Marel (1988).

during the Cholesky factorization new non-zero elements were created, causing so-
called fill-in of the sparse matrix. The fill-in depended on the order in which the
unknowns, and hence the rows and columns of the normal matrix, were given. Before
the Cholesky factorization the star parameters were consequently re-ordered in such
a way as to reduce the fill-in during the factorization (Figure 9.1). The reduction in
computing time allowed by the re-ordering is considerable, not only for the factorization
itself, but for all computations using it, such as the calculation of variances (van der
Marel 1988).

The covariance matrix Qx̂ of the least-squares estimator is the inverse of the normal
matrix if Q−1

y is used as weight matrix. The computation of the complete inverse would
have been too time consuming and is also not very useful. However, a subset of the
covariance matrix, corresponding to the non-zeroes in the Cholesky factor (‘sparse
inverse’), could be obtained in only twice the time of the factorization itself. The
sparse inverse contained all the elements needed to perform statistical testing of the
observations and to produce the proper diagnostics.

Slit Errors

The grid coordinates could be determined from the grid phase only up to an unknown
integer number of slits. The slit numbers had to be computed from approximate
values for the star and attitude parameters. Considering uncertainties in the a priori
positions of 0.2 to 0.8 arcsec in the initial star catalogue, and the slit period of '
1.2 arcsec, it will be obvious that there were a substantial number of slit errors, resulting
in ambiguities and inconsistencies throughout the first reduction iterations. The great-
circle reduction suffered only from inconsistent slit numbers. It could not recognise
a situation where all the grid coordinates of a certain star had the same slit error.
Therefore, the computed star abscissae could still be wrong by one or more grid steps.
The slit errors in the abscissae were ultimately corrected during the sphere solution and
astrometric parameter extraction (see Section 11.6).

Slit inconsistencies resulted in contradictions between the observations of one star dur-
ing the great-circle reduction. Several methods were used for detection and correction
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of slit inconsistencies. First, inconsistencies in the linearized grid coordinates ∆Gik

per star were detected and corrected. This method works well when the attitude and
instrument description were properly described. This method worked even better after
improvement of the along-scan attitude, simultaneously by a sequential adjustment,
using the grid coordinates ∆Gik as observations and estimating correction to the along-
scan attitude and star abscissa. It was possible that some slit inconsistencies were left at
this stage. Therefore, after the least-squares adjustment the results were checked and
remaining slit inconsistencies were corrected and a new solution was computed.

In further iterations of the great-circle reductions, the a priori values were taken from
the last complete sphere solution, while NDAC also used at early reduction stages star
coordinates determined from star mapper observations (see Chapters 6 and 7). In the
final iterations of the great-circle reductions errors in the star catalogue used as input to
the process were decreased to a level that slit number inconsistencies became very rare,
and easy to correct when they occurred at all.

Statistical Tests and Validation

The results of the great-circle reduction were validated by statistical tests. On the basis of
the outcome of these tests, in combination with internal and external iterations, several
actions were possible:

(1) correction of slit numbers;

(2) skipping of doubtful observations, or (in NDAC only) re-weighting of observations;

(3) skipping stars from the normal equations solution (FAST passive stars).

Depending on the outcome of statistical tests, data was validated, i.e. accepted as suf-
ficiently conforming to the model, or rejected (Section 9.7). In the latter case not
only proper diagnostics were generated, but also a new solution without the rejected,
and possibly erroneous, observations was computed. Two types of iterations were
possible: external iterations of the complete great-circle reduction with an improved
attitude description and star catalogue after a preliminary sphere solution and astromet-
ric parameter extraction, and internal iterations within the great-circle reduction itself.
Internal iterations mainly dealt with correction of slit inconsistencies and re-weighting
of observations. Each iteration involved in principle a new least-squares adjustment.
This was, of course, not a very attractive prospect. However, the burden was lightened
considerably by a priori selection of suspected problem stars within FAST, combining
internal iterations with necessary (for other reasons) external iterations, and special
procedures for correcting slit inconsistencies.

The FAST great-circle reduction software did not distinguish between primary and non-
primary reference stars, as was done in the sphere solution (Section 11.4), but rather
between ‘active’ and ‘passive’ stars. Grid coordinates of active stars participated in the
rigorous least-squares adjustment which computed the abscissae of active stars, along-
scan attitude and instrumental parameters. The passive stars were added in later, using
the previously computed active star abscissae, attitude and instrumental parameters,
without changing them.

In general, passive stars were ‘problem’ stars, stars with a high probability of erroneous
measurements, or very faint stars which did not contribute much to the attitude and
instrumental solution. The passive stars were selected (by the software) by static criteria,
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Figure 9.2. Final number of active stars (dots), passive stars per reference great circle with 1-parameter solutions

(+, the points just above the bottom of the graph) and 2-parameter solutions (×, the points at the bottom of the graph)

during the mission (FAST).

for example double star characteristics, as well as dynamically, based on the results of
the statistical testing for star outliers (Equation 9.12). A few passive stars could only be
computed if a linear motion—during the sets—was assumed (2-parameter solutions).
As few as possible passive stars were selected during the last external iteration, to get
the best possible precision for the star abscissae and attitude parameters. Therefore,
during the procedure of external iterations, passive stars which turned out to have good
solutions, were re-introduced as active stars during the next iteration. While, on the
other hand, ‘bad’ active stars were treated as passive stars during the next iteration. On
the average 300–400 passive stars were selected during the first treatment. In the final
iteration this number was reduced to about 100. Figure 9.2 gives the final number of
active and passive stars per reference great circle during the mission.

In the NDAC great-circle reductions data for identified ‘problem’ stars were not passed
through this process, but were side-tracked to the special double-star processing (Chap-
ter 13); thus all the stars retained for the great-circle reductions were effectively treated
as ‘active’ stars.

9.3. Attitude Smoothing

The attitude of the Hipparcos spacecraft was, except for small vibrations (jitter) following
thruster firings, a smooth function of time. Thus the along-scan attitude, which was
initially computed once per observing frame of 2.133 . . .s, could be further improved
by introducing relations between the attitude values of neighbouring frames. In fact,
an additional adjustment of the along-scan attitude, the so-called smoothing step, was
carried out using a model for the attitude which required relatively few parameters.
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The improvement of the attitude led also to improved star abscissae, and hence to an
improved final star catalogue (Figure 9.3).

For attitude smoothing an additional equation was added to the observation equations
for the geometric solution (Equation 9.5):

xA = BxB [9.7]

The smoothed attitude could be expressed in a smaller number of parameters xB than
the frame-by-frame attitude xA which was computed in the geometric solution step.
The observation equations for the smoothed solution were:

y = AABxB + ASxS + AIxI + e [9.8]

The equations were again partitioned in an attitude, star, and instrument part, but
now the star and attitude unknowns had changed roles: the stars were eliminated first,
and the attitude unknowns—now much fewer than in the geometric mode—were re-
ordered using the modulo 360� ordering (van der Marel 1988). In fact, the smoothed
solution was computed as an update to the geometric solution. It was not necessary
to re-compute the instrument parameters. They were already determined very well in
the geometric solution. This was the approach in FAST. In NDAC a slightly different
procedure was used: first Equation 9.5 was solved to give the geometrical attitude
xA. This was then inserted in Equation 9.7, which was solved by least-squares to
give the parameters xB of the smoothed attitude. These, in turn, were inserted into
Equation 9.8, together with xI from the geometrical solution, and the resulting system
was finally solved for the star parameters xS.

In the great-circle reductions the smoothed attitude was modelled by cubic B-splines. In
general splines consist of polynomial segments, of fixed degree, joined end to end with
continuity in a limited number of derivatives at the joints, the so-called knots. Actually,
the B-spline series is a linear combination of shifted base functions or B-splines. It
could represent the attitude at the milliarcsec level by choosing the right knots. This
was performed automatically in the software. Thruster actuations were modelled as
instantaneous impulses, which was justified in view of the relatively short duration of
the pulses, which resulted in a discontinuity in the first derivative of the B-spline series
at the thruster actuation time.

Smoothing of the attitude effectively increased the longitudinal field of view, since more
stars were connected directly. Especially more bright stars were now linked directly to
each other, and not only by chains of measurements between fainter stars (Lacroute
1983). Smoothing had, therefore, two favourable effects: it led to an overall increase
in precision for the astrometric parameters and it permitted a more liberal observing
strategy.

9.4. Rank Deficiency and Minimum Norm Solution

The observations in the great-circle reduction were invariant under a simultaneous shift
of all the star abscissae vi and all the along-scan attitude parameters ψk. This follows
from the fact that the first two (dominant) terms in Equation 9.2 have practically equal
and opposite coefficients. In practice this corresponded to an unknown zero point for the
abscissae. The consequence was that the design and normal matrices in the great-circle
reduction did not have full rank. Under normal circumstances the rank deficiency was
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Figure 9.3. Square root of the star variance versus the star abscissa for a base star solution (top), minimum norm

solution (middle), and for the minimum norm solution after attitude smoothing (bottom). Data from 21 May 1990

10:00–17:20 (day 506).



156 Great-Circle Reductions

Figure 9.4. Averaged auto-covariance function of the star abscissa (based on simulated data for the geometric

solution).

one. During the great-circle reduction the rank deficiency was provisionally eliminated
by forcing the abscissa correction of one star, the so-called ‘base star’, to zero. This
was equivalent to skipping the corresponding column in A and the corresponding row
and column in the normal matrix. The base star was usually a bright star close to one
of the scan circle nodes. This remedy for the rank deficiency was very attractive for its
simplicity, but it resulted in a variance of zero for the base star (Figure 9.3). It had the
same effect as adding the constraint equation c0x = 0 to the system, with c a vector of
length n with all zeroes, except the element corresponding to the base star.

The choice of a particular base star was arbitrary, but it affected the solution and covari-
ance matrix of the great-circle abscissae. For the sphere solution it did not matter which
base star was chosen, if the full covariance matrix is used, because the unknown zero
point was estimated anyhow. However, only the variances were taken into account for
the weighting in the sphere solution, and, in this case, an arbitrary one of them was zero.
This was not very satisfactory. Therefore, the great-circle solution and its covariance
matrix were transformed into a minimum norm solution. The sum of the corrections
to the star abscissa in the minimum norm solution were zero, the covariance matrix
had minimum trace (minimum variance), there were no zero variances and off-diagonal
elements in the minimum norm covariance matrix were smaller (Figure 9.3). Therefore,
the minimum norm variances were preferred instead of the base star variances.

The minimum norm solution was computed from the base star solution by what is known
in geodesy as an S-transform (Baarda 1973, Teunissen 1985). Again, the abscissae
were only shifted, but from the original covariances the column and row average were
subtracted, and the overall average was added. This operation was coded very efficiently
during the Cholesky factorization. In fact, a constraint equation c0x = 0 was added to
the equations, with c an n-vector with all ones, such that Ac = 0, namely c is a basis for
the null space of A.

The covariance matrix of the minimum norm solution was almost a cyclic matrix. A
cyclic covariance matrix is fully described by a single covariance function. Figure 9.4
gives the averaged auto-covariance function of the star abscissae obtained from simu-
lations for the nominal mission. The positive correlation between stars separated by a
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basic angle (58�) and multiples are of course an effect of the two fields of view of the
telescope. The basic angle was chosen not to be a fraction of 360� (see also Volume 2,
Chapter 1, Figure 1.2). If the basic angle had been a fraction of 360� (for example 60�)
the peaks would have been amplified. The value of 58� for the basic angle was the result
of a study (in the mission design phase) on the great-circle rigidity. The correlation is
larger for smaller data sets (which was the case in the revised mission). It was obvious
that the correlations could not be neglected in the sphere solution without some loss of
precision.

9.5. Accuracy of the Great-Circle Solution

The accuracy of the great-circle reduction depended first of all on the quality of the
grid coordinates computed from the image dissector tube data. The standard error in
the grid coordinates was dominated by the photon noise of the individual samples. The
photon noise was Poisson distributed, but since each grid coordinate was computed
from many samples one could assume, according to the central limit theorem, that the
grid coordinates had a normal distribution and were uncorrelated with respect to each
other. Thus the covariance matrix for the grid coordinates Qy, computed by the phase
estimation task, was a simple diagonal covariance matrix. Other errors, like veiling-glare,
projection and other modelling errors, which were smaller, were not represented by Qy

or by the covariance matrix Qx̂ of the least-squares estimator. Therefore, the accuracy
of the great-circle reduction could not be described by only the variances. Analysis of
the residuals ê of the least-squares estimation by statistical tests, given in Section 9.7,
was the other, very important, part of the accuracy description.

Both parts of the accuracy description were verified by tests on simulated data (van
der Marel et al. 1989). Simulated data offered the possibility to study the error in the
estimator, an advantage not available with real data. However, intercomparison of the
results between FAST and NDAC gave another indication of the accuracy of the results.
This was the third part of the accuracy description given in Section 9.8, and it was a
very worthwhile one. In fact, creating the possibility of this kind of comparisons had
been a major reason for assigning two consortia to the data reduction tasks.

Variance of the Star Abscissae

The variances of the star abscissae followed simply from the inverse of the normal matrix.
The star variances were separated into three components:

(1) the variance σ2
obs when only photon noise is taken into account, assuming a perfect

attitude and instrument;

(2) the influence of the attitude determination σ2
att;

(3) the influence of the determination of the instrumental parameters σ2
ins.

The variance of the star abscissae after adjustment was:

σ2
star = σ2

obs + σ2
att + σ2

ins [9.9]

The σ2
obs of a star was computed from the cumulated a priori observation weights of this

star and σ2
ins was the difference of the computed star variances with and without solving
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Table 9.1. Square root of the mean variances in milliarcsec per magnitude class (data from 21 May 1990

10:00–17:20 = day 506). The table shows the contributions of the observational errors (σobs), the instrument

(σins) and the attitude (σatt) to the total standard error of the star abscissa (σstar) for the geometric and

smoothed solutions.

B nB σobs σins σatt σstar σatt σstar

(mag) (geometric) (smoothed)

3–4 1 0.17 0.36 2.00 2.03 1.30 1.36

4–5 5 0.40 0.33 2.06 2.12 1.33 1.43

5–6 26 0.83 0.33 2.37 2.53 1.47 1.72

6–7 96 1.07 0.29 2.08 2.36 1.32 1.72

7–8 245 1.70 0.30 2.16 2.76 1.31 2.16

8–9 552 2.77 0.31 2.21 3.56 1.34 3.09

9–10 423 3.53 0.30 2.49 4.33 1.37 3.80

10–11 111 4.11 0.30 2.49 4.81 1.38 4.35

11–12 28 6.02 0.31 3.55 6.99 1.68 6.25

12–13 6 6.63 0.33 3.09 7.32 1.79 6.88

all 1493 3.01 0.30 2.34 3.82 1.36 3.31

for instrumental parameters. Finally σ2
att was a derived quantity, computed from the

above mentioned variances.

In Table 9.1 the square root of the average of the minimum norm variance per magnitude
class is given for the data set of Figure 9.3. The error σobs, and therefore σstar, were
clearly magnitude dependent: σobs varies between 0.1 mas for very bright stars and
3.2 mas for the 10 mag, and was even larger for 12–13 mag stars. The influence of the
attitude and influence of the instrument were more or less the same for each magnitude
class. The influence of the instrumental parameters (0.3 milliarcsec) was very small
compared to the influence of the attitude. This value was very sensitive to the length of
the reference great-circle set (Figure 9.13). It was a little larger than expected because
the reference great-circle sets in the revised mission were shorter. The improvement
brought by attitude smoothing is striking. The influence of the attitude was reduced
very significantly (2.4 milliarcsec for the geometric solution and 1.4 milliarcsec in the
smoothed solution), resulting in better star variances (Figure 9.3). The improvement
affected the brighter stars in particular (Figure 9.5). The error in the fainter stars was
still dominated by photon noise.

Attitude Smoothing

Figure 9.6 gives the variances of the attitude parameters for the example of Table 9.1.
The differences between the geometric and smoothed attitude are shown in Figure 9.7.
The influence of the attitude, σatt in Equation 9.9, was reduced considerably by smooth-
ing. The improvement was a function of the number of attitude parameters needed to
represent the attitude. In Table 9.1 the mean standard error of the star abscissae was
given for the optimum number of B-splines. In the unrealistic, but informative case of
a perfectly known along-scan attitude, the standard error of the star abscissae is equal
to σobs (neglecting the instrument).

The optimum number of B-splines was initially calculated by simulation experiments
with the great-circle reduction software (van der Marel 1985). In Figure 9.8 the mean
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Figure 9.5. Star abscissae improvement by attitude smoothing (data from 21 May 1990 = day 506).

Figure 9.6. Square root variance of the geometric (dots) and smoothed (circles, lower accumulation of symbols)

attitude. Vertical lines are drawn at thruster actuation times. The time is given in units of T4 = 2.133 . . . s (data from

21 May 1990 = day 506).

standard error (measurement induced error), the modelling error in the smoothed
attitude, the rms error in the estimated attitude (estimation error) and the unit weight
variance (Equation 9.10) are plotted versus the number of attitude parameters. The
rms error in the estimated attitude and star abscissa reached a minimum at some point.
With a smaller number of B-splines the modelling error became significant, for a larger
number the inherent smoothness was not sufficiently exploited.

The rms errors in the estimated star abscissa could not be determined with real data.
The only information available to determine the optimum number of B-splines with real
data are statistical tests based on the test statistics in Equation 9.10–9.12, and on visual
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Figure 9.7. Differences between the geometric and smoothed attitude (data from 21 May 1990 = day 506).

Figure 9.8. Attitude improvement by smoothing as function of the number of attitude parameters per circle (based on

simulations).

inspection of the differences between the geometric and smoothed attitude for selected
great-circle sets (Figure 9.7).

Figure 9.9 gives the square root of the average variance of the active star abscissae and
the along-scan attitude during the mission. The improvement for the along-scan attitude
by the attitude smoothing is striking. There is quite a significant number of great circles
with a larger average standard error for the star abscissae and along-scan attitude. This is
mostly for short great-circle sets, which had some difficulty in estimating the instrument
parameters. This is also visible in the top plot of Figure 9.9, where the dots give the
square root of the average of σ2

ins of Equation 9.9.
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Figure 9.9. Average standard error (square root of the average variance) in star abscissae after smoothing during

the mission (top, crosses), influence of the solution of instrument parameters (top, dots), average standard error of

along-scan attitude parameters (bottom) after smoothing (dots) and geometric (crosses) solutions during the mission.

Projection Error

The projection error on the reference great circle, �
00

ik of Equation 9.4, depended on
the size of the catalogue error ∆ri and star mapper attitude error ∆θk and ∆φk. During
the first treatment these quantities could be rather large due to the quality of existing
star catalogues. Therefore, it was necessary to iterate the great-circle reduction after
the sphere solution, making better values for ri available. The attitude reconstruction
was repeated too, resulting in better values for θk and φk. After at most two iterations
the error in ri was 2–4 mas and could be neglected, but the error in θk, φk remained of
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Table 9.2. Predicted projection errors (in milliarcsec) during first treatment (assuming catalogue errors of

σS = 1.5 arcsec) and in the iterations (assuming σA = 0.1 arcsec and negligible σS).

First treatment Iteration

rms max rms max

Field coordinate 12.0 72.3 0.9 6.3

Attitude 6.0 72.3 0.8 6.3

Star 10.1 72.3 0.6 3.3

Figure 9.10. Projection error in the star abscissae. The nodes are near 70� and 250�

the order of 50–100 mas, due to star mapper photon noise, and could not be improved
further.

In Table 9.2 the projection error effect on the field coordinates, star abscissa and along-
scan attitude are given for a typical reference great circle. The results are from analytic
formulae, and were confirmed by extensive simulations (van der Marel 1988). The
projection error depended also on the size of the partial derivatives. The projection
errors were large when the inclination of the scanning direction with respect to the
reference great circle was large. Therefore the projection errors were large near the
nodes of the scan circles. However, the projection error effect on the attitude and star
parameters averaged out at locations with a uniform scanning. This happened exactly
on the nodes of the scan circles. Therefore maximum projection errors were expected
near the nodes, but not on the nodes. Figure 9.10 is a scatter diagram of the projection
error effect on the star abscissae for a typical first treatment. The predicted maxima
near the nodes are clearly visible.
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Figure 9.11. Medium-scale residuals of a third degree polynomial representation of the non-chromatic field-to-grid

transformation. The contours range from +1 mas (solid line) to −0.5 mas (broken, dotted line). See also Figures 10.14

to 10.16.

9.6. Instrument Parameters

The basic angle distortion and large-scale field-to-grid transformation is the third group
of parameters which was estimated during the great-circle reduction. The field-to-
grid transformation was modelled by a polynomial in several variables. The polynomial
degree was 3 or 4 for the non-chromatic terms and 1 for the chromatic terms. Figure 9.11
shows a grid map of the mean residuals over the first 30 months of reduced data, where
third or fourth degree polynomials were adopted to describe the non-chromatic part of
the field-to-grid transformation.

A new set of instrument parameters was normally estimated for each great-circle reduc-
tion. However, since the highest order parameters were assumed not to change with
time, these parameters were fixed at their average values. The choice and time evolution
of the instrument parameters is described in more detail in Chapter 10 and in Volume 2,
Chapter 10. Here some of the implementation aspects are described briefly.

The choice for a power series was a little arbitrary. At the time of implementation
there were no numerical or functional reasons for choosing different types of functions.
However, there were signs from the real data that some refinements were necessary.
A disadvantage of power series was certainly the large correlation between some of
the estimated parameters. In any case, not all of the instrumental parameters can be
estimated equally well. The so-called ‘constant term’ (g00 in the NDAC notation), and
the ‘constant chromaticity’ (c00), could not be estimated at all from a single reference
great-circle set. They were omitted from the great-circle equations and determined
during the sphere solution (see Chapters 11 and 16).
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In FAST, it was shown that the variances of stars and attitude determinations could
be improved when less instrumental parameters were taken as unknown and replaced
by fixed pre-determined values. These were obtained by computing the mean of the
coefficients determined by the great-circle reduction during earlier iterations for every
calibration period as defined in Section 4.2. In addition, the variations of the basic angle
were modelled by a linear function of time. The analysis of the instrumental parameters
showed that a fourth-order polynomial gave a significantly better representation of the
field-to-grid transformation as shown in Figure 9.11, and that the third and fourth degree
terms were very stable throughout the mission, but were rather strongly correlated with
certain first and second degree terms.

From these considerations, the following scheme was adopted by FAST. While the
first treatment of data was performed using third-order polynomials, the next iteration
was performed with fourth-order formulae. Then, in further iterations, the calibrated
third and fourth degree coefficients as well as the chromatic terms were considered as
known, reducing by 11 the number of instrumental unknowns. For short reference
great circles (1 or 2 rotations), the terms proportional to y, xy and y2 (where x is
along the scan and y normal to it) were difficult to estimate because the inclination was
small, the risk being large variances for star parameters and even a singular system of
equations. They were then taken from the calibration file. In case of even shorter data
sets, no instrumental parameters were computed except the coefficients for x and x2;
all the others, including the basic angle, being taken from the calibration. Finally, when
thermal disturbances occurred (see Chapter 2), the basic angle was not stable and its
variations were represented by a linear function of time.

Figure 9.12 gives the number of instrument parameters which were solved by the FAST
consortium during the final iterations as a function of the length of the great-circle
set. Also plotted are the average standard error of the stars and the influence the
instrument parameter estimation had on the standard error of the stars. In shorter
great-circle sets less instrument parameters were solved than in longer sets. For the
longer sets, which had the power to estimate the more difficult instrument parameters,
fewer instrument parameters were replaced by values taken from the calibration. Even
despite this strategy, the effect of the instrument parameter solution on the standard
error of the star abscissae was more pronounced for the shorter reference great-circle
sets.

9.7. Analysis of the Least-Squares Residuals

The least-squares adjustment can be interpreted as the orthogonal projection of the m
dimensional vector of observations y (2 IRm) onto the vector ŷ = A x̂ in the n dimensional
linear manifold spanned by the columns of A (the range space). The metric of IRm is
defined by the weight matrix Q−1

y of the observations (which is in fact a metric tensor).
The adjusted observations ŷ and least-squares residuals ê are orthogonal, so the residual
sum of squares E = ê0Q−1

y ê is a minimum. Moreover, the residual sum of squares has
a χ2 distribution with m − n degrees of freedom if y has a normal distribution with
N (Ax, Qy). Dividing E by the degrees of freedom leads to the Fisher test statistic with
m − n and 1 degrees of freedom, or unit weight variance:

F =
E

m − n
=

1
m − n

X

i

X

k

e2
ik

σ2
ik

' F (m − n,1) [9.10]
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Figure 9.12. Number of instrument parameters solved during the final iterations versus the length of the great-circle

sets (top), and the average standard error of the stars (dots) and the influence of the instrument σins (+) as a function

of the length of the great-circle sets (bottom).

with eik the least-squares residual of star i in frame k and σik the standard error of the
observation. The expected value of F is one. The null hypothesis H0 that the model
of Equations 9.5 and 9.7 and covariance matrix Qy were correct, and there were no
outliers, was verified by hypothesis testing. The test was:

reject H0 if F > Fα(m − n,1) [9.11]

with Fα(m−n,1) the critical value for the test with level of significance α, the probability
that the test was rejected wrongly if H0 was true.

Figure 9.13 gives the value of F during the mission. The values for F were larger for
smoothing. Almost every value for the smoothed solution exceeded the expected value
of 1 significantly, resulting in a rejection of the test in Equation 9.11. For a typical
reference great-circle set the critical value was F0.001(20 000,1) = 1.03. The rejections
were a result of the modelling error in the attitude. The B-spline series was only able to
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Figure 9.13. Unit weight variance F (top) and rms error of the residuals of the grid coordinates (bottom) during the

mission (crosses refer to the geometric solution, dots to smoothing).

describe the attitude up to the 1 milliarcsec level. Taking these into account, the tests
were almost always accepted. Despite all this the F test values were close to one. This
meant that the variances of Table 9.1 were representative. For this particular data set
the F test values were 1.048 and 1.076 respectively for the first treatment, and 0.9688
and 0.9974 for the final iteration given in Figure 9.13.

The power of the test in Equation 9.11 was not very good. A few small errors in the
observations did necessarily lead to a rejection of this test. Neither did it provide an
indication of what problems caused rejection. Fortunately other more powerful tests
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could be used to identify specific problems. The quality of the adjusted star abscissae
was checked by a Fisher test statistic similar to Equation 9.10:

Fi =
1
si

X

k

e2
ik

σ2
ik

with si =
X

k

σ2
eik

σ2
ik

[9.12]

with si the degree of freedom, or redundancy, of star i, computed from the variance of
the least-squares residuals σ2

eik
. Fi has a Fisher distribution with si and 1 degrees of

freedom, which could be used in the test of Equation 9.11. Also used was Fi /F instead
of Fi . Fi /F has a Fisher distribution with si and m − n degrees of freedom. This test was
indicative of modelling problems related to specific stars, e.g. single stars which turned
out to be double, veiling-glare, etc.

The star-by-star test was the main instrument for the selection of FAST active and
passive stars. The static criteria which were applied during the first treatment were
gradually replaced by the results of this test. After every external iteration the results of
the star-by-star test from all great-circle sets participating in the iteration were collected.
Those stars which had many rejections during the great-circle treatment were then
selected as passive stars for all great-circle sets in the next iteration. Passive stars which
had very few rejections, were selected as active stars for the next iteration. In addition to
the global list of active and passive stars, another list was maintained in which stars were
made passive for specific great-circle sets. In this way, an occasional star outlier could
be accommodated. During the first treatment about 300 to 400 passive stars per great-
circle set were selected using static criteria, and up to 2 per cent of a priori unsuspected
active stars were flagged. In the final iteration, about 100 passive stars per set were left
(Figure 9.2), and there were no serious rejections of the test of Equation 9.12.

Statistical tests similar to Equation 9.12 were derived to specifically check the frame-
by-frame attitude and B-spline smoothing by altering the summation in Equation 9.12.
The test on the B-spline intervals was indicative of the modelling error in the smoothed
attitude caused by insufficient B-spline parameters. This test was used within FAST
to build a list of intervals which needed additional B-spline parameters, or should be
excluded from the reductions completely, for instance because the satellite had been hit
by small particles, or for other reasons. Some periods had so many new B-splines that
effectively a frame-by-frame attitude representation was used. Although this procedure
was automated by FAST to some extent, manual intervention was necessary on several
occasions. The advantage of using a list was that this work did not have to be repeated
in subsequent iterations.

The summation in the test of Equation 9.12 could be restricted to a single observation,
which resulted in the test statistics with standard normal distribution:

ēik =
eik

σeik

~ N (0, 1) [9.13]

A grid coordinate error was suspected if jēikj > Nα(0, 1). Using this test the grid
coordinates were inspected one by one. This procedure is a common technique in
geodesy and is known as ‘data snooping’ (Baarda 1968). The major problem with these
techniques was a lack of robustness caused by smearing and masking effects. Smearing
was caused by the correlation between the least-squares residuals. A single outlier in the
data could result in the rejection of several data snooping hypotheses. Similarly, a large
outlier may mask smaller outliers, which could only be found after the large outlier had
been removed. Therefore, whatever the procedure for detection and correction was, it
had to be iterated: i.e. the most evident cases were tackled first, then a new solution
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Figure 9.14. Intercomparison of the FAST and NDAC abscissae after attitude smoothing (data from 14 May 1990

0:04–5:08 = day 499).

was computed and the residuals, or testing variates, were inspected again. The process
converged if in later iterations more and more subtle cases were recognised as errors.
This procedure can be automated. This was for instance implemented by Kok (1985)
in his iterated data snooping procedure, or by Eeg (1986) in his iteratively re-weighted
least-squares, which was the method used by NDAC.

9.8. Intercomparisons

Several identical sets were reduced by NDAC and FAST for comparison purposes.
Figure 9.14 shows the difference in abscissae for a typical comparison set halfway
during the reductions, just after the input catalogue had been improved for the first
time. Passive stars, which had differences up to several hundred milliarcsec, were
removed from Figure 9.14. These differences were caused by the different treatment
of double stars in the two consortia. In the FAST great-circle reduction the weighed
mean of the first and second harmonic of the grid phase were used as the observation.
In NDAC only the first harmonic was used (see Chapter 5). This affected the double
stars in particular.

The comparison set shown in Figure 9.14 is one of 15 comparison sets—with specific
difficulties—which were tested during the mission. The difficulty with the set in Fig-
ure 9.14 was an eclipse, but this had no adverse effects in this case. Actually, this
comparison set was an example of a normal set. Other comparison sets sometimes
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Table 9.3. Summary of projection error differences resulting from the use of different star catalogues for the

NDAC great-circle reduction. All values are given in milliarcsec. The rms errors for the two catalogues were

270 milliarcsec (Hipparcos Input Catalogue) and 185 milliarcsec (partially improved working catalogue).

Abscissa Instrument

rms min max (corner)

Set 1 (all stars) 2.68 –40 +25 0.3

Set 1 (active stars) 1.56 –25 +8 0.5

Set 2 (all stars) 2.94 –70 +10 0.4

had much larger differences, with large systematic effects. Often a very significant 6th
harmonic was found, which was due to the basic-angle design, one of the periods for
which the great circle was not very robust. This 6th harmonic could be triggered by
almost anything, for example a serious outlier in the data, or short great-circle sets in
combination with estimating too many instrument parameters. Also in good comparison
sets this harmonic was present, as can be observed from the averaged auto-covariance
function in Figure 9.14. This led to experiments in the sphere solution (Chapters 11
and 16) whereby it was tried to estimate a 6th harmonic for each great-circle set.

The rms difference for good comparison sets was usually 3–5 milliarcsec, with maximum
errors up to several tens of milliarcsec. The rms differences seemed to be too large
considering that both consortia had reduced the same data. The rms difference was of
the same order as the standard error of the star abscissae. Also, the correlation between
the abscissa differences, given in Figure 9.14, was very similar to the correlation function
of the great-circle abscissae in Figure 9.4 (computed from simulated data). In fact, two
completely independent measurements would have resulted in differences which were
not much larger. This requires some explanation. The first reason was that the consortia
did not really use the same data because NDAC did not use the second harmonic of the
grid phase. This mainly affected the double and multiple stars. There was a variable
bias between the first and second harmonic which also affected the single stars and
especially the calibration of the instrument (Schrijver & van der Marel 1992).

The second reason was that the projection errors were not the same because different
working catalogues and star mapper attitudes had been used. The rms difference in
the star catalogue used for this particular example was 0.1–0.3 arcsec. The effect was
illustrated by comparing two runs of the same consortium on the same data with different
catalogues, but otherwise completely identical. The results are given in Table 9.3. An
error in a single catalogue position would also affect the other stars due to the smearing
effect of the least-squares estimation. The covariance function was, therefore, similar
to the covariance function of the abscissae.

The third reason was that different sets of observations and stars participated in the
actual least-squares adjustment. In FAST the so-called passive stars were fitted in later
without affecting the attitude. Outliers in the observations were treated differently. In
NDAC the great-circle reduction was iterated several times with some of the observations
re-weighted. FAST used data snooping for the grid coordinates and variance tests for
the stars. When an active star was rejected by the statistical tests it was made passive in
the next external iteration. The effect of using passive stars was studied by two runs on
the same data with different sets of stars. The results are given in Table 9.4. A fourth
reason is that in the attitude smoothing the number of B-splines and the location of their
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Table 9.4. Effect on the abscissa differences when different sets of stars were selected (FAST active star set

versus all stars). All values are given in millarcsec.

Abscissa Instrument

rms min max (corner)

NDAC 2.32 –42 +10 0.4

FAST (geometric) 1.99 –10 +9 0.3

FAST (smoothing) 1.56 –5 +5 –

Table 9.5. Normalised standard errors for great-circle reductions with weighted phase, first harmonic and

second harmonic only.

Weighted First only Second only

Geometric solution 1.019 1.017 1.030

Smoothed solution 1.043 1.040 1.043

WZ

Figure 9.15. Difference between the FAST and NDAC instrument description (first harmonic).

ZW

Figure 9.16. Difference between the instrument for the first harmonic and second harmonic.
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knots were different. Also, the estimation procedures in FAST and NDAC were not the
same.

The instrument parameters agreed up to 1.5 mas in the corners of the field of view
when FAST used the first harmonic of the grid phase. The only significant differences,
i.e. more than two times the standard error, were in the terms g01 and g30 (+1.4 and
−0.94 mas, respectively, at the upper left corner of the field of view, see also Figure 9.15).
When FAST used the weighted phase, which was their standard approach, the agree-
ment was lost between the FAST and NDAC instrument parameters. This did not mean
that the weighted phase is worse, it only meant that the field-to-grid transformation was
different. In fact, test runs with only the second harmonic showed that it is good data
(Table 9.5). The difference in instrument parameters for the first and second harmonic
are shown in Figure 9.16. The differences in the corners were 13 mas.

9.9. Conclusions

In the previous sections results of the great-circle reductions have been given based on
simulations, comparisons, or the software’s internal accuracy description. The accuracy
of the software’s internal accuracy description has been verified in every possible way.
A final test was the next reduction step: the sphere solution. Here the abscissae
from the great-circle reduction with their minimum-norm standard error were used
as observations. Statistical tests, like those in Equation 9.12, were used to verify the
abscissae observations and the stochastic model. Considering the fact that at the level
of the sphere solution abscissae from the same great-circle set were assumed to be
uncorrelated, which they were not (Figure 9.4), it turned out that the great-circle
software gave a very fair description of the accuracy.

H. van der Marel, F. van Leeuwen, J. Kovalevsky, C. Petersen
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10. EVOLUTION OF INSTRUMENT PARAMETERS

The geometrical instrument parameters describe the transformation from
ideal, angular coordinates in the fields of view to the observable ‘grid co-
ordinates’ connected with the slit pattern on the main grid. The instrument
parameters were determined as part of the great-circle reductions, and while
they are not of any direct astronomical interest, they are highly relevant for un-
derstanding the behaviour of the Hipparcos instrument. The transformation
models used by the FAST and NDAC consortia are specified in this chapter
and the resulting instrument parameters are shown as functions of time.

10.1. Introduction

The purpose of the great-circle reductions (Chapter 9) was to compute the coordinates
of stars along designated reference great circles, the so-called star abscissae. In doing
so, the geometrical distortions of the Hipparcos main field of view had to be determined
as part of the least-squares solutions for the star coordinates. These distortions are de-
scribed by the geometrical instrument parameters. While not of any direct astronomical
interest, the instrument parameters and their temporal evolution are highly relevant for
understanding the Hipparcos instrument.

This chapter provides a relatively complete documentation of the geometrical instrument
parameters as determined by the FAST and NDAC consortia. The main results are
given in the form of diagrams showing the temporal evolution of each parameter over
the whole mission. Since the consortia used different models for the field distortions,
different sets of parameters were used and their intercomparison is not always a simple
matter (see also Section 9.8). Section 10.2 gives the approximate relations between the
two sets of parameters, but the two representations are not strictly comparable, because
of the different procedures and conventions adopted. In particular it should be noted
that the grid coordinate, as defined by FAST, was obtained from a weighted mean of
the phases of the first and second harmonics of the image dissector tube signal, while in
NDAC only the first harmonic was used. The phase difference between the harmonics
was a function both of time and position in the fields, as illustrated in Figures 5.5 and
5.6.

The geometrical instrument parameters are here presented without any discussion of the
actual values and their evolution. An attempt at a physical interpretation of some of the
FAST and NDAC instrument parameters is however made in Volume 2, Chapter 10.
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Figure 10.1. Definition of the grid coordinate G (= number of slits, reckoned from a conventional point near the grid

centre) and the approximate orientations of the axes for the field angles (η, ζ), the FAST field coordinates (x, y), and

the NDAC field coordinates (w, z). The sense of +η, +x and −w is given by the apparent motion of stellar images in

the field; the perpendicular axes are directed such that the image of the Sun would be in the hemisphere −ζ, + y or +z.

The instrument parameters represent the large-scale part of the transformation from
field angles to grid coordinates. A complete description of the grid pattern requires also
a medium- and a small-scale component. The medium-scale component is discussed
in Section 10.3. The small-scale component was, in the data analysis, treated as noise.

10.2. Geometrical Instrument Parameters

The light modulation produced by the grid allowed the instants when the star image
was exactly centred on one of the 2688 slits of the main grid to be determined. The
term ‘centred’ can be loosely understood as meaning ‘maximum intensity’, but the
precise meaning depends on the fitting of a Fourier model of the intensity variations
(Section 5.2) and the subsequent definition of the ‘reference phase’, which, as already
mentioned, differed slightly between FAST and NDAC. In practice this led to differences
of the order of 10 mas between the two representations; these differences are not further
considered here. Conceptually, therefore, the only directly observable ‘coordinate’
was a quantity G which may be defined as G = 0 at the designated central slit, and
incrementing by one unit for each slit in the direction of the motion of the stellar
image (Figure 10.1). This continuous grid coordinate was related to the true angles as
projected on the sky, or the field coordinates, by means of the so-called field-to-grid
transformation. (The FAST grid coordinate G in Section 5.4 is similar to the G defined
here, only multiplied by the nominal grid period.)

Field Coordinates

Inevitably NDAC and FAST chose different conventions for expressing the angular
coordinates in the field. Both may be defined in terms of a third set of field coordinates,
the so-called field angles (η, ζ). The field angles are spherical coordinates with ζ = 0
representing the viewing plane through the two sky projections of the star mapper apex
and with η = 0 at the geometrical centre of the grid, i.e. halfway between the 1344th
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and 1345th slits, as reckoned from the edge of the main grid where the stellar images
entered.

The FAST field coordinates (x, y) are similar to (η, ζ) except that the y axis is in the
opposite direction and the origin is taken to be at the 1344th slit; thus:

x = η + 1
2 s

y = −ζ
[10.1]

where s ' 1.208 arcsec is the grid period. The NDAC field coordinates (w, z) are the
direction cosines:

w = − cos ζ sin η

z = − sin ζ
[10.2]

The transformation from FAST to NDAC coordinates is, therefore:

x = − arcsin
wp

1 − z2
+ 1

2 s

y = arcsin z
[10.3]

with the reverse transformation:

w = − cos y sin(x − 1
2 s)

z = sin y
[10.4]

The shift by a half grid step between the NDAC and FAST origins is of no consequence
for the presentation of the instrument parameters, and the term 1

2 s is subsequently
dropped.

Field-to-Grid Transformation

The complete field-to-grid transformation can be written in the form:

G = Gref (η, ζ) + ∆G(η, ζ , f , C, t) + δG(η, ζ) + δg [10.5]

where Gref is a fixed reference model for the field-to-grid transformation, ∆G is the
large-scale distortion relative to the reference model, δG the medium-scale distortion
and δg the small-scale distortion. (η, ζ) was replaced by (x, y) and (w, z) in the de-
tailed representations of FAST and NDAC. The large-scale distortion was given by a
polynomial model and included terms depending on the field index ( f = +1 for the
preceding field of view and f = −1 for the following field of view), the colour parameter
C = (B − V ) − 0.5 or (V − I ) − 0.5, and time.

The time dependence was usually taken care of by the independent solution of the
instrument parameters for each reference great circle, i.e. about twice per day. In the
FAST reductions of some great circles explicit time-dependent terms were included. In
the final iteration this concerned 57 great circles. The results in a few cases where the
basic angle showed significant variation are given in Volume 2, Section 12.4.

The medium-scale distortion was generally a fixed matrix of corrections which was
derived either empirically, by mapping the residuals of many great-circle reductions, or
from laboratory measurements of the grid (Section 10.3). The small-scale distortion
described the irregularities of the individual slits and was treated as noise in the data
reductions.
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Reference Model

The reference model differed between the consortia. Gref was in NDAC taken to
be the nominal field-to-grid transformation for the nominal values of the grid step
(s0 = 1.208 arcsec exactly) and basic angle (γ0 = 58� 000 3000 exactly). Since the slits
were nominally parallel and equidistant in an orthographic projection onto the tangent
plane of the curved grid, the nominal relation was:

Gref N = −S0w [10.6]

where S0 = 170 749.01 slits/rad is the nominal scale corresponding to a grid step of
exactly 1.208 arcsec. FAST adopted the same nominal scale at the grid centre, but
defined the reference grid coordinate to be proportional to the angle x rather than to
the direction cosine w:

Gref F = S0x [10.7]

As a consequence the FAST large-scale distortion contained components attributable
to the nominal grid pattern. These components can be derived from Equation 10.4 by
means of a series expansion of the trigonometric functions. Since jxj, jyj < 0.01, terms
of order O(x5) are smaller than 0.02 mas and can be neglected; hence:

Gref N = Gref F − 1
6S0x3 − 1

2S0xy2 [10.8]

Large-Scale Distortion Models

Both consortia used polynomials in the field coordinates to model the large-scale distor-
tion ∆G in Equation 10.5. This choice was motivated by optical calculations, showing
that perturbations of the nominal instrument produced distortions which were accu-
rately represented by low-order polynomials (e.g. Bertani et al. 1986).

The polynomials were expressed in terms of the normalized field coordinates w̄ = w /q,
z̄ = z /q, x̄ = x /q, ȳ = y /q, where q = sin 0.�45 or q = 0.�45, respectively, is the approximate
extension of the field of view in either direction from the origin. The quantity q,
regarded as a unit for the field coordinates, is also denoted ‘hfov’ (half field-of-view).
The polynomial coefficients thus give the distortion produced by the term at the corner
of the field of view (i.e. w̄ = z̄ = 1), and are conveniently expressed in mas/hfovn , where
n is the degree of the distortion term.

The NDAC representation of the large-scale distortion was:

G = Gref N + s−1
X
0≤i
0≤ j

0≤i+ j≤4

(gi j ± hi j )w̄
i z̄ j + s−1

X
0≤i
0≤ j

0≤i+ j≤1

(ci j ± di j )w̄
i z̄ j C [10.9]

where, in the final reductions, C = (V − I ) − 0.5. Upper and lower signs refer to the
preceding ( f = +1) and following ( f = −1) field of view, respectively. The factor s−1 takes
into account that the sums give the distortion in angular measure (e.g. milliarcsec), while
G is measured in grid steps. In Equation 10.9 the terms containing g00 and c00 were
excluded because they cannot be estimated in the great-circle reductions. g00 represents
the origin of the field coordinate w and was set to zero by definition. c00 represents
the so-called ‘constant chromaticity’ that was instead estimated in the sphere solution
(see Section 16.3). The model thus contained 34 instrument parameters. The quartic
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terms (i + j = 4) were partially kept constant and are not discussed in the following. The
temporal evolution of the remaining 24 parameters are shown in Figures 10.2 to 10.7.

The FAST representation may be written:

G = Gref F − s−1
X
0≤i
0≤ j

1≤i+ j≤4

ap /f
i j x̄i ȳ j − s−1

X
0≤i
0≤ j

i+ j=1

bp /f
i j x̄i ȳ jC ± 1

2 s−1(∆γ0 + ∆γ1C) [10.10]

where, again, C = (V − I )−0.5 and the upper/lower sign refers to the preceding/following
field of view. For the field distortion, a separate set of coefficients is used in each field
of view, namely ap

i j and bp
i j in the preceding field, af

i j and bf
i j in the following. ∆γ0 is

the correction to the reference value of the basic angle; ∆γ1 is the chromatic variation
of the basic angle. The total number of parameters is 34, of which the first 24 are
displayed in Figures 10.8 to 10.13. The cubic and quartic terms were fixed at their
values determined in earlier iterations, and the quartic terms are not displayed. In
some great-circle reductions, considered too short to give better estimates, some of the
lower-order parameters were also fixed (see Section 9.6).

Relations Between the NDAC and FAST Instrument Parameters

As previously mentioned, no strict relation exists between the NDAC and FAST instru-
ment parameters due to the different treatments of the signal harmonics. Disregarding
this difficulty, the approximate relations can be established by equating the G in Equa-
tions 10.9 and 10.10. Using Equation 10.8 and, in the polynomials, the approximations
w̄ ' −x̄ and z̄ ' ȳ, the relations become:

ap /f
i j = (−1)i+1(gi j ± hi j ) +

8><
>:

1
6S0sq3 if (i , j) = (3, 0)
1
2S0sq3 if (i , j) = (1, 2)

0 otherwise

[10.11]

The additional terms for (i , j) = (3, 0) and (1, 2) represent the nominal distortion of
the grid and amount to 16.65 mas/hfov3 and 49.96 mas/hfov3, respectively. Relations
analogous to Equation 10.11 are found among the chromatic terms. For the zero-order
terms the relations ∆γ0 = 2h00 and ∆γ1 = 2d00 are found. Table 10.1 provides the explicit
relations for all the parameters displayed in Figures 10.2 to 10.13. Results of an actual
comparison for a particular great circle are shown in Figures 9.15 and 9.16.

10.3. Medium-Scale Distortion

The medium-scale distortion, represented in Equation 10.5 by the term δG(η, ζ), was in
the FAST reductions applied as a priori corrections δp = sδG to the relative modulation
phases of the image dissector tube samples for each interlacing period (T3 = 0.133 . . . s),
as described in Section 5.4. Thus, this term was in principle eliminated before the
great-circle reductions and should not appear in the FAST field-to-grid transformation.
The corrections were derived from the laboratory measurements displayed in the lower-
left panel of Figure 10.15. The measurements gave a mean displacement for each scan
field, thus providing a correction matrix of 168 × 46 values for the whole main grid.

In the NDAC reductions, the modulation phases were not corrected by the laboratory
measurements. Instead, the residuals of the great-circle reductions (one per star and
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observation frame of T4 = 2.133 . . . s) were accumulated in maps of 18 × 46 areas
covering each field of view. The resolution in the scanning direction of 0.�9/18 = 0.�05
corresponded to the motion of stellar images in half an observational frame and thus
provided a sufficient oversampling of the irregularities smeared by the distribution of
samples in the observational frame. The binning of residuals in the perpendicular
direction coincided with the division into scan fields.

Residual maps were calculated for the preceding and following fields and separately
for each great-circle reduction, and later averaged over longer periods of time. Fig-
ures 10.14 and 10.15 show the mean residuals from the provisional processing of the
first year of satellite data. Each pair of maps represents some three to five months of
observations. The pattern of residuals is remarkably stable, and also fairly similar in the
two fields of view, indicating that much of the details are due to the irregularities of the
grid. This is also supported by a comparison with the laboratory measurements, after
convolution with the observational frame and subtraction of a fourth-degree polynomial
(Figure 10.15, lower-right panel). Although the overall resemblance to the residual
maps is not striking, there are many detailed similarities validating the laboratory mea-
surements. The residual and laboratory maps are also compared, after averaging in the z
direction, in Figure 10.16. Although the laboratory measurements were smeared by the
width of the observational frame, their amplitude appears to be substantially larger than
the variations of the residuals. This could indicate that an additional smearing mecha-
nism was at work in the great-circle reductions, or that the medium-scale distortions at
frame level were underestimated by the mapping process.

After the provisional processing of the first year of data, the resulting mean residual
maps were adopted as fixed corrections to the grid coordinates taken as input to the
great-circle reductions. These corrections were applied to all the subsequent great-circle
reductions in NDAC, including the reprocessing of the first year of data.

L. Lindegren, H. Schrijver, F. van Leeuwen
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Table 10.1. Approximate relations between the FAST and NDAC instrument parameters.

FAST parameters in terms of NDAC parameters Unit Meaning

∆γ0 = 2h00 mas basic angle

ap
10 = g10 + h10 af

10 = g10 − h10 mas/hfov scale

ap
01 = −g01 − h01 af

01 = −g01 + h01 mas/hfov rotation

ap
20 = −g20 − h20 af

20 = −g20 + h20 mas/hfov2 tilt

ap
11 = g11 + h11 af

11 = g11 − h11 mas/hfov2 „

ap
02 = −g02 − h02 af

02 = −g02 + h02 mas/hfov2 „

ap
30 = g30 + h30 + 16.65 af

30 = g30 − h30 + 16.65 mas/hfov3 cubic distortion

ap
21 = −g21 − h21 af

21 = −g21 + h21 mas/hfov3 (including nominal)

ap
12 = g12 + h12 + 49.96 af

12 = g12 − h12 + 49.96 mas/hfov3 „

ap
03 = −g03 − h03 af

03 = −g03 + h03 mas/hfov3 „

∆γ1 = 2d00 mas/mag chrom. basic angle

bp
10 = c10 + d10 bf

10 = c10 − d10 mas/hfov/mag chrom. scale

bp
01 = −c01 − d01 bf

01 = −c01 + d01 mas/hfov/mag chrom. rotation
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Figure 10.2. Evolution of the NDAC instrument parameters h00, g10, h10 and g01.
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Figure 10.3. Evolution of the NDAC instrument parameters h01, g20, h20 and g11.



182 Evolution of Instrument Parameters

Figure 10.4. Evolution of the NDAC instrument parameters h11, g02, h02 and d00.
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Figure 10.5. Evolution of the NDAC instrument parameters c10, d10, c01 and d01.
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Figure 10.6. Evolution of the NDAC instrument parameters g30, h30, g21 and h21.
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Figure 10.7. Evolution of the NDAC instrument parameters g12, h12, g03 and h03.
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Figure 10.8. Evolution of the FAST instrument parameters ∆γ0 [bang], ap
10 [x-prec], af

10 [x-foll], ap
01 [y-prec].
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Figure 10.9. Evolution of the FAST instrument parameters af
01 [y-foll], ap

20 [x2-prec], af
20 [x2-foll] and ap

11
[xy-prec].
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Figure 10.10. Evolution of the FAST instrument parameters af
11 [xy-foll], ap

02 [y2-prec], af
02 [y2-foll] and ∆γ1

[bang(V-I)].
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Figure 10.11. Evolution of the FAST instrument parameters bp
10 [x(V-I)-prec], bf

10 [x(V-I)-foll], bp
01 [y(V-I)-prec]

and bf
01 [y(V-I)-foll].
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Figure 10.12. Evolution of the FAST instrument parameters ap
30 [x3-prec], af

30 [x3-foll], ap
21 [x2y-prec] and af

21
[x2y-foll].
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Figure 10.13. Evolution of the FAST instrument parameters ap
12 [xy2-prec], af

12 [xy2-foll], ap
03 [y3-prec] and

af
03 [y3-foll].
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FFOV

Mean residual (mas)

Figure 10.14. Maps of the mean residuals of the provisional NDAC great-circle reductions for the first year of data.

The mean values of Gobs − Gcalc are shown as function of the position in the preceding field of view (PFOV, to the left)

and following field of view (FFOV, to the right). The area reproduced corresponds exactly to the area of the main grid

(0.�9 × 0.�9). The orientation of the maps is the same as in Figure 10.1, and is such that the rotation of the satellite

caused star images to move from left to right, and the image of the Sun would be far up in the maps. The two upper

maps are for orbits 1 to 415, the two lower maps are for orbits 416 to 685.
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Figure 10.15. The two upper maps show the mean residuals of the provisional NDAC great-circle reductions for orbits

686 to 915 in the preceding and following fields of view. The lower maps show the results of laboratory measurements

of the medium-scale distortion of the main grid. To the left the measurements of the individual scan fields are displayed;

to the right the same data smoothed, in the scanning direction, by a moving average of 6 arcmin width, corresponding

to the motion in one observational frame. The scan field indices (iG = 1 . . . 168, iH = 1 . . . 46) are indicated next to

the lower-left map.
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Figure 10.16. Comparison of the medium-scale distortion derived from the great-circle reductions (solid curves) and

the laboratory measurements (dotted curve). This diagram shows the same data as Figures 10.14 and 10.15, but

averaged over the z coordinate or scan field index iH . The two solid curves are for the preceding and following fields. A

moving average of 6 arcmin width was applied to the laboratory data in the scanning direction (w or scan field index

iG) to simulate the smearing effect of the observational frame.



11. SPHERE SOLUTION

The sphere solution combined the star abscissae obtained in the great-circle
reductions (Chapter 9) into the positions, parallaxes and proper motions of the
stars, expressed in a globally coherent coordinate system. It consisted of two
processes: (1) the determination of the abscissa zero points of all the reference
great circles, which was the sphere solution proper; and (2) the determination
of the astrometric parameters of individual objects. While the first process
required a simultaneous least-squares solution of a large number of stars,
which must all be consistent with the single-star model, the second process
could be performed sequentially using several different models as appropriate
for each object. In this chapter the basic observation equation is derived and
the numerical methods of solution used by FAST and NDAC are outlined.
The final section of the chapter deals with the ‘rank deficiency problem’ and
reports some numerical experiments to study this problem.

11.1. Introduction

The purpose of the sphere solution was to calculate, from the abscissae determined by
the great-circle reductions, the astrometric parameters of the stars: both components
of position, both components of the proper motion, and the parallax. This chapter
provides a general formulation of this process. In practice the successive sphere solu-
tions performed by the FAST and NDAC consortia differed in many details, especially
concerning the use of ‘global’ parameters for the modelling of instrument chromaticity
and the harmonic components of the abscissa errors; these detailed aspects as well as
the numerical characteristics of the successive solutions are covered in Chapter 16.

In order to take advantage of the symmetry of the nominal scanning law with respect
to the ecliptic, all computations in the FAST Consortium were made in ecliptic co-
ordinates. In the NDAC Consortium, equatorial coordinates were used throughout.
This difference is immaterial for a general exposition of the sphere solution and largely
disappears when vector algebra is used in its formulation. When a reference to the
celestial coordinates is nevertheless needed, ecliptic coordinates (λ, β) will be used, and
the ecliptic is taken to be the fundamental plane. To obtain the corresponding equations
and conventions according to NDAC it is only necessary to substitute (α, δ) and the
equator. The generic celestial triad [ x y z ] may thus be taken to mean either the ecliptic
or equatorial triad. The transformation between these two systems is completely defined
by the value of the obliquity of the ecliptic (�), for which the IAU (1976) value at epoch
J2000 was adopted (see Table 12.1).
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The great-circle reductions determined the one-dimensional coordinates, or abscissae,
of the stars along a number of different reference great circles ( j). In an absolute sense,
the abscissa is defined as the angle v, as seen from the designated pole of the reference
great circle, from the ascending node of the reference great circle on the ecliptic to the
topocentric coordinate direction of the object (Figure 11.1). It should be noted that the
abscissa, being defined in terms of the coordinate direction of the object, is not affected
by gravitational light deflection and stellar aberration; these effects, whose computation
does not require an accurate astrometric knowledge of the object, were removed in the
great-circle reductions.

In principle, therefore, the astrometric parameters of a given star i can be computed
on the basis of a geometrical model of its motion, using the abscissa values vji as
‘observations’. The only additional data required are the times of observation (t ji ),
the corresponding reference great-circle poles (R j ), and the barycentric locations of the
satellite (b j). This process, known as the ‘determination of astrometric parameters’,
can clearly be made on a star-by-star basis. However, it requires that the abscissae
are actually available in the form described above, i.e. as the absolute angles from the
ecliptic to the object, as measured on a number of great circles.

In reality the abscissae obtained in the great-circle reductions do not satisfy this con-
dition. The main problem is the arbitrary origin of the abscissae introduced in each
great-circle reduction. This means that the abscissae on a given reference great circle
are measured, not from the ecliptic, but from some other, in principle unknown origin.
Consequently a set of corrections c j need to be added in order to convert the abscissae
into the absolute quantities required for the determination of astrometric parameters.
These corrections can only be determined by simultaneously considering a large num-
ber of stars, and explicitly using the circumstance that the same correction applies to
all the abscissae on the same reference great circle. However, even in this process, the
corrections c j can only be determined in such a way that the corrected abscissae express
the angles from a certain fundamental plane, which need not be exactly the ecliptic,
nor even fixed with respect to the ecliptic; thus a basic indeterminacy of the celestial
reference frame remains after the sphere solution.

The need to determine the abscissa origins is however not the only reason for doing
a ‘sphere solution’ in which the measurements of a large number of stars scattered
over the whole sphere are considered in a single solution. There are other, more
subtle effects causing systematic shifts in the abscissae which cannot be eliminated
in the great-circle reductions, but may be determined in the sphere solution, due to
the additional constraints introduced by the stellar astrometric model. These effects
include the component of instrument chromaticity that is constant in both fields of view,
representing a colour dependence of the zero points c j . Furthermore, some harmonic
components of the abscissa error, notably the sixth harmonic, are more accurately
estimated in the sphere solution than in the great-circle reductions. By including such
additional unknowns in the sphere solution, their effects on the ‘observed’ abscissae
are eliminated and will not propagate into the subsequent determination of astrometric
parameters in the form of colour or position dependent systematic errors.

Since the sphere solution is constrained by the stellar astrometric model describing the
coordinate direction in terms of the five astrometric parameters, it is important that this
model actually applies to all the stars considered jointly in the sphere solution. Resolved
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Figure 11.1. The (nominal) abscissa v is defined as the angle, as seen from the pole R of the reference great circle,

from the ascending node P on the fundamental plane (EE = equator or ecliptic) to the coordinate direction of the object,

u. The vector triad [ P Q R ] defines the great-circle reference frame.

double stars, astrometric binaries showing curved motion, and other peculiar objects,
require more complex models and should therefore not be used in this process.

What is here called the sphere solution can accordingly be divided into two successive
processes: (1) the sphere solution proper, which primarily aims at the accurate de-
termination of the abscissa zero point corrections c j by means of a joint least-squares
solution for a carefully selected subset of the Hipparcos stars (known as the ‘primary
reference stars’); and (2) the application of these corrections to all the abscissae and the
subsequent determination of the astrometric parameters on a star-by-star basis—this
being no longer restricted to the primary reference stars but applicable to all objects.

These processes are equivalent to the second and third steps of the so-called ‘three-step
method’ outlined in Section 4.1. In the FAST Consortium they were executed as two
separate tasks, while in NDAC they were integrated into a single task. One advantage
of the FAST approach is that the second task can be made very flexible and include a
variety of object models in addition to the standard five-parameter single-star model.
In the NDAC Consortium all stars for which the standard model was not adopted were
treated by special off-line software, sometimes completely side-stepping the three-step
method, as in the case of resolved double and multiple stars (Chapter 13).

In their mathematical formulation the two steps—the sphere solution proper and the
determination of astrometric parameters—are intimately connected and it is convenient
to present them together. For the sake of brevity, the indices j (for the reference great
circles) and i (for the stars) are suppressed where not explicitly needed.
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11.2. The Reference Great-Circle Frame

The abscissae and ordinates used in the great-circle reductions are spherical coordinates,
analogous to the right ascension and declination, defined with respect to a coordinate
triad R which may be called the reference great-circle frame. Nominally the great-circle
frame is uniquely defined by the celestial coordinates (λR, βR) of the reference great-
circle pole and the fundamental celestial plane (ecliptic or equator). Formally, it may
be represented by the vector triad R = [ P Q R ], where:

R = x cos βR cos λR + y cos βR sin λR + z sin βR

P = hz × Ri

Q = R × P

[11.1]

The topocentric coordinate direction of the star can be expressed in the great-circle
frame as:

u = R

 cos r cos v
cos r sin v

sin r

!
[11.2]

where (v, r) are the abscissa and ordinate of the star (Figure 11.1). The topocentric
coordinate direction of a star may be computed from its astrometric parameters as
described in Volume 1, Section 1.2.8; given the pole of the reference great circle, the
abscissa is then obtained by means of Equations 11.1 and 11.2. It is the purpose of the
sphere solution to compare this calculated abscissa with the observed abscissa resulting
from the great-circle reduction, in order to improve the astrometric parameters.

11.3. Observation Equation

The observation equation expresses the difference between the observed and calculated
abscissa, ∆vji = vobs

j i − vcalc
j i , in terms of the different sources of error. The observation

equation is in reality the same for the sphere solution proper and for the determination
of the astrometric parameters; the processes differ in how the different terms are treated
in the solution of the equations. Presently six kinds of error terms are considered:

• errors in the astrometric parameters;
• orientation errors in the reference great-circle frame;
• other (‘local’) errors on the great-circle level;
• global errors;
• grid-step errors;
• random noise.

These are discussed in subsequent subsections.

Errors in the Astrometric Parameters

The standard model of stellar motion (Volume 1, Section 1.2.8) gives the topocentric
coordinate direction at time t as:

u = h r(1 + ζt) + pµλ�t + qµβ t − bπ /A i [11.3]
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where:
r = the barycentric direction of the star;

p = hz × ri = the direction of +λ at the star;

q = r × p = the direction of +β at the star;

(µλ�, µβ) = the components of the proper motion;

π = the parallax;

b = the barycentric position of Hipparcos at time t;

A = the astronomical unit;

ζ = VRπ /A, where VR is the radial velocity of the star.

[ p q r ] is the normal triad at r relative to the ecliptic coordinate system. All quantities
except b refer to the epoch t = 0 (J1991.25). b, A and VR are regarded as known; other
quantities are uniquely defined by the five astrometric parameters λ, β, π, µλ�, µβ , since:

r = x cos β cos λ + y cos β sin λ + z sin β [11.4]

The determination of the astrometric parameters proceeds by successive differential
corrections to a set of initial values. To compute the effects of small changes in the
astrometric parameters it is then acceptable to ignore ζ and the normalisation brackets
in Equation 11.3, yielding:

∆u = p(∆λ� + t∆µλ�) + q(∆β + t∆µβ) − bA−1∆π [11.5]

On the other hand, Equation 11.2 gives:

∆u = m∆v� + n∆r [11.6]

where ∆v� = ∆v cos r and:

m = hR × ui, n = u × m [11.7]

are the unit vectors in the directions of +v and +r, respectively. [ m n u ] is the normal
triad at u relative to R. Equating ∆u in Equations 11.5 and 11.6, and invoking scalar
multiplication by m and n, gives:

∆v� = m0p(∆λ� + t∆µλ�) + m0q(∆β + t∆µβ) − m0bA−1∆π [11.8a]

∆r = n0p(∆λ� + t∆µλ�) + n0q(∆β + t∆µβ) − n0bA−1∆π [11.8b]

Equation 11.8b is not used. After multiplication by sec r, Equation 11.8a gives the
relevant terms in the observation equation, or:

vobs − vcalc = � � � + d0∆a [11.9]

where ∆a = (∆λ�, ∆β, ∆π, ∆µλ�, ∆µβ)0 is the column matrix of differential corrections
and d is the column matrix of dependencies:

d1 = m0p sec r

d2 = m0q sec r

d3 = m0b A−1 sec r

d4 = m0p t sec r

d5 = m0q t sec r

[11.10]
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Orientation Errors in the Reference Great-Circle Frame

Section 11.2 defined the nominal reference great-circle frameR, having its pole precisely
at the nominal coordinates (λR , βR) and the abscissa origin (P) exactly at the intersection
with the ecliptic. Because of the arbitrary abscissa zero point adopted in the great-circle
reduction, and because of errors in the attitude angles and stellar coordinates used as
input to the great-circle reduction, the object was in reality ‘observed’ with respect to a
slightly different triad R̃ = [ P̃ Q̃ R̃ ], which shall be called the actual great-circle frame.
The topocentric coordinate direction of the star can be expressed in this frame as:

u = R̃

 cos r̃ cos ṽ
cos r̃ sin ṽ

sin r̃

!
[11.11]

where (ṽ, r̃) are the abscissa and ordinate in the nominal great-circle frame. The
direction cosines in Equations 11.2 and 11.11 are related through the matrix equation:

R̃0u = (R̃0R)R0u [11.12]

where R̃0R is a 3 × 3 orthogonal matrix.

The relation between the nominal and actual great-circle frames can be represented by
a vector � (unique for each great-circle reduction) such that a triad initially aligned with
R will become aligned with R̃ after rotation through the angle θ = j�j about the unit
vector h�i. In the small-angle approximation, neglecting terms of order θ2, this can be
written:

R̃ = R + � × R [11.13]

and the transformation matrix in Equation 11.12 becomes:

R̃0R = I + (� × R)0R =

 1 θR −θQ

−θR 1 θP

θQ −θP 1

!
[11.14]

Here, I is the 3 × 3 identity matrix and θP, θQ, θR are the components of � in either
great-circle frame.

Inserting Equation 11.14 in 11.12 and expanding to first order in the small angles gives:

ṽ = v + (θP cos v + θQ sin v) tan r − θR [11.15a]

r̃ = r − θP sin v + θQ cos v [11.15b]

At this point two simplifications are introduced:

(1) since the ordinate was not estimated in the great-circle reduction, Equation 11.15b
need not be considered;

(2) since jrj <~ 2 degrees, due to the limited time interval of the great-circle reduction
and the choice of the reference great circle close to the mean scanning plane during
that interval, the components θP and θQ contribute much less than θR to the
difference between the nominal and actual abscissa in Equation 11.15a, and are
ignored.

(1) implies a small loss of information, but involves no approximation compared with
Equation 11.15; in contrast, (2) causes an approximation error in the abscissae which
could amount to a few milliarcsec (since θP and θQ may be of the order of the accuracy
of the transverse attitude, or 0.1 arcsec). It was assumed that the outer iteration loop
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of the main Hipparcos reductions—involving the attitude determination, great-circle
reductions, and the sphere solution—eliminates at least the systematic part of these
errors. The consequences of this approximation are further discussed in Section 11.7.

As a result of (1) and (2), Equation 11.15 simplifies to ṽ = v− θR and θR can be identified
with the zero-point correction c j that must be added to the observed abscissa (in the
actual great-circle frame) in order to be compared with the calculated abscissa (in the
nominal frame). The corresponding term in the observation equation is, therefore:

vobs − vcalc = � � � − c j [11.16]

Local Errors on the Great-Circle Level

Apart from the orientation errors of the great-circle frame, the abscissae may be subject
to various distortions and systematic displacements, which vary from one great-circle
reduction to the next. This kind of ‘local’ error was not originally foreseen in the
Hipparcos data reductions, and are therefore not described in the pre-launch documen-
tation (Perryman et al. 1989 Volume III). Experiments with the real data, in particular
FAST/NDAC comparisons made at the great-circle level and the analysis of residuals
from several provisional sphere solutions, clearly demonstrated that such effects existed.
The most important one seemed to be a periodic error in the abscissa, with a period of
60�, and with essentially random amplitudes and phases in the different great-circle re-
ductions. The source of this could simply be the relatively low rigidity of the great-circle
reductions to the sixth harmonic of the abscissae, due to the proximity of the basic angle
(58�) to the period of that harmonic. The ‘local’ sixth harmonic may be introduced
into the observation equation in the form of the following two terms:

vobs − vcalc = � � � + Cj cos 6(v − v�) + Sj sin 6(v − v�) [11.17]

where v� is the abscissa of the Sun, which for historical reasons was taken as the origin
for the phase of the harmonic errors.

Additional local errors, especially depending on colour, were also detected and taken
into account in some of the sphere solutions (see Section 16.3).

Global Errors

Global parameters Γk, k = 1 . . . NΓ were primarily introduced in order to take into
account instrumental effects which could not be resolved at the level of the great-
circle reductions. In the various sphere solutions they varied in kind and number, up
to NΓ ' 20, as the physical significance and mathematical form of the effects were
explored.

By far the most important instrumental effect requiring global treatment was the so-
called ‘constant chromaticity’. In the Hipparcos nomenclature, this was the average
value of the displacement of the image of a star of given colour index with respect to
the image of a star of colour B − V = 0.5 mag. The displacement was measured in the
direction of scanning, and the average taken over both fields of view. Assuming that the
displacement was proportional to the difference in colour index, the relevant term in
the observation equation was:

vobs − vcalc = � � � + (B − V − 0.5)Γchrom [11.18]
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It was however found that the chromaticity varied (linearly) with time, requiring one
more global parameter for its representation, and that the variation with colour index
was perhaps not linear, requiring yet another parameter. The actual parameters used
by FAST and NDAC in their successive sphere solutions are described in Chapter 16.

Another kind of global instrumental effect was foreseen as a consequence of the varying
thermal impact on the payload. Under the nominal scanning law the solar illumination
varied periodically with the spin phase relative to the Sun, i.e. the heliotropic angle
Ω (see Figure 7.3). Consequently it was assumed that systematic thermal variations
could be modelled as a periodic function in Ω. Systematic errors in the abscissae
caused by such variations must be periodic in v − v�, if v� is the abscissa of the Sun.
This reasoning lead to the introduction of global parameters with harmonic coefficients
cos n(v − v�) (n = 1 . . . 6) and sin n(v − v�) (n = 2 . . . 6). The term containing sin(v − v�)
was rejected a priori, as it would have a very strong correlation with the parallax zero
point. Subsequently it was found that none of these global harmonic parameters attained
significant amplitudes. They were abandoned in the later NDAC solutions; in the final
FAST solution their amplitudes were below 0.01 mas (Table 16.3). The sixth harmonic
was however found to be an important local error, i.e. with independent coefficients for
each great circle, as discussed in the previous subsection.

Some sphere solutions included a global parameter representing a correction to the
general-relativistic value of the gravitational light deflection in the heliocentric metric.
This parameter was introduced because Hipparcos offered the first opportunity to mea-
sure the deflection accurately, for optical wavelengths, at large angles from the Sun.
According to General Relativity, for an object at infinity, the projection of the deflection
onto the reference great circle, or the difference in abscissa between the natural direction
and the coordinate direction to the star, is given by:

∆vGR =
2GS
h0c2

u0�hu × Ri

1 − u0�u
[11.19]

where GS is the heliocentric gravitational constant (Table 12.1), h0 the distance from
the Sun to the observer, and u� the coordinate direction towards the Sun; the latter two
are computed from the heliocentric position of the observer, h0 = b0 − bS, as h0 = jh0j

and u� = −hh0i. The global parameter may be defined in terms of the PPN parameter
γ as ΓGR = γ − 1, in which case the relevant coefficient in the observation equation is
∆vGR /2. A slightly different definition was used by NDAC (see Equation 16.10).

Irrespective of the choice and precise definition of global parameters, the corresponding
terms in the observation equation can be expressed as:

vobs − vcalc = � � � + g0� [11.20]

where � = (Γ1, . . . , ΓNΓ )0 is the column matrix of global parameters and g is the column
matrix of coefficients.

Grid-Step Errors

The abscissa resulting from the great-circle reduction was sometimes wrong by a small
multiple of the grid step, due to the 360� phase ambiguity of the signal produced by
the modulating grid. In the observation equation the presence of grid-step errors is
accounted for by the term:

vobs − vcalc = � � � + ns [11.21]
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where n is a small integer (usually n = 0) and s = 1.2074 arcsec is the adopted mean
value of the grid step.

Random Noise

The observation equation is completed by adding a noise term η representing the random
part of the observational errors resulting from the great-circle reductions. This was
assumed to be centred (expected value E(η) = 0), essentially Gaussian (although outliers
were expected and had to be accommodated by the solution method), and of a standard
deviation σv which was basically known from the great-circle reduction. Furthermore,
the noise was assumed to be uncorrelated. This is known to be false, in general, for a
pair of abscissae obtained in the same great-circle reduction (see Figures 16.36–16.37),
but it is a reasonable assumption for the different abscissae of a given star obtained in
different orbits.

The abscissa standard errors, σv, were estimated as part of the great-circle reductions.
However, it was empirically found that these estimates in general required corrections,
either in the form of a multiplicative factor, an added variance, or a combination of
both; and which were often found to be functions of magnitude, colour and time. Such
corrections were derived from the unit-weight variance of the residuals of the sphere
solution, first considered individually by the data reduction consortia (see Sections 11.5
and 11.6), and finally as part of the merging of the consortia results (Chapter 17).

Complete Observation Equation

The abscissa zero point correction c j and the other (local) errors on the great-circle level
(e.g. Cj , Sj) may be brought together in a single unknown column matrix c j for each
great-circle reduction, containing 1 ≤ nc <~ 3 elements. The corresponding coefficient
matrix, also of length nc, is denoted e j i . In the simplest case of nc = 1, the only element
in c j is c j , and the coefficient matrix is e j i = (−1).

Combining the error terms gives the complete observation equation:

d0j i ∆ai + e0j ic j + g0j i� + n ji s + η j i = vobs
j i − vcalc

j i [11.22]

where the calculated (nominal) abscissa, obtained through Equations 11.2 and 11.3, is
uniquely a function of the time associated with the observation (t ji ), the nominal pole
of the reference great circle (R j), and the assumed astrometric parameters of the star
(ai ).

11.4. The Sphere Solution Proper

Primary Reference Stars

The sphere solution proper aims at a direct solution of the system of observation equa-
tions, Equation 11.22, the main objective being the estimation of the abscissa zero points
(c j) and the global parameters (�). As already explained, this objective was achieved
using only a subset of all the observation equations, corresponding to the ‘primary



204 Sphere Solution

reference stars’. The selection of primary reference stars was guided by the following
considerations.

In the right-hand side of Equation 11.22, all terms are less than a few arcseconds, or
' 10−5 rad. Linearisation errors were therefore of the order of 10−10 rad ' 0.02 mas,
and could be neglected. However, the presence of the grid-step term n ji s still made
the system of observation equations highly non-linear and unsuitable for direct solution
by standard (least-squares) methods. It was therefore necessary to restrict the sphere
solution proper to objects with good a priori positions, for which n ji = 0 could be
assumed with a high degree of confidence.

The standard model of stellar motion, Equation 11.3, is only valid for stars which, from
the viewpoint of the Hipparcos observations, could be regarded as point objects with
uniform motion. This excludes well-resolved binaries and multiple stars, for which the
abscissa derived from the phases of the detector signal is a complicated function of the
geometry of the system, the relative intensity of the components, and the direction of
scanning. It also excludes close binaries, where the photocentre shows a non-negligible
acceleration due to the orbital motion of the system. Known double and multiple stars
of such characteristics were therefore excluded a priori.

The choice of primary reference stars for the FAST sphere solutions was essentially
made a priori according to these criteria. It was also attempted to use only photometri-
cally constant stars with good coverage. Within these restrictions it was, furthermore,
desirable to have an even distribution over the whole celestial sphere, preferably with
at least one primary reference star per square degree. This lead to the use of approx-
imately 72 000 primary reference stars in the final iterations of the sphere solutions.
In NDAC, a first choice was made according to the above considerations of duplicity
and possible grid-step errors, and further stars were rejected while setting up the ob-
servation equations, on the basis of the residuals with respect to the previous iteration
of the sphere solution. This resulted in some 50 000 primary stars in the early sphere
solutions, increasing to about 78 000 in the final sphere solution.

General Problem

Due to the selection of primary reference stars, the grid-step term can be disregarded for
the sphere solution proper. The remaining unknowns fall into three groups depending
on their different scope of validity:

for each primary reference star (i): ∆ai

for each great-circle frame ( j): c j

for each observation ( j i): �

The structure of the observation equations, and hence the methods of solution, are
strongly influenced by this categorisation.

Before solving the equations, it was necessary to equalise their statistical weights. This
was done by dividing each equation by σv ji , the actual standard error of the observation
(empirically corrected as described in Section 11.6). The resulting equations can be
written in matrix form as:

A�a + C c + G� + � = �v [11.23]



Sphere Solution 205

where �a, c and � are column matrices with the three kinds of unknowns; they are
of length 5Np, ncNc and NΓ, respectively. A, C and G are the corresponding design
matrices, obtained from the submatrices d0j i , e0j i and g0j i in Equation 11.22 after division
by σv ji . �v is the column matrix of abscissa differences (observed minus calculated, and
normalised to unit weight), and � is a column matrix of noise with assumed covariance
E(��0) = I. The number of rows in A, C, G, � and �v is equal to Mp, the number of
observations (abscissae) for the primary reference stars.

The general problem of the sphere solution proper was to find the vectors �a, c and �
which minimised the Euclidean (L2) norm of the residuals, or:

min kA�a + C c + G� −�v k2 [11.24]

The size of the problem can be appreciated by considering the number of unknowns
and equations in the final sphere solutions (Table 11.1). The matrix ( A C G ), known
as the design matrix of the least-squares problem, was however very sparse: in each
row, only five elements in A, one to three elements in C and NΓ elements in G were, by
design, different from zero. The filling factor was, therefore, (5+ nc + NΓ) /Mp ' 8× 10−6

for solution F37.3 and ' 4 × 10−6 for solution N37.5 (see Table 16.1 for details of
the sphere solution nomenclature). The structure of the design matrix is illustrated in
Figure 11.2.

A feature of the sphere solution problem is that the reference frame for the astrometric
parameters and the abscissa zero points remains unspecified by the observations. This
should in principle result in a six-fold singularity of the system of observation equations,
corresponding to the six degrees of freedom of the reference frame. In reality it was found
that Equation 11.23 was not singular; this problem is further discussed in Section 11.7.
Nevertheless, in the practical implementation of the sphere solution it was necessary to
consider the theoretical rank deficiency especially for the calculation of the variances.

Implementation in FAST

Two basic algorithms were developed in FAST to perform the sphere solution. Before
the launch of the satellite, a working solution was tested and fully implemented into
an operational software by a team of the University of Bologna (Galligani et al. 1989).
This software used the iterative algorithm LSQR based on the Lanczos method, which
was chosen after various trials and adapted to solve the large-scale system of the sphere
solution. It met at that time the stringent requirements set by the computer resources
in the mid-eighties. While it gave satisfactory solutions, it had two major drawbacks:

1. it was to be used as a ‘black box’ algorithm and lacked the necessary flexibility
required during the processing of real data to cope with new modelling, the need
to make an a priori selection of observations, and to produce various statistics;

2. a reliable estimate of the covariance matrix was very difficult to achieve and de-
pended on the iteration scheme adopted.

To overcome these shortcomings, in particular in view of getting a good estimate of
the internal precision of the solution parameters, a second method was developed at
CERGA (Frœschlé 1992). This method, based on a block iteration scheme, proved to
be very flexible and was easily adapted to a changing environment, as the knowledge of
the true properties of the data became more refined with time. The LSQR software was
run extensively in parallel during the development phase of this alternative method and
helped to speed up the tuning of the new software.
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Figure 11.2. Schematic illustration of the structure of the design matrix ( A C G ) for a case with Np = 8 primary

reference stars (5Np = 40 astrometric parameters), Nc = 9 reference great circles (each with nc = 1 unknown,

namely the abscissa zero point), NΓ = 3 global parameters, and Mp = 41 observations (abscissae) referring to the

primary reference stars. The black areas are the non-zero elements of the design matrix. In the upper diagram (a) the

observations are ordered by the great-circle number (i.e. more-or-less chronologically); in the lower diagram (b) by the

star number. Actual numbers Mp, Np, Nc and NΓ are given in Table 11.1.
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Table 11.1. Number of equations and unknowns in the final sphere solutions F37.3 (FAST) and N37.5

(NDAC). Only data corresponding to the primary reference stars are considered. See Chapter 16 for further

details on these solutions.

Solution F37.3 N37.5

Number of equations, Mp 2 091 926 2 451 483

Number of unknowns:

astrometric parameters, 5Np 362 455 390 565

great-circle zero points, Nc 2 281 2 326

other local parameters, (nc − 1)Nc 4 562 –

global parameters, NΓ 8 3

total number, 5Np + ncNc + NΓ 369 306 392 894

In linearised form the observation equations are written:

C δc + A δa + G δ� + � = δv [11.25]

where δc, δa, δ� are differential corrections to the local circle parameters, the astro-
metric parameters, and the global parameters, respectively. This is the order in which
the unknowns are solved by the block iteration scheme; hence the exchange of the first
two terms compared to Equation 11.23. The harmonic coefficients Cj and Sj (Equa-
tion 11.17) were included among the circle parameters, so the lengths of the correction
vectors were 3Nc, 5Np and NΓ.

The block iteration scheme operated on (parts of) the normal equations obtained by the
least-squares method: C0C C0A C0G

A0C A0A A0G
G0C G0A G0G

! δc
δa
δ�

!
=

 C0δv
A0δv
G0δv

!
[11.26]

where the dimension of the normal matrix is N × N with N = 3Nc + 5Np + NΓ ' 370 000.
No direct and general method of resolution could be reasonably envisioned for a system
of this size. The way out was to take advantage of the block structure of A and of
the fact that C is a sparse matrix. If there were only the astrometric unknowns the
problem would reduce to solving as many 5 × 5 linear systems as there are stars, which
is an easy task. The block decomposition attempts to solve more-or-less independently
the unknowns related to the stars and those linked to the more general parameters.
This leads to a very natural iterative design, but has the drawback of disregarding the
cross-correlations between the astrometry and the general parameters.

In a first approximation one considers that the corrections δa and δ� are negligibly small.
The harmonic terms Cj = c j2 and Sj = c j3 are also neglected in this approximation.
Then the matrix C is sorted according to the great-circle index and the correction to
the abscissa origin δc j1 is simply the average of the δv ji for that reference great circle.
Denote by I j the set of primary reference stars observed with respect to great circle j ,
and let Nj be the number of such stars. The zero order solution is then given by:

δc(0)
j1 = N −1

j

X
i2I j

δv ji , δc(0)
j2 = 0, δc(0)

j3 = 0, j = 1 . . . Nc

δa(0) = 0

δ�(0) = 0

[11.27]
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where the sum is taken over the stars i included in great-circle reduction j . The
corrections to the astrometric parameters are then computed, star by star, resulting in
the approximation:

δc(1) = δc(0)

δa(1)
i = (A0

iAi)
−1A0

i

�
δvi − Ci δc(0)

�
, i = 1 . . . Np

δ�(1) = 0

[11.28]

where Ai and Ci are the blocks of A and C associated with the star i, and δvi is the
corresponding observations. Then:

δc(2) = δc(1)

δa(2) = δa(1)

δ�(2) = (G0G)−1G0
�
δv − C δc(1) − A δa(1)

� [11.29]

Equations 11.27–11.29 were iterated until convergence. The other local parameters (Cj

and Sj) were introduced from the second iteration. There were two stopping criteria
tested at every step: (1) a normalised χ2 based on the residuals left at every observation,
and (2) the variation from one iteration to the next of the corrections to the origins.

The sphere solution in FAST was kept completely free to rotate and no attempt was made
to remove the rank deficiency (see Section 11.7 for a discussion). Various experiments
were made at intermediate stages to constrain the system by fixing the position and
proper motion of ‘11

2 star’, e.g. the longitude and latitude of one star and the latitude of
a second, thus removing the theoretical six degrees of freedom. But the linear system
of the sphere solution was in fact not singular but only mildly ill-conditioned and the
constraints brought no decisive advantage. In addition the variance-covariance matrix
of the astrometric parameters was to be recomputed later with an independent software
and it was not a major concern during the sphere solution proper to obtain realistic
variances.

Implementation in NDAC

The solution to the general problem of Equation 11.24 was implemented in NDAC by
way of the normal equations. Only one local parameter was used for each great circle
(nc = 1), so the complete normal equations matrix system had 5Np + Nc + NΓ ' 400 000
unknowns. This was reduced to a manageable size of Nc + NΓ ' 2300 by eliminating the
astrometric parameters in parallel with the accumulation of the normal equations for
the remaining parameters. This required that the observation equations were ordered
according to the star numbers as in Figure 11.2b. Since the abscissae were received
from the great-circle reductions in the order in which those reductions had been made, a
first part of the sphere solution consisted of the sorting of all the abscissa data according
to the star numbers.

For the subsequent formulation there is no need to distinguish between the abscissa
zero points and the global parameters, as they were treated together as a single column
matrix b with Nb = Nc + NΓ rows. In order to eliminate outliers the calculation of all
the unknowns was actually made by a sequence of differential corrections δa, δb to the
initial values. Introducing the matrix B = ( C G ) of dimension Mp × Nb the observation
equations for the corrections are written:

A δa + B δb + � = δv [11.30]
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and the full system of normal equations is:�
A0A A0B
B0A B0B

��
δa
δb

�
=
�

A0δv
B0δv

�
[11.31]

Elimination of the stellar unknowns, δa, gives the following two systems:�
B0B − B0A(A0A)−1A0B

�
δb = B0δv − B0A(A0A)−1A0δv [11.32a]

(A0A)δa = A0δv − A0Bδb [11.32b]

The 5Np × 5Np matrix A0A is block-diagonal, i.e. zero everywhere except for the Np

blocks of size 5 × 5 along the diagonal. It is therefore a straightforward process to
compute the two vectors: fδa = (A0A)−1A0δv [11.33]

and: fδv = δv − A0fδa [11.34]

whereupon Equation 11.32a can be written as:�
B0B − B0A(A0A)−1A0B

�
δb = B0fδv [11.35]

The symmetric matrix on the left-hand side is of size Nb × Nb and practically filled, since
almost any pair of reference great circles shared at least one primary reference star.

Once the observations had been ordered according to the star numbers, Equation 11.33
was used to compute provisional corrections to the astrometric parameters, after which
Equation 11.34 gave the corresponding provisional abscissa residuals. This was done
for one star at a time, while sequentially reading the sorted data into computer memory.
Concurrently with this process, Equation 11.35 was accumulated. This system was
complete when all the stars had been processed, and δb could then be solved by means
of the Cholesky algorithm. After updating of the abscissa zero points and global pa-
rameters, the process started again with new provisional corrections to the astrometric
parameters. This iteration ended when the correction vector δb was negligible: typically
the updates to c j were then less than 10−3 mas. At that time the astrometric parameters
had also reached their final values, as can be seen by comparing Equations 11.32b and
11.33.

It should be noted that the above process is not an iterative solution of the normal
equations (Equation 11.31) but a direct solution through rigorous elimination of δa.
The iteration scheme was primarily needed to handle outliers among the abscissa data.
The ‘pre-adjustment’ of the astrometric parameters, by means of the provisional updatesfδa, had some additional advantages:

• pre-adjustment was not restricted to the primary reference stars, but was in fact
made for as many stars as possible, thus eliminating the need for a separate process
for the determination of the astrometric parameters;

• the final decision whether to accept a star as a primary reference star could be
made immediately after the pre-adjustment, partly based on an examination of the
(provisional) residuals fδv. In practice only stars with very clean residuals were
accepted as primary reference stars, and the corresponding data were then added
to the normals for δb;

• for non-primary reference stars, the pre-adjustment stage was a convenient place
to detect and correct grid-step errors, as described in Section 11.6.
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The abscissa residuals after convergence were statistically analysed in a number of ways,
in particular as functions of colour, magnitude, and the abscissa difference with respect
to the Sun, v − v�. This revealed a number of systematic patterns, in particular the
sixth harmonic in v− v�, with apparently independent and random coefficients (of a few
milliarcsec) in the different great-circle reductions, and the chromatic effects discussed
in Section 16.3. These effects were treated in an ad hoc manner. For the sixth harmonic
and the chromatic variation, the relevant coefficients were determined from the residuals
of the penultimate solution (N37.4, see Section 16.3) and subtracted from the right-
hand sides of the observation equations of the final sphere solution. In a sense this
resembles the block iteration scheme adopted by FAST, but it was only used for those
parameters that were not included in the formal observation equations.

The system of normal equations for δb was found to have a condition number κ ' 2300.
Thus it could be solved without adding any constraint (such as fixing the position
and proper motion for ‘11

2 star’) with a moderate loss of numerical precision. In
fact, most of this loss corresponded to the random selection of one particular solution
from the manifold of solutions consistent with the observation equations, and was not
accompanied by a corresponding deterioration of the reference frame. It did however
result in large formal variances for the abscissa zero points and strong correlations
between them, artifacts of the (almost) undefined state of rotation with respect to an
external coordinate system. This problem was eliminated by projecting the solution onto
the subspace which is complementary to the theoretical null space, and transforming
the covariance matrix accordingly. This is practically equivalent to a minimum-norm
solution and to using the pseudo-inverse for the covariances.

The minimum-norm solution was implemented as part of the Cholesky algorithm for
the solution of Equation 11.35. Let F be the (upper-diagonal) Cholesky factor of
the normal equations matrix, so that the direct solution is δb = F−1(F−1)0B0fδv with
formal covariance V = F−1(F−1)0. Furthermore let N be an Nb × 6 matrix containing,
in the six columns, a set of vectors spanning the theoretical null space. According
to Equation 11.54 these are most easily constructed by taking, as the elements in
row j , the six components of R j and R j t j , where j is the great-circle number. A set of
orthonormal vectors N̂ can be computed e.g. by the Modified Gram-Schmidt algorithm.
The minimum-norm solution is then obtained by the transformation:

ˆδb = δb − N̂0δb [11.36]

and the covariance of the transformed vector is:

V̂ = (I − N̂0)V(I − N̂) =
h
F−1 − N̂0F−1

i h
F−1 − N̂0F−1

i0
[11.37]

It is seen that the inverted Cholesky factor must simply be transformed exactly like the
solution vector, before the covariance matrix is formed. In practice only the diagonal
elements of V̂ were computed. The standard errors of the abscissa zero points were
typically about 0.1 mas.
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11.5. Determination of Astrometric Parameters in NDAC

General Problem

The sphere solution proper determined the abscissa zero points c j and global parameters
� by elimination of the astrometric parameters from the basic observation equation
(Equation 11.22). Shifting to the right-hand side the terms thus determined gives:

d0j i ∆ai + n ji s + η j i = vobs
j i − vcalc

j i − e0j ic j − g0j i� [11.38]

In contrast to the original system, this can be solved directly for one star at a time,
requiring only a very small system of equations to be handled at a time. However, there
are still many complications to be considered, in particular the possible grid-step errors
(n ji ≠ 0), deviations from the standard astrometric model (Equation 11.3) for some
stars, and the existence of outliers caused, for example, by the superposition of chance
stars in the instantaneous field of view from the other viewing direction.

Implementation in NDAC

In NDAC the determination of the astrometric parameters was integrated with the
sphere solution, as described in the previous section, for all stars except those treated by
the special double-star process described in Chapter 13. Other cases where the standard
stellar model was not applicable, principally the astrometric binaries requiring quadratic,
cubic or orbital solutions for the motion of the photocentre, were not systematically
investigated but the NDAC data were used for such solutions as part of the merging
process (Chapter 17).

An attempt to eliminate grid-step errors was made as soon as more than one observation
of the star had been rejected, or if the goodness-of-fit for the star exceeded a given
threshold. As a first attempt, the integers n ji were chosen in such a way that:

jvobs
j i − vcalc

j i j ≤ s /2 [11.39]

for all the observations of this star. If the residuals were still not acceptable, a systematic
search was made to determine the correct set of integers n ji . The initial coordinates of
the star were modified in steps of about 0.5 arcsec, new integers determined according
to Equation 11.39, and the residuals and goodness-of-fit were again computed. This
process was repeated until a satisfactory fit was obtained, or until the modified coordi-
nates were too far away from the initial position. Usually the search was limited to an
area of only a few arcsec radius, because of the high risk of finding spurious fits at larger
distances.

The complete expression for the variance-covariance matrix associated with the astro-
metric parameters of star number i, obtained from Equation 11.32b, is:

Vi = (A0
iAi )−1 + SiS0

i [11.40]

where Ai is the submatrix of A referring to the star, and:

Si = (A0
iAi )−1AiB(F−1 − N̂F−1) [11.41]
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The term SiS0
i was, for practical reasons, neglected. This is tantamount to neglecting

the variance contributed by the abscissa zero points through the second term in Equa-
tion 11.32b. This was believed to be an acceptable approximation in view of the rather
small (~ 0.1 mas) errors on the abscissa zero points, compared to the typical abscissa
standard errors (~ 3 mas).

11.6. Determination of Astrometric Parameters in FAST

The sphere solution in FAST was intended to produce the parameters required to
define the system, in such a way that every abscissa could be brought into a fully consis-
tent reference frame. The only remaining degrees of freedom were the six parameters
needed for the time dependent rotation, to be determined by the link to the extragalactic
reference frame. The astrometric parameters resulting from the sphere solution were
considered as a by-product of this process and not as final for these stars. In any case,
an independent software had to be written for the determination of the astrometric pa-
rameters of the non-primary reference stars, which were not part of the sphere solution.
This software needed to be more flexible than the corresponding one in the sphere solu-
tion in order to handle all the difficult cases, the double and multiple stars, and to cope
with the grid-step errors very common for stars with poor initial positions or proper
motions. This led, at an early stage of the definition of the FAST organisation, to the
identification of the astrometric parameter determination as a task by itself, independent
of the sphere solution and to be designed to produce the astrometric solutions for all
the stars.

Environment and Main Goals

The sphere solution in the FAST processing ended up with a file containing the cor-
rections to be applied to each origin, one per circle, so that the resulting network of
circles determined a consistent reference frame on the sphere. Then all the abscissae,
of the primary reference stars as well as all the other stars and solar system objects, were
referred to the new origins and corrected for the general parameters. The corrected
abscissae for star i were:

δ ṽi = δvi − Ci δc − G δ� [11.42]

In the normal case of a single star following the standard model, the least-squares
problem for the determination of the five astrometric parameters was:

min kAi δai − δ ṽi k2 [11.43]

which is to be solved once for each star. The software for the astrometric parameter
determination included a number of tests and specialised algorithms for the weighting
of the observations, the recognition of outliers, and the correction of grid-step errors.
It also allowed a number of alternative models to be tested in addition to the standard
one with only the five astrometric parameters λ, β, π, µλ�, µβ , such as introducing an
accelerated motion, or solving for the astrometric parameters of the centre of mass of
double stars with known orbits.

For the double and multiple stars the abscissae were corrected for the duplicity effect
as explained in Section 13.3, i.e. in such a way that the modified abscissae referred to
the primary or to the photocentre of the binary, depending on the separation. The
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solution for the astrometric parameters of the primary or photocentre then proceeded
in the same way as for the single stars.

Weighting Scheme

One of the most important aspects of the least-squares solution for the five astrometric
parameters was the scaling of the variances resulting from the great-circle reductions.
Each observation equation was initially weighted by wji = 1/σ2

v ji
, where, as before,

j stands for the circle and i for the star, and σv ji was the standard deviation of the
abscissa estimated by the great-circle reduction. In the FAST treatment several changes
were brought to these standard deviations in order to scale the observation equations
correctly.

For a given weighting scheme, the unit-weight variance for a particular star i was
computed as:

u2
i =

1
Mi − 5

X
j2Ji

w ji(ṽ
obs
j i − vcalc

j i )2 [11.44]

where Ji is the set of reference great circles in which the star was included and Mi is the
number of such circles; ṽobs

j i is the observed abscissa, corrected as in Equation 11.42.
The unit-weight variance should follow the distribution of the normalized chi-square
variable χ2

Mi −5 /(Mi − 5) with unit mean. The sample distribution of u2
i was studied for

various subsets of single and multiple stars as a function of magnitude and colours and
led to a rather complex weighting system with wji = 1/σ2

j i depending on whether the
star was single or double. For the stars processed as single, σ j i was computed as:

σ j i = (0.86 + 0.0084 Hp)(σ2
v ji

+ σ2
m)1/2 [11.45]

where the additional standard deviation depending on the magnitude Hp was given by:

σm =
�

1.561 (1 + 0.0978x + 0.0217x2 + 0.0048x3 + 0.0011x4) mas if Hp < 11.5
5 mas otherwise

[11.46]
with:

x = 10(Hp−8)/5 − 1 [11.47]

This scheme was also used for weighting the equations of the primary reference stars in
the sphere solution. For the double stars the corresponding expression was:

σ j i = (0.86 + 0.028 Hp)(σ2
v ji

+ σ2
c )1/2 [11.48]

where σc was the standard deviation of the correction applied to the abscissa in order
to move the reference point to the primary (for separations % > 0.35 arcsec) or to the
photocentre (for % < 0.35 arcsec) of the double star (see Chapter 13).

Filtering of Outliers

There were essentially three modes for selecting or rejecting the observations:

1. the great-circle reduction provided several flags for every star observed in a circle to
report on problems with the solution. The flagging was based on the statistical anal-
ysis of the residuals and most problems were connected to grid-step inconsistencies
in the circle adjustment of the grid-abscissae. Out of nearly 3 × 106 abscissae, this
led to the rejection of 22 000 observations, or about 0.7 per cent of the total;
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2. from the study of the residuals of the abscissae it was possible to locate outliers with
residuals larger than three times the standard deviation σ j i . Then a new solution
was computed until no more observations were rejected. For any star the fraction
of rejected observations was kept below 30 per cent. The most general situation
was no rejection at all (90.2 per cent of the stars) or only one rejection (7.6 per
cent of the stars); only in 2.2 per cent of the cases were there two or more outliers.
On the average there were just above three outliers per great-circle reduction, but
this number was subject to considerable variation because the rejections were quite
often concentrated on a few bad circles with problems of attitude convergence;

3. a manual mode with an a priori rejection of great circles based on a look-up table,
mainly for the purpose of comparison or to study the influence of a particular
configuration. The look-up table was specific for each star to be tested, and the
software could be run only for a preselected set of stars.

Correction of Grid-Step Errors

An algorithm to recognise and correct grid-step errors was devised by Bastian (1985). Its
implementation worked smoothly, and was of constant use in the preliminary versions of
the software. Its efficiency was however limited to circumstances when the proportion of
great circles to be corrected was small and jn ji j ≤ 2 or 3. This was clearly unsatisfactory
for many double stars and for the few hundred single stars with large errors in the Input
Catalogue.

An alternative algorithm was therefore implemented. This searched for solutions at
distances as large as 20 arcsec from the reference position. The software was a specialised
version of the algorithm used to determine the relative astrometry of double stars in the
FAST processing (Chapter 13). Indeed, the double star algorithm is, to an essential part,
a robust grid-step error solver. In Equations 13.19–13.21 for the relative astrometry
of double stars, the abscissa difference δ ṽ j i was substituted for the projected phase
difference between the secondary and primary components. The solution for the ‘double
star parameters’ X = % sin θ and Y = % cos θ then provided the desired update of the
reference position.

Adding a parameter for the parallax, straightforward modifications led to a new method
for the astrometric parameter determination, which were much less sophisticated than
the nominal method, but very useful for producing a solution within a few milliarcsec
of the true position, whatever the starting value. All the stars were therefore first solved
with this alternative method, and the results then became the starting points for the
actual astrometric parameter determination, in which there was no longer any grid-step
problem.

Practical Implementation

All the user-defined settings, combined with the possibility of running the program on
a star by star basis, enhanced considerably the flexibility of the astrometric parameter
software compared to the extreme rigidity of the sphere solution and proved to be
decisive in the solution of all the non-trivial cases.

Two versions of a software originally developed at the Astronomisches Rechen-Institut
in Heidelberg (Walter et al. 1985, Lenhardt et al. 1991) were implemented and run at
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two places. The evolution of the two versions was not fully parallel and the differences
noticed in the results from time to time had to be carefully investigated. Eventually
all the stars were processed on a single computer to produce the final FAST solution.
Many intermediate cross-checks between CERGA and ARI helped make the final re-
sult very reliable. Also during this final step, frequent comparisons were made with
the astrometric parameters of the primary reference stars computed during the sphere
solution proper, which proved very useful for the understanding of the whole process.

11.7. Rank Deficiency and Convergence Properties

As mentioned in Section 11.1, the zero point corrections c j were determined in such
a way that the corrected abscissae defined a globally consistent reference frame, but
the observations themselves did not define any specific reference frame. This means
that if a particular solution a, c, � to the least-squares problem of Equation 11.24 was
found, then there existed an infinite number of (slightly) different solutions a + δa,
c + δc, � + δ�, for which the norm remained at the minimum. As a consequence the
least-squares equations were expected to have a rank deficiency corresponding to the
six degrees of freedom of the reference frame (Betti & Sansò 1983).

Contrary to this expectation it was found, already in the early simulations of the
Hipparcos data reductions, that the equations for the sphere solution were in fact only
weakly ill-conditioned (Lindegren & Söderhjelm 1985). This problem of the (absence
of) rank deficiency was discussed at length in the Hipparcos literature (e.g. van Daalen,
Bucciarelli & Lattanzi 1986). The conclusion has been that the non-singularity is due
to the splitting of the overall problem into different steps, during which different parts
of the unknowns of the problem were considered to be fixed. In this section the problem
is re-analysed in the framework of the present formulation of the general problem, and
the results of numerical experiments towards a more rigorous global solution of the
astrometric parameters are described.

Analysis of the Rank Deficiency

For simplicity the global parameters are excluded from the present discussion, as they are
not expected to contribute in any significant way to the question of the rank deficiency.
Furthermore, only one great-circle parameter was considered, i.e. c j or θR j . (Clearly the
addition of more unknowns, such as the global parameters, cannot render the problem
less ill-conditioned, and could therefore not be the source of the non-singularity of
the actual equations.) The expected rank deficiency would consequently lead to the
existence of non-zero vectors δa and δc satisfying:

A δa + C δc = 0 [11.49]

For a particular observation this can be written:

d0δa − δθR = 0 [11.50]

where δa now refers to the one star in question.

This manifold of valid solutions to the least-squares problem corresponds to a set S of
reference frames differing from each other by a time-dependent orientation vector "(t).
Since the objective is to study the effects of small variations in the unknowns, it will be
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assumed that the orientation differences are small; thus, only first-order terms in the
small quantities ", δa, and δ� are retained. Only a linear variation of " with time can
be absorbed by the proper motion components of the astrometric parameters; the time
dependence must therefore be of the form:

"(t) = "0 + !t [11.51]

The six degrees of freedom correspond to the components of "0 and !.

Let [ x y z ] be an arbitrary reference frame in the set S. Any other reference frame in S
can be written as [ x+δx y+δy z+δz ], where δx = " × x etc. Since the direction to the
star is independent of the reference frame, δr = 0 and Equation 11.4 gives:

p δλ� + q δβ = r × " [11.52]

Inserting this into Equation 11.8a and multiplying by sec r gives for the first term in
Equation 11.50:

d0δa = m0[r × "] sec r = (m × r)0" sec r

' [(R × u) × u]0" sec2 r [11.53]

where, in the last step, Equation 11.7 was used with jR × uj = cos r and r ' u to first
order in the small angles. For the second term in Equation 11.50 it is noted, from
Equation 11.14, that θR = P̃0Q; thus:

δθR = P̃0δQ = P̃0(" × Q) = (Q × P̃)0"

' −R0
" [11.54]

Here, again, the small-angle approximation was invoked for the last step. It should be
noted that (λR, βR) are interpreted as invariants, so that δR = " × R; on the other hand,
R̃ is effectively fixed by the great-circle reductions and therefore unaffected by ".

Combining Equations 11.53 and 11.54 gives:

d0δa − δθR =
�
(R × u) × u + R cos2 r

�0
" sec2 r

=
�
uu0R − R sin2 r

�0
" sec2 r

= (u − RR0u)0" tan r sec r

= (m × R)0" tan r [11.55]

where the vector triple product [(a × b) × c = bc0a − ab0c] was applied twice, and
R0u = sin r was also used.

It is seen that Equation 11.50 is not strictly satisfied by the variations δa, δθR produced
by a small rotation of the reference frame. In Equation 11.55 the right-hand side is
of the order of tan r times the terms on the left-hand side. The condition number of
the observation equations, instead of being infinite, should therefore be of the order of
j tan rj−1 ' 102, and the condition number of the normal equations should be κ ' 104.
This is in fair agreement with what was found in the actual solutions (Section 11.4).

As suggested by previous studies, the reason for the non-singularity can be traced back
to the approximation made in connection with Equation 11.15a, namely that the terms
containing θP and θQ were neglected. Since δθP = −P0

" and δθQ = −Q0
", the neglected

terms amount to:

(δθP cos v + δθQ sin v) tan r = −(P cos v + Q sin v)0" tan r

= −(m × R)0" tan r [11.56]



Sphere Solution 217

0 10 20 30 40 50 60

Rank of eigenvalue

E
ig

en
va

lu
e

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

solution with θR

solution with θP, θQ, θR

Figure 11.3. Eigenvalues for two small-scale simulations of the sphere solution, using 20 stars with 60 astrometric

unknowns (positions and parallaxes). Open circles: only the abscissa zero point was estimated for each reference great

circle. Filled circles: all three orientation parameters in � were estimated for each great circle. The expected rank

deficiency of three shows up only in the latter case.

exactly cancelling the previously found inequality. The inclusion of the two additional
unknowns θP and θQ for each great-circle frame should therefore in principle provide the
expected rank deficiency; in reality it should at least drastically increase the condition
number of the design matrix.

Numerical Experiments

One of the first numerical studies of the rank deficiency problem was performed by
S. Söderhjelm in 1983. The observations of only 20 stars were simulated, assuming
the nominal scanning law but with a 30� field of view. The positions and parallaxes
were included as unknowns, together with one (θR) or three (�) orientation parameters
for each reference great circle. In this case the orientation parameters, rather than
the astrometric parameters, were eliminated from the full normal equations, leading to
reduced systems with 3Np = 60 unknowns. The eigenvalues of these systems are shown
in Figure 11.3. The use of a single orientation parameter per great circle gave a rather
well-conditioned system (open circles; condition number κ ' 35) while elimination of
all three orientation parameters gave a very distinct jump from the 57th to the 58th
ranked eigenvalue (filled circles; condition number κ ' 5 × 106. This latter behaviour
was exactly as expected for a well-posed least-squares problem with a rank deficiency of
three, considering that single-precision arithmetics (four-byte reals) was used.

The sphere solutions performed by both reduction consortia used the formulation of
Sections 11.3 and 11.4, including the approximation leading to the non-singularity
of the least-squares problem. In a sense this was tantamount to injecting a priori
positional information into the observation equations, forcing the poles of the actual
great-circle frame to coincide with the nominal poles. As a consequence of this approach,
the consistency of the final Hipparcos reference frame could in principle be spoiled
by overconstraining (Lattanzi, Bucciarelli & Bernacca 1990). The external iteration
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Figure 11.4. Residual systematic differences, estimated by the method of infinitely overlapping circles, between the

modified solution (solving also for the longitudes of the reference great-circle poles) and the standard FAST sphere

solution. The top panels show differences in ecliptic longitude (solid lines) and latitude (dotted), the bottom panels show

the parallax differences.

scheme adopted by the consortia (Section 16.2) was supposed to take care of this
problem. However, it was not obvious that this procedure converged to a reference
frame completely free of the distortion possibly introduced by the overconstraining; nor
was it clear whether the relatively few iterations actually performed were sufficient for
convergence.

A study of the convergence properties of the Hipparcos sphere solution, performed by
B. Bucciarelli, M.G. Lattanzi and M. Frœschlé, compared the 37-month standard FAST
solution before the last iteration with the corresponding results obtained by introducing
the poles of the reference great circles as additional unknowns. Because of the low
estimability of the adjustment to the latitude of the pole (∆βR), the actual experiment
was carried out with only one additional unknown per great circle, i.e. the adjustment to
the longitude of the pole (∆λR = z0�). Its coefficient in the modified condition equation
reads:

eλR = [sin v cos(λR − λ) + cos v sin βR sin(λR − λ)] cos β [11.57]

where (λ, β) is the geometric position of the star.

Before comparing the modified solution to the FAST standard solution, a small rotation
was applied to bring the former onto the system defined by the standard solution. The
estimated rotation parameters were:

εx = −0.3499 ± 0.0002 mas

ε y = −0.2445 ± 0.0002 mas

εz = +0.0680 ± 0.0002 mas

[11.58]
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The catalogue-wide rms of the positional differences were ' 0.3 mas and ' 0.04 mas in
λ before and after the rigid rotation, respectively; analogously, for β the rms differences
were ' 0.2 mas and ' 0.03 mas.

The method of infinitely overlapping circles (see Section 16.6) was utilised to evaluate
residual systematic differences in the astrometric parameters. As both the modified and
standard solutions were based on the same subset of 45 035 primary reference stars, the
radius of the small circles was increased to R = 3�. This resulted in an average of 30
stars per circle. Figure 11.4 shows the computed systematic differences in position and
parallax as functions of ecliptic longitude and latitude; a similar behaviour was observed
for the proper motion differences. The systematic differences, at this resolution, are
typically on the level of 0.01 to 0.02 mas. These results show that the two solutions
are practically identical and support the conclusion that the external iterative scheme
adopted by the consortia has been adequate to completely recover the errors in the
a priori determined coordinates of the poles of the reference great circles.

Evidently this experiment cannot address possible distortions introduced earlier in the
reduction procedure. To this end, a new reduction, which directly solves for the attitude
parameters along with the astrometric parameters, would be required.

L. Lindegren, M. Frœschlé, F. Mignard
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12. EPHEMERIDES, TIMING, AND CALCULATION
OF CELESTIAL DIRECTIONS

The interpretation of the observations in terms of astrometric parameters of
stars or the motions of solar system objects required the use of auxiliary infor-
mation in the form of ephemerides of the satellite and other bodies; the use of a
single, uniform time scale that could be related to celestial phenomena; and the
use of precise mathematical models for the calculation of celestial directions.
This chapter describes the implementation of these utilities by the reduction
consortia, and summarises the results of tests to compare the implementations.

12.1. Ephemerides

The ephemerides used in the Hipparcos data reductions describe the time-dependent
relative positions of five points in space: the solar system barycentre, the Earth, the
Sun, the observer (in this case the Hipparcos satellite) and the observed object, which
may be a solar-system object or a star. In the latter case, the astrometric parameters
of the star may be regarded as defining the ephemeris of its barycentric motion. The
vector relations between the five points are illustrated in Figure 12.1. Each vector is
a function of time T , for which the Terrestrial Time (TT) was used throughout; the
periodic differences (of up to ±1.6 mas) with respect to a barycentric coordinate time
scale were thus neglected in the calculations. For the computation of occultations, an
approximate ephemeris of the Moon was also needed.

Earth and Moon

The ephemeris of the Earth, bE(T ), was supplied by J. Chapront, G. Francou and
B. Morando from the Bureau des Longitudes in Paris. It consisted of the ephemeris of
the barycentre of the Earth–Moon system with respect to the solar system barycentre on
one hand, and of an ephemeris of the Earth relative to the Earth–Moon barycentre on
the other. Regarding the former, a compact representation of the position and velocity
vectors was derived from the best analytical theories to the required precision of 10 km
in position and 0.05 m s−1 in velocity, in the form of a Fourier-Poisson expansion over
intervals of 400 days each.

The motion of the Earth with respect to the Earth–Moon barycentre was given by
Fourier expansions based on the planetary and lunar theories developed at the Bureau
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Figure 12.1. Vector relations between the solar system barycentre (B), the Sun (S), the Earth (E), the observer (O)

and the point under observation (P). Barycentric, heliocentric, geocentric and topocentric vectors are denoted b, h, g,

and s, respectively, with indices as appropriate for the different bodies.

des Longitudes. There were 22 harmonics for the ecliptic X and Y coordinates and
their time derivatives, and eight for the ecliptic Z and dZ /dT . An approximate position
of the Moon, used to calculate occultations, was derived from the same data. The
ecliptic Earth ephemeris was converted to equatorial coordinates using the IAU value
for the obliquity of the ecliptic at J2000, see Table 12.1.

A tabulation of the barycentric equatorial position and velocity components of the Earth,
as calculated from the subroutines used in the reductions, is given in Table 12.2.

It can be noted that the reduction consortia interpreted this ephemeris as applying to the provisional reference

frame of their respective solution, or actually the solution of the previous iteration; no attempt was made to take

into account the difference between that frame and the actual reference frame of the ephemeris (nominally the

dynamical system for the equinox of J2000). Thus, for the final FAST and NDAC solutions, the ephemeris

was assumed to refer to the reference frames of F37.1 and N37.1, respectively. The orientations of these

frames relative to the Hipparcos Catalogue (or the ICRS system) are given in Table 16.8.

Sun

The ephemeris of the Sun, bS(T ), was needed for calculations of the gravitational light
deflection (Section 12.3) and for eclipse calculations. A simple elliptical motion was
assumed by FAST, while NDAC used a polynomial fit to the barycentric ephemeris of
the Sun derived by Clemence (1953), but modified to modern values for the masses of
Pluto and Saturn (respectively 1/130 000 000 and 1/3498.5 of the solar mass).

Minor Planets and Other Solar System Objects

The observing programme included some 60 minor planets (of which 48 were actually
observed), two moons of Saturn and one moon of Jupiter. Geocentric ephemerides
for these objects, g(T ), were supplied by the Bureau des Longitudes in Paris. For the
minor planets the data (ecliptic longitude and latitude, distance and magnitude) were
given in the form of Chebyshev polynomials of order 8; for the moons as trigonometric
series for the positions relative to the ephemerides of the parent planets, which were
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given as Chebyshev polynomials of order 10. The distances to the moons were taken
equal to the distance of the parent planet. The geocentric position vector resulting from
these calculations included a correction for planetary aberration. A transformation to
equatorial coordinates was made using the standard value for the obliquity of the ecliptic
(Table 12.1).

Satellite Ephemeris

The geocentric ephemeris of the Hipparcos satellite, g0(T ), was supplied by ESOC in
the form of auxiliary Keplerian elements (describing a reference orbit) and 10 Chebyshev
coefficients for each of the components in position and velocity, describing the deviations
from the reference orbit over a given interval of time. Additionally, the full geocentric
position and velocity vectors at a given reference time were supplied. Usually two to
four intervals of such data were given per orbital period. Accuracies to which the various
orbital parameters could be determined are given in Volume 2, Chapter 6.

To compute the position and velocity vectors at an arbitrary instant, the Keplerian
elements were used to compute the reference vectors, to which were then added the
corrections evaluated from the Chebyshev polynomials. The resulting data referred to
the mean equator and equinox of the date. For subsequent combination with the Earth
ephemeris the data were transformed to the equinox of J2000 by means of standard
formulae for the precession (Table 5.1–5.2 in Murray 1983).

In the NDAC great-circle reductions, the satellite ephemeris was completely expressed
as Chebyshev polynomials for the fraction of the orbit during which science data had
been successfully obtained. The order of this representation (up to 10) depended on
the length of the interval under consideration.

A comparison of the geocentric velocity components was made in 1991 by H. Schrijver
using the FAST ‘First Look’ facility at SRON (Utrecht), and L. Lindegren using results
of the NDAC great-circle reduction software. For three different observational frames
in orbit 79, separated by 191 min and 1.5 min, the absolute differences in the computed
equatorial components were found to be 0.043, 0.030 and 0.031 m s−1, respectively.
The maximum difference corresponds to 0.03 mas in stellar aberration. The result of
this comparison was thus considered satisfactory.

12.2. Timing of the Observational Data

All observations on board Hipparcos, including the gyro readings, must be put on a
single, continuous time scale with a well-defined relationship to the time scales used to
describe the celestial phenomena. The requirement on the absolute timing of the data
were derived from the most rapid variations in the calculated proper directions. For
instance, the maximum acceleration of the satellite (at ~ 10 000 km altitude) was about
1.5 m s−2, producing a maximum rate of change in stellar aberration of 1.0 mas s−1.
Thus, for the calculation of aberration the timing had to be accurate to better than
±100 ms in order not to introduce an error exceeding 0.1 mas. The most severe
requirement stemmed however from the motions of minor planets, where the maximum
geocentric angular velocity was approximately 20 mas s−1, leading to a requirement of
±5 ms or better in the absolute timing.
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The time scale used in all the astrometric reductions was Terrestrial Time, TT (equiv-
alent to the former time scales TDT and ET). This is a continuous time scale with a
simple relation to atomic time and suitable for describing celestial phenomena when an
absolute accuracy of a few milliseconds is sufficient.

As described in Chapter 8, the timing of the data collected by the Hipparcos satellite
was a combination of on-board computer regulation (driven by the on-board clock),
and everything that happened between the emission of the data by the satellite and the
time-tagging at the ground-station. These latter effects are fully described in Chapter 8;
only the on-board timing is considered here, and only to the extent as noticed by the
data reduction groups.

The scientific data and all auxiliary data were collected on-board in telemetry formats
covering 32/3 s, or five observational frames. Most of the data accumulated did not,
however, coincide exactly with the boundaries of the telemetry format: all gyro data
(supplied 10 times per format) were shifted by 1.120 s, meaning that the first gyro data
in a format referred in time to the last gyro integration interval of the preceding format.
Similarly, the main detector (image dissector tube) and star mapper data were shifted,
but in the case of the main detector data most of this shift was removed in the handling of
the data at ESOC. The only shifts left in the data were those introduced by the on-board
computer, which were of the order of 0.2 to 0.5 ms. The attitude reconstruction was
represented such that the values for the angles and rates derived for an observational
frame referred to the actual mid-time of the observational frame defined by the main
detector samples, thus incorporating the 0.5 ms shift of the image dissector tube data.

A detailed comparison of timing calculations was made in 1991 between the Utrecht
‘First look’ reduction and special calculations by L. Lindegren, using NDAC data. The
mid-times of two frames in orbit 429 and 696 were considered, and the calculations
included the conversion of the time tag of the telemetry format from UTC to TT,
application of the internal delay of the ground station, and of the propagation delay from
satellite to antenna. The computed frame mid-times, expressed in TT at the satellite,
differed by −13 µs in one frame and by +1 µs in the other. A further comparison with the
frame mid-times calculated at RGO for the NDAC routine processing gave differences
of +1.3 ms and −0.7 ms, but in all cases the results were considered satisfactory (see
also Section 8.2 for further comments about some uncertainties in the ground-station
delay times and the variations in the on-board clock, which were dealt with in different
ways by the two consortia).

12.3. Coordinates for Stars and Solar System Objects

Following the terminology of Murray (1983), the proper direction to an object, as
measured by a moving observer, is obtained by three successive transformations:

(1) the first is a translation of space-time coordinates from the adopted reference point
(at the solar system barycentre) and epoch to the observer at the time of observation.
In general this involves the space-time coordinates (in a given metric) of two specific
events: the emission of light at the object, and its reception at the observer. For the
observation of a solar system object these events are described by the ephemerides of
the object and observer. For a stellar observation the transformation corresponds to the
application of parallax and proper motion. In either case the result is the ‘coordinate
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direction’ to the object (ū), expressed in the adopted metric. It should be noted that,
in the context of General Relativity, the coordinate direction is a mathematical concept
devoid of physical meaning, as it depends completely on the choice of metric. For the
Hipparcos reductions, isotropic coordinates were used, usually assuming a spherically
symmetric, heliocentric metric; the ephemerides described in the previous section were
assumed to be expressed in such coordinates;

(2) the photon track from object to observer, when expressed in isotropic coordinates,
is a hyperbola (if only light bending from the Sun is taken into account). The second
transformation gives the direction of the photon track, as the light reaches the observer,
relative to the ‘natural frame’ of the observer. This frame is a locally flat (Euclidean)
coordinate system at rest with respect to the barycentre. The resulting ‘natural direction’
to the object (û) is what would be measured by a hypothetical stationary observer located
at the same position as the real observer at the epoch of observation. The transformation
from the coordinate direction to the natural direction corresponds to the application of
gravitational light deflection, and again depends on the adopted metric. The resulting
direction is however an observable entity, and therefore independent of the metric;

(3) the actual observer is moving relative to the natural frame, and the actually observed
direction, or the ‘proper direction’ (u), is obtained by a Lorentz transformation to the
co-moving ‘proper frame’. This corresponds to the application of stellar aberration.

These transformations are described below in the precise form that was used by NDAC.
Equivalent representations were used by FAST and are described by Walter et al. (1986).
All calculations were carried out on the equatorial direction cosines of the celestial
coordinates, i.e. on unit vectors of the form:

u =

 cos δ cos α
cos δ sin α

sin δ

!
[12.1]

Isotropic Coordinate Direction

The catalogue data for stars refer to a specific epoch T0, equal to J1991.25 for the final
catalogue (J1990.0 and other epochs were also used in the reductions). The barycentric
coordinate direction to a star at this epoch is:

uB(T0) =

 cos δ0 cos α0

cos δ0 sin α0

sin δ0

!
[12.2]

At the time of observation T , with the observer at barycentric coordinates b0(T ), the
isotropic coordinate direction to the star is given by:

ū(T ) =

*
uB(T0) − πb0(T )A−1 + (T − T0)

 − sin α0 − sin δ0 cos α0

cos α0 − sin δ0 sin α0

0 cos δ0

!�
µα�

µδ

�+

[12.3]
where π is the stellar parallax, µα� = µα cos δ , µδ the proper motion components, and A
the astronomical unit (Table 12.1). In cases when parallax or proper motion information
was not available, as in the initial reductions using the Hipparcos Input Catalogue, these
values were assumed zero.
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For a solar system object with geocentric ephemeris g(T ), the isotropic coordinate
direction is given by:

ū(T ) = h g(T ) − g0(T ) i [12.4]

Since planetary aberration was included in the geocentric ephemerides of solar system
objects, the relevant argument of g is the time of observation, T , and not the time of
light emission, T − jg − g0jc

−1.

Natural Direction

The transformation from the isotropic coordinate direction to the natural direction took
into account the light bending by the Sun and (in NDAC only) by the Earth; for solar
system objects, their finite distances from Hipparcos were taken into account. The
relevant transformation in the heliocentric isotropic metric is given by Equation 2.5.5
in Murray (1983). Adding an extra term for the deflection by the Earth (which may
amount to a few tenths of a milliarcsec) and re-writing for computational efficiency (see
Section 12.4) gives the following formula for the natural direction:

û =
�

ū + h0
2GS

c2h0(qSh0 + ū0h0)
+ g0

2GE
c2g0(qEg0 + ū0g0)

�
[12.5]

where h0 and g0 are the heliocentric and geocentric positions of Hipparcos, and h0, g0

the corresponding distances. The heliocentric and geocentric gravitational constants
are given by GS and GE respectively (Table 12.1). The scalars qS and qE were set to
one for stars, while for objects in the solar system they were computed according to the
distance s from Hipparcos:

qS = jū + h0s−1j + h0s−1

qE = jū + g0s−1j + g0s−1
[12.6]

Proper Direction

The proper direction to a star or solar system object was obtained by a Lorentz transfor-
mation depending on the velocity V of the observer; see e.g. Equation 2.5.8 in Murray
(1983). The velocity was taken to be the sum of the geocentric velocity, dg0 /dT , com-
puted from the satellite ephemeris, and the barycentric velocity of the Earth, dbE /dT ,
computed from the Earth ephemeris. With e = (c2 − V 2)1 /2 the proper direction can be
written (see Section 12.4):

u =


û + V

�
1 + V0û(c + e)−1

�
e−1
�

[12.7]

Comparison of FAST, NDAC, and TDAC Calculations

The participants in this comparison were requested to provide all proper directions
computed by them for a few stars in a given orbit, i.e. for all frames in all transits for the
main mission reduction, and for all the star mapper transits for the Tycho reduction.
The selected orbit was number 79 (9–10 December 1989), and the selected stars were
HIP 7680, 7708, 67186, and 67362.

Data were received in February–April 1992 from the NDAC main data reduction (sup-
plied by C. Petersen), the TDAC reduction (supplied by U. Bastian), and the FAST
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main reduction at CERGA (supplied by J. Kovalevsky). Also available were the results
from the Utrecht ‘First Look’ reduction (SRON).

The data were put on a common frame numbering system, using the timing data
provided by the participants, and the position data were transformed to a common
coordinate system. The equatorial or ecliptic system would be natural, but presented
a practical problem: in the CERGA and SRON data reductions, only the component
parallel to the reference great circle, influencing directly the abscissae, was computed
with full precision. For the perpendicular component, the change in position during
the transit was not computed, nor the contribution from gravitational deflection. This
leads to errors not greater than 10 mas in the ordinate. So a useful comparison was
only possible in the spherical coordinates (abscissa, ordinate) defined relative to the ref-
erence great circle used by CERGA for this orbit. The proper directions were therefore
transformed into this coordinate system.

The Tycho data were only compared with NDAC, and the differences could be expressed
directly in the equatorial angles, as both sources provided the proper directions to full
accuracy in both coordinates. The TDAC data were given for the star mapper transit
times, which fell beyond the interval covered by the main mission data for the same field
transit. Linear extrapolation of the main mission data to the star mapper transit times
was therefore used to enable comparison with the Tycho data.

Each participant used their own catalogue of astrometric parameters for computing
the proper directions. These catalogues were all different, reflecting the various stages
of catalogue updating or iteration at the different establishments. The components
of these differences in abscissa and ordinate were computed and subtracted from the
comparisons. The results are summarised in Table 12.3 for the main mission comparison
(CERGA, NDAC, SRON) and in Table 12.4 for the TDAC/NDAC comparison.

The comparison showed good agreement between the proper directions computed by
the four participants, with the exception of the known inaccuracy in the transverse
great-circle direction for CERGA and SRON. Especially the average NDAC–CERGA
differences in abscissa, of the highest relevance for the actual reductions, were gratify-
ingly small (< 0.05 mas). At the same time, this result validated the computation of the
orbital velocity of the satellite, which was responsible for most of the evolution of the
apparent positions observed during the great-circle set.

12.4. Formulae for Gravitational Deflection and Aberration

Equations 12.5–12.7 deviate somewhat from the standard formulae given, for example,
in the Explanatory Supplement to the Astronomical Almanac (Seidelmann 1992). For
completeness, they are here derived from the corresponding expressions given in Murray
(1983).

Natural Direction (Gravitational Deflection)

Equation 2.5.5 in Murray (1983) gives the natural direction in terms of the isotropic,
heliocentric coordinates of the object and observer. With h and h0 denoting the helio-
centric positions of the object and Hipparcos (at distances h and h0 from the Sun), the
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coordinate direction to the object is ū = ss−1, where s = h − h0. Murray’s Equation 2.5.5
can then be written:

û = ū +
2GS
c2h0

(hh0 + h0h0)−1(h × h0) × ū [12.8]

Substituting h = h0 + ūs gives:

û = ū +
2GS

c2h0(qh0 + ū0h0)
(ū × h0) × ū [12.9]

where q = (h + h0)/s = jū + h0s−1j + h0s−1. The vector (ū × h0) × ū = h0 − ūū0h0 is the
projection of h0 in the plane normal to ū. An equivalent form of Equation 12.9, to first
order in the factor 2GS /c2s, is therefore:

û =
�

ū +
2GS

c2h0(qh0 + ū0h0)
h0

�
[12.10]

Equation 12.5 was obtained from this form by adding another term representing the
deflection by the Earth.

Proper Direction (Stellar Aberration)

Equation 2.5.8 in Murray (1983) gives the following transformation from the natural
direction û to the proper direction u:

u =
[U + (β − 1)vv0](û + c−1V)

β(1 + c−1û0V)
[12.11]

U is the unit tensor, β = (1 − V 2 /c2)−1 /2 and v = hVi = VV −1, where V is the velocity of
the observer in the natural frame. The denominator in this equation is just a normalising
factor making u a unit vector. An equivalent form is therefore:

u =
�

û +
1
c

V + (β − 1)vv0û +
β − 1

c
V
�

=
�

û +
β
c

V + (β − 1)vv0û
�

[12.12]

since vv0V = V. For numerical accuracy the factor (β − 1), which is of order (V /c)2,
should be written in a form which avoids taking the difference of two nearly equal
numbers. Introducing e = (c2 − V 2)1 /2 gives β = c /e and:

(β − 1)vv0 =
c − e

e
vv0 =

c2 − e2

e(c + e)
vv0 =

V 2

e(c + e)
vv0 =

1
e(c + e)

VV0 [12.13]

Inserting this into Equation 12.12 gives the aberration formula in the form implemented
by NDAC, i.e. Equation 12.7.

L. Lindegren, F. van Leeuwen, J. Kovalevsky
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Table 12.1. Fundamental constants used in the coordinate calculations.

Constant Meaning Value Unit

c Speed of light 299 792 458 m s−1

� Obliquity of ecliptic (J2000.0) 23� 260 21.44800

A Astronomical unit 1.495 978 701 × 1011 m

GS Heliocentric gravitational constant 1.327 124 38 × 1020 m3s−2

GE Geocentric gravitational constant 3.986 005 × 1014 m3s−2

Table 12.2. A tabulation of the Earth ephemeris used in the reductions, at intervals of 10 days over the
mission. T is the time in days from JD 2 440 000.0(TT). X , Y , Z are the barycentric equatorial coordinates
of the Earth in km. The time derivatives give the barycentric velocity components in m s−1. The reference
system is the mean equator and equinox of J2000.

T X Y Z dX /dT dY /dT dZ /dT

7800.0 +148 357 230 +17 858 435 +7 740 978 −4 340.289 +27 006.475 +11 710.082
7810.0 +142 430 117 +40 807 475 +17 690 769 −9 345.037 +25 981.084 +11 263.454
7820.0 +132 286 866 +62 538 103 +27 112 230 −14 088.914 +24 202.245 +10 494.289
7830.0 +118 180 524 +82 412 426 +35 729 900 −18 490.126 +21 676.876 +9 398.543
7840.0 +100 496 735 +99 792 639 +43 264 714 −22 337.008 +18 451.134 +7 998.782

7850.0 +79 771 704 +114 141 069 +49 485 893 −25 529.354 +14 677.488 +6 364.766
7860.0 +56 592 734 +125 009 555 +54 198 420 −27 987.382 +10 405.628 +4 510.779
7870.0 +31 667 938 +132 020 751 +57 237 269 −29 555.217 +5 785.373 +2 507.810
7880.0 +5 774 488 +134 962 007 +58 512 945 −30 238.496 +1 000.475 + 434.460
7890.0 −20 316 030 +133 725 584 +57 976 493 −29 992.966 −3 861.158 −1 675.574

7900.0 −45 771 911 +128 328 148 +55 635 417 −28 779.737 −8 591.348 −3 724.810
7910.0 −69 805 070 +118 962 234 +51 575 137 −26 714.560 −13 038.323 −5 652.977
7920.0 −91 692 277 +105 906 361 +45 913 574 −23 811.880 −17 104.555 −7 417.693
7930.0 −110 735 936 +89 573 280 +38 831 561 −20 166.429 −20 596.142 −8 929.190
7940.0 −126 380 730 +70 499 363 +30 561 995 −15 959.997 −23 448.356 −10 167.146

7950.0 −138 171 168 +49 258 803 +21 351 515 −11 259.773 −25 588.406 −11 095.610
7960.0 −145 750 953 +26 524 143 +11 494 492 −6 258.045 −26 901.425 −11 662.873
7970.0 −148 949 966 +2 998 879 +1 294 552 −1 131.510 −27 424.461 −11 891.661
7980.0 −147 695 299 −20 629 468 −8 951 132 +4 026.301 −27 127.049 −11 761.883
7990.0 −142 050 756 −43 636 197 −18 925 742 +8 991.844 −26 003.389 −11 273.844

8000.0 −132 245 224 −65 358 483 −28 344 425 +13 651.112 −24 163.193 −10 477.951
8010.0 −118 574 862 −85 186 112 −36 941 795 +17 909.061 −21 616.311 −9 371.706
8020.0 −101 472 152 −102 535 520 −44 463 462 +21 576.873 −18 458.839 −8 003.311
8030.0 −81 468 107 −116 946 860 −50 712 665 +24 623.183 −14 825.097 −6 429.014
8040.0 −59 124 581 −128 026 080 −55 516 337 +26 964.488 −10 757.019 −4 662.900

8050.0 −35 109 793 −135 459 596 −58 738 959 +28 494.080 −6 420.298 −2 784.338
8060.0 −10 108 138 −139 077 867 −60 308 671 +29 250.809 −1 933.605 − 838.943
8070.0 +15 194 245 −138 774 851 −60 176 742 +29 170.845 +2 632.871 +1 142.574
8080.0 +40 057 155 −134 562 658 −58 350 505 +28 252.521 +7 088.607 +3 072.307
8090.0 +63 798 900 −126 581 233 −54 890 675 +26 579.069 +11 352.343 +4 922.386
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Table 12.2. (Continued).

T X Y Z dX /dT dY /dT dZ /dT

8100.0 +85 756 907 −115 026 886 −49 880 178 +24 120.588 +15 327.328 +6 646.094
8110.0 +105 283 302 −100 229 023 −43 464 706 +20 978.678 +18 845.667 +8 169.741
8120.0 +121 842 972 −82 602 855 −35 822 695 +17 256.585 +21 870.223 +9 483.374
8130.0 +134 939 519 −62 612 062 −27 154 469 +12 980.005 +24 288.787 +10 530.877
8140.0 +144 166 076 −40 837 230 −17 714 259 +8 329.699 +25 998.369 +11 271.291

8150.0 +149 256 863 −17 886 770 −7 763 237 +3 410.677 +27 005.717 +11 710.190
8160.0 +150 008 266 +5 595 999 +2 418 607 −1 680.048 +27 212.701 +11 797.965
8170.0 +146 368 346 +28 903 249 +12 523 202 −6 725.473 +26 611.644 +11 537.894
8180.0 +138 424 723 +51 365 015 +22 262 708 −11 634.283 +25 251.192 +10 949.107
8190.0 +126 349 147 +72 304 171 +31 341 146 −16 248.782 +23 089.754 +10 009.933

8200.0 +110 489 942 +91 061 509 +39 473 275 −20 373.448 +20 225.844 +8 769.958
8210.0 +91 298 683 +107 077 962 +46 418 294 −23 948.886 +16 744.488 +7 260.089
8220.0 +69 315 205 +119 830 181 +51 946 583 −26 803.691 +12 693.260 +5 502.232
8230.0 +45 223 723 +128 902 071 +55 879 810 −28 826.905 +8 257.635 +3 581.341
8240.0 +19 740 740 +134 017 693 +58 098 207 −30 010.703 +3 542.191 +1 535.126

8250.0 −6 357 215 +134 979 946 +58 514 398 −30 237.037 −1 320.044 − 573.178
8260.0 −32 237 247 +131 759 277 +57 118 355 −29 525.043 −6 111.978 −2 648.998
8270.0 −57 122 429 +124 462 921 +53 954 730 −27 926.074 −10 740.416 −4 658.027
8280.0 −80 231 740 +113 296 608 +49 112 356 −25 424.842 −15 032.619 −6 517.873
8290.0 −100 840 262 +98 635 933 +42 756 484 −22 169.469 −18 816.245 −8 157.761

8300.0 −118 349 405 +80 940 705 +35 083 668 −18 252.767 −22 040.940 −9 557.849
8310.0 −132 214 681 +60 754 173 +26 330 749 −13 765.299 −24 556.352 −10 646.386
8320.0 −142 038 310 +38 732 354 +16 783 218 −8 928.813 −26 295.797 −11 401.429
8330.0 −147 569 835 +15 536 252 +6 725 043 −3 841.726 −27 262.550 −11 821.545
8340.0 −148 648 921 −8 128 956 −3 535 581 +1 336.569 −27 373.298 −11 867.371

8350.0 −145 298 572 −31 534 580 −13 683 440 +6 392.449 −26 681.743 −11 569.403
8360.0 −137 657 769 −54 016 616 −23 432 038 +11 251.638 −25 230.499 −10 939.806
8370.0 −125 963 812 −74 910 751 −32 490 694 +15 735.107 −23 018.200 −9 979.269
8380.0 −110 616 827 −93 616 238 −40 601 171 +19 704.413 −20 187.243 −8 753.903
8390.0 −92 073 143 −109 632 912 −47 546 253 +23 118.059 −16 796.139 −7 281.989

8400.0 −70 876 147 −122 497 430 −53 123 244 +25 819.795 −12 919.844 −5 601.453
8410.0 −47 670 759 −131 871 695 −57 188 355 +27 775.122 −8 734.996 −3 788.468
8420.0 −23 098 703 −137 519 036 −59 637 031 +28 968.432 −4 300.502 −1 863.486
8430.0 +2 134 509 −139 269 173 −60 395 237 +29 300.023 + 248.515 + 107.329
8440.0 +27 302 867 −137 103 618 −59 457 163 +28 831.358 +4 752.681 +2 059.887

8450.0 +51 726 456 −131 084 090 −56 846 810 +27 564.573 +9 156.077 +3 971.150
8460.0 +74 696 530 −121 361 504 −52 631 136 +25 483.543 +13 289.575 +5 761.081
8470.0 +95 566 050 −108 228 680 −46 937 834 +22 716.625 +17 045.571 +7 390.496
8480.0 +113 759 001 −92 029 008 −39 913 267 +19 283.827 +20 368.964 +8 832.359
8490.0 +128 719 443 −73 206 186 −31 752 480 +15 267.487 +23 095.599 +10 012.492

8500.0 +140 020 910 −52 302 703 −22 689 683 +10 828.388 +25 186.436 +10 920.891
8510.0 +147 320 330 −29 880 070 −12 967 022 +6 012.807 +26 589.561 +11 528.647
8520.0 +150 353 454 −6 588 572 −2 869 148 + 992.927 +27 194.239 +11 789.702
8530.0 +149 024 751 +16 892 384 +7 311 664 −4 071.455 +27 035.105 +11 722.852
8540.0 +143 324 817 +39 898 177 +17 286 815 −9 100.608 +26 077.504 +11 305.856

8550.0 +133 374 933 +61 719 208 +26 747 008 −13 873.176 +24 308.222 +10 538.945
8560.0 +119 462 652 +81 700 782 +35 411 061 −18 265.108 +21 831.478 +9 466.613
8570.0 +101 950 256 +99 239 546 +43 015 326 −22 172.007 +18 652.508 +8 086.103
8580.0 +81 349 265 +113 759 444 +49 310 129 −25 392.139 +14 874.203 +6 449.372
8590.0 +58 284 891 +124 816 410 +54 104 944 −27 873.953 +10 650.351 +4 618.188
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Table 12.2. (Continued).

T X Y Z dX /dT dY /dT dZ /dT

8600.0 +33 423 912 +132 049 230 +57 240 318 −29 520.315 +6 040.855 +2 617.950
8610.0 +7 547 257 +135 200 297 +58 606 317 −30 223.404 +1 239.997 + 538.624
8620.0 −18 546 133 +134 184 993 +58 166 798 −30 029.030 −3 592.284 −1 557.825
8630.0 −44 068 206 +129 011 773 +55 922 959 −28 888.245 −8 352.287 −3 622.205
8640.0 −68 199 485 +119 837 477 +51 945 514 −26 830.948 −12 820.207 −5 557.236

8650.0 −90 209 937 +106 974 125 +46 368 576 −23 989.873 −16 886.615 −7 322.524
8660.0 −109 432 022 +90 805 123 +39 357 291 −20 386.570 −20 439.119 −8 862.092
8670.0 −125 262 447 +71 853 573 +31 141 079 −16 176.897 −23 310.222 −10 105.724
8680.0 −137 262 031 +50 724 816 +21 979 952 −11 529.203 −25 479.876 −11 048.582
8690.0 −145 080 682 +28 051 311 +12 148 827 −6 525.942 −26 863.952 −11 646.967

8700.0 −148 501 427 +4 550 786 +1 960 401 −1 389.945 −27 399.489 −11 879.451
8710.0 −147 484 435 −19 072 576 −8 282 736 +3 739.335 −27 152.253 −11 773.510
8720.0 −142 073 628 −42 131 273 −18 280 348 +8 747.065 −26 085.895 −11 309.053
8730.0 −132 469 575 −63 926 276 −27 729 547 +13 416.836 −24 251.852 −10 515.522
8740.0 −119 005 090 −83 851 696 −36 369 503 +17 678.118 −21 762.463 −9 436.123

8750.0 −102 072 865 −101 345 526 −43 953 818 +21 411.863 −18 631.545 −8 076.953
8760.0 −82 204 073 −115 903 546 −50 265 733 +24 467.439 −15 000.327 −6 504.836
8770.0 −59 986 298 −127 155 058 −55 144 752 +26 844.652 −10 982.183 −4 761.361
8780.0 −36 041 162 −134 784 257 −58 451 718 +28 441.480 −6 636.487 −2 876.672
8790.0 −11 080 616 −138 585 358 −60 100 224 +29 207.017 −2 151.048 − 933.817

8800.0 +14 204 317 −138 485 336 −60 057 112 +29 188.408 +2 387.717 +1 036.167
8810.0 +39 110 530 −134 469 949 −58 315 331 +28 319.406 +6 881.390 +2 983.540
8820.0 +62 912 359 −126 663 547 −54 931 445 +26 656.315 +11 144.827 +4 831.253
8830.0 +84 965 033 −115 292 234 −50 000 888 +24 268.960 +15 125.301 +6 559.223
8840.0 +104 634 311 −100 643 397 −43 649 094 +21 147.289 +18 697.280 +8 105.881

8850.0 +121 340 756 −83 141 819 −36 061 639 +17 438.267 +21 724.263 +9 418.838
8860.0 +134 621 727 −63 266 083 −27 443 364 +13 220.696 +24 183.632 +10 486.522
8870.0 +144 054 532 −41 554 021 −18 029 681 +8 558.925 +25 947.402 +11 249.001
8880.0 +149 343 923 −18 644 464 −8 097 170 +3 654.397 +26 962.757 +11 690.842
8890.0 +150 322 985 +4 825 459 +2 079 615 −1 410.381 +27 235.603 +11 809.123

8900.0 +146 899 575 +28 175 443 +12 202 984 −6 494.247 +26 675.305 +11 564.719
8910.0 +139 156 166 +50 695 285 +21 967 017 −11 391.622 +25 330.504 +10 983.737
8920.0 +127 289 553 +71 733 218 +31 089 181 −16 024.224 +23 239.327 +10 075.597
8930.0 +111 598 056 +90 631 785 +39 282 316 −20 203.361 +20 392.175 +8 841.003
8940.0 +92 553 535 +106 795 727 +46 291 112 −23 777.067 +16 932.958 +7 342.982

8950.0 +70 698 914 +119 736 511 +51 902 120 −26 689.652 +12 932.861 +5 606.350
8960.0 +46 676 994 +129 013 224 +55 923 587 −28 767.722 +8 485.363 +3 679.198
8970.0 +21 242 749 +134 330 125 +58 229 732 −29 964.724 +3 792.747 +1 645.398
8980.0 −4 847 726 +135 520 693 +58 745 638 −30 270.118 −1 054.798 − 458.493
8990.0 −30 779 383 +132 513 157 +57 441 364 −29 596.585 −5 883.382 −2 550.042

9000.0 −55 732 174 +125 418 207 +54 366 088 −28 025.351 −10 497.032 −4 551.012
9010.0 −78 961 203 +114 456 098 +49 612 556 −25 598.979 −14 815.787 −6 424.572
9020.0 −99 729 713 +99 957 921 +43 326 761 −22 353.763 −18 648.133 −8 084.066
9030.0 −117 406 885 +82 409 179 +35 718 691 −18 472.096 −21 873.158 −9 484.184
9040.0 −131 486 498 +62 346 025 +27 019 140 −14 031.872 −24 447.531 −10 599.995

9050.0 −141 533 615 +40 393 426 +17 501 776 −9 176.208 −26 230.366 −11 371.529
9060.0 −147 288 604 +17 250 811 +7 467 842 −4 120.697 −27 214.353 −11 800.423
9070.0 −148 617 442 −6 402 958 −2 788 206 +1 051.827 −27 397.918 −11 878.435
9080.0 −145 493 784 −29 845 973 −12 951 501 +6 145.538 −26 730.569 −11 588.870
9090.0 −138 073 850 −52 377 985 −22 721 155 +10 986.257 −25 309.858 −10 974.590
9100.0 −126 599 628 −73 370 974 −31 823 046 +15 506.337 −23 162.430 −10 041.396
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Table 12.3. Comparison of proper directions computed by CERGA, NDAC and SRON for the main mission

reductions. All comparisons refer to orbit number 79. The third and fourth columns give the number of

observational frames compared, and the time span of the comparison in minutes. Subsequent columns give

the average, rms and extreme values of the differences in abscissa and ordinate (the rms value being the

dispersion about the average difference).

Star Sources N Span Abscissa differences (mas) Ordinate differences (mas)

(HIP) compared (min) ave rms min max ave rms min max

CERGA–SRON 59 277 +0.14 0.069 +0.02 +0.28 −0.12 0.134 −0.31 +0.07

7680 NDAC–CERGA 51 277 +0.04 0.076 −0.10 +0.19 −1.13 0.685 −2.07 +0.76

SRON–NDAC 51 277 −0.19 0.073 −0.31 −0.11 +1.22 0.641 −0.56 +2.11

CERGA–SRON 59 277 +0.13 0.067 +0.01 +0.29 −0.07 0.102 −0.20 +0.08

7708 NDAC–CERGA 56 277 +0.04 0.081 −0.12 +0.21 −0.92 0.712 −1.93 +0.83

SRON–NDAC 56 277 −0.17 0.086 −0.32 −0.07 +0.99 0.675 −0.66 +2.07

CERGA–SRON 69 384 +0.00 0.057 −0.09 +0.10 −0.16 0.155 −0.42 +0.02

67186 NDAC–CERGA 69 384 +0.03 0.061 −0.07 +0.14 −5.69 0.937 −6.68 −2.29

SRON–NDAC 78 405 −0.03 0.041 −0.10 +0.05 +5.71 1.066 +1.92 +7.11

CERGA–SRON 64 384 +0.09 0.088 −0.07 +0.30 −0.07 0.114 −0.23 +0.09

67362 NDAC–CERGA 54 384 +0.01 0.061 −0.10 +0.14 −4.41 0.996 −5.55 −1.06

SRON–NDAC 63 405 −0.07 0.079 −0.25 +0.04 +4.34 1.117 +1.02 +5.85

Table 12.4. Comparison of proper directions computed by TDAC and NDAC. All comparisons were made

for orbit number 79. The third and fourth columns give the number of star mapper transits used in the

comparison, and the time span of the comparison in minutes. Subsequent columns give the average, rms

and extreme values of the differences in abscissa and ordinate (the rms value being the dispersion about the

average difference).

Star Sources N Span Abscissa differences (mas) Ordinate differences (mas)

(HIP) compared (min) ave rms min max ave rms min max

7680 TDAC–NDAC 10 256 −0.0 0.07 −0.1 +0.1 −0.0 0.09 −0.1 +0.1

7708 TDAC–NDAC 10 256 −0.0 0.11 −0.1 +0.2 +0.0 0.08 −0.1 +0.1

67186 TDAC–NDAC 12 277 +0.1 0.09 +0.0 +0.2 −0.0 0.08 −0.1 +0.1
67362 TDAC–NDAC 8 149 +0.1 0.07 +0.0 +0.2 −0.1 0.05 −0.1 +0.0



13. DOUBLE AND MULTIPLE STAR TREATMENT

The Hipparcos Catalogue comprises a significant amount of data related specif-
ically to double and multiple star systems, the analysis of which was a major
challenge to the data reduction consortia. The processing of these systems
differed in many ways from the methods set up for the single stars and in no
other place in the data analysis did FAST and NDAC specialise more in their
approach to the problem. As a consequence this chapter is arranged in dedi-
cated sections for each consortium. The text aims at providing an overview of
the algorithms developed and implemented in the context of double and mul-
tiple star analysis, demonstrating the capabilities and the limitations of these
procedures, and summarising the main statistics of the solutions.

13.1. Introduction

In the preceding chapters, the observation schemes and data reductions for single
Hipparcos stars have been presented. As is well known, however, a majority of all
stars are in reality double or multiple. Fortunately (because they constituted a major
complication of the data reductions), only a reasonably small subset with rather long
periods and not too unequal masses appeared non-single when observed by Hipparcos.
Roughly, doubles with a magnitude difference smaller than 4 mag and a separation above
0.1 arcsec were resolved by Hipparcos, that is, separate astrometric parameters could be
obtained for each component. Some few, but interesting, short-period (P <~ 5 yr) sys-
tems were detected at even smaller separation from their moving photocentres. For all
these ‘effectively non-single’ objects, special reduction procedures were used, in parallel
with or complementary to the standard reductions.

Although specialised and complex data reductions were needed, the discovery and mea-
surement of double and multiple objects was soon recognised as a major scientific
by-product of the Hipparcos project. Apart from the obvious fact that accurate par-
allaxes for orbital systems provide one of the few direct means of determining stellar
masses, there are also very important gains from obtaining a more uniform and complete
statistical sampling of the visual binary population close to the Sun. The importance of
double-star observations with Hipparcos was realised at an early stage in the planning
of the mission (Lindegren 1979), and certain instrument parameters, in particular the
period of the main grid, were therefore optimised with the efficient detection of double
and multiple star systems in mind.
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Some 9000 of the 12 000 doubles and multiples in the Hipparcos Catalogue (i.e. the
output catalogue) were listed already in the Hipparcos Input Catalogue. Most of them
had separations below 10 arcsec, and could be observed with a single pointing of the
instantaneous field of view. Some systems with separations above 10 arcsec had two
or more individual entries in the Hipparcos Input Catalogue, and the components
were then pointed at individually but reduced together after the end of the mission.
Apart from 3000 reasonably certain new doubles discovered by Hipparcos, there are
also several thousand suspected cases, for which trustworthy elements could not be
determined.

13.2. Double Star Detection

As stated above, many of the observable doubles and multiples were known and flagged
in the Hipparcos Input Catalogue. For the unknown ones, there were two main discovery
modes: firstly, at the individual frame level, i.e. directly from the properties of the
signal recorded on the grid; and secondly, in the combined astrometric parameter
determination.

In this latter case the image on the focal plane could not be distinguished from that
of a point source and the signal was analyzed in the same way as that of a single star,
with the basic assumption that the absolute motion was rectilinear. This assumption
failed when the object was a binary star with a period comparable to or less than a few
times the mission length, in which case the ‘photocentre’ had a sinusoidal motion on
the sky superimposed on the linear motion of the centre of mass. The detection in this
instance was of the same nature as that of astrometric binaries on photographic plates.
Detection at the individual frame level, which is described in this section, was by far the
most important.

Main Criteria

During the standard Hipparcos reductions, a five-parameter Fourier model was fitted to
the photon counts from the image dissector tube. This model is valid for single stars as
well as for double and multiple objects. For single stars, certain relations exist between
the five parameters, which could be calibrated from the vast majority of effectively single
objects. For manifestly non-single objects these relations do not generally hold, and this
property was used to define statistical criteria for the detection of such objects.

Two equivalent mathematical forms of the five-parameter model were of constant use
during the reductions and are given here for the sake of completeness. The first form
describes the photon count rate Ak in terms of the parameters β1 to β5 (see Table 5.1):

Ak = β1 + β2[cos(pk + β3) + β4 cos 2(pk + β3) + β5 sin 2(pk + β3)] [13.1]

where pk is a known reference phase for each sample k. This is actually the form chosen
by NDAC for the representation of the signal. The second form, which is more directly
related to the physical model of the signal, reads:

Ak = I + B + IM cos(pk + φ) + IN cos(2pk + ψ) [13.2]
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in which I + B, IM , IN , φ and ψ may be regarded as the parameters. The relationship
between the two representations is readily obtained as:

β1 = I + B

β2 = IM

β3 = φ

β4 =
N
M

cos(2φ − ψ)

β5 =
N
M

sin(2φ − ψ)

[13.3]

These parameters were obtained at a rate of one set of five parameters per observational
frame of 32/15 s, for each transit of the object across one of the two fields of view.
In the second form, I is the total intensity of the source and B the unmodulated
stellar background and dark current. M and N are the modulation coefficients of
the first and second harmonic respectively, and φ and ψ the corresponding phases.
Typically, for a single star, one has M ' 0.72 and N ' 0.25 and the two phases are
related by ψ ' 2φ. The equality would be strict for an instrument without optical
distortion and fully achromatic. Any departure from this latter rule due to instrument
imperfections was calibrated twice a day as a function of colour and position in the
fields, and the phases were corrected accordingly. Thus, for the subsequent analysis it
can be assumed that ψ = 2φ holds for a single star, or for the individual components of
a double or multiple star. Similarly, the background count rate B was obtained from
the photometric calibrations, so that the stellar intensity I could be regarded as known
from the observations.

In this chapter quantities related to the different components of a double or multiple star will be distinguished

by indices i = 1, 2, . . . , n, where n is the number of components. In order to avoid as much as possible the need

for double indices, notations in this chapter differ slightly from those used in other chapters, notably Chapter 5.

Thus, the modulation coefficients of the first and second harmonics are denoted M , N (corresponding to

M1, M2 in Chapter 5), and their phases are also denoted by distinct letters φ and ψ (corresponding to g1 and

g1 + g2 in Chapter 5). Similarly, I and B are used for the stellar and background count rates (instead of Is

and Ib), and Ak for the total modulated signal (instead of Ik).

The modulated count rate Ak, and consequently the parameters β1, β2, I and B, are normally measured in

counts per sample interval. They were obtained, as described in Chapter 5, by fitting the signal models to the

observed photon counts Nk, using a Poissonian model for the latter. The expected number of counts in each

sample is E[Nk] = Ak. In some places I or B may be expressed in Hz, or counts per second. The two units

differ by a factor equal to the sample interval T1 = 1/1200 s. For instance, the NDAC rectified parameters

(Section 13.7) are put on a scale where magnitude Hp = 0 corresponds to exactly I = 6200 counts per sample,

or I = 7.44 MHz.

As a result of the linearity of the Hipparcos detector, when two or more star images were
simultaneously on the sensitive part of the detector their contributions added linearly
and the resulting signal had the same form as Equations 13.1 or 2. In the case of a
double star the signals of the individual components are written:

Ak,1 = I1 + I1M1 cos(pk + φ1) + I1N1 cos(2pk + 2φ1) [13.4]

Ak,2 = I2 + I2M2 cos(pk + φ2) + I2N2 cos(2pk + 2φ2) [13.5]

and the total, observed signal becomes:

Ak = Ak,1 + Ak,2 + B [13.6]
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Expanding and comparing with Equation 13.2 leads to the following relations between
the observed parameters and the parameters of the stellar components:

I = I1 + I2 [13.7]

IM cos φ = I1M1 cos φ1 + I2M2 cos φ2 [13.8]

IM sin φ = I1M1 sin φ1 + I2M2 sin φ2 [13.9]

IN cos ψ = I1N1 cos 2φ1 + I2N2 cos 2φ2 [13.10]

IN sin ψ = I1N1 sin 2φ1 + I2N2 sin 2φ2 [13.11]

Naturally the modulation coefficients M and N are no longer equal to their single-star
values, and 2φ − ψ ' 0 no longer holds true for a multiple source.

The recognition that the observed signal departs significantly from the expected signal
of a single star is the basis for the double star detection at the frame level, and various
algorithms and statistical tests based on this circumstance were implemented by the
reduction teams. Because there are five signal parameters, while a single star is fully
characterised by two parameters (corresponding to intensity and one-dimensional posi-
tion), it is possible to build exactly three basically independent detection criteria from a
comparison of the observed parameters with the expected single-star values. All three
criteria, in slightly different forms, were used by both reduction consortia, and their
main properties are explained in the following paragraphs and in Figures 13.1–13.3.

The first two criteria can be described in terms of the signal parameters β4 and β5 in
Equation 13.1. From Equation 13.3 it is seen that for a single star, after elimination of
the calibrated instrumental variations, one should have β4 = eN /fM and β5 = 0, where fM
(' 0.72) and eN (' 0.25) are the calibrated modulation coefficients for single stars. BothfM and eN depend significantly on the colour of the star, but by a happy circumstance
their ratio, eR = eN /fM , is rather insensitive to the colour. Thus the observed parameters
β4 and β5 can be used, separately or jointly, to detect duplicity. For instance, in NDAC
their deviations from the single-star values were combined with their covariances to form
a goodness-of-fit statistic, which for true singles should have a χ2 distribution with two
degrees of freedom.

The sensitivity of β4 and β5 to different situations can be evaluated analytically. Assum-
ing that the same modulation ratio applies to each component separately, irrespective
of their colours (i.e., N1 /M1 = N2 /M2 = eR), it is found that the normalised parameters
β4 / eR and β5 / eR for the total signal depend only on the intensity ratio between the com-
ponents, r = I2 /I1 = 10−0.4∆m (where ∆m = Hp2 − Hp1 is the magnitude difference), and
the phase difference between the components, ∆φ = φ2 − φ1. From Equations 13.3 and
13.7–13.11 the following expressions are derived:

β4eR =
1 + (r + r2)(2 cos ∆φ + cos 2∆φ) + r3

(1 + 2r cos ∆φ + r2)3 /2
≡ Fc(r, ∆φ) [13.12]

β5eR =
(r − r2)(2 sin ∆φ − sin 2∆φ)

(1 + 2r cos ∆φ + r2)3 /2
≡ Fs(r, ∆φ) [13.13]

The single star limit, obtained for small r (large ∆m) or small ∆φ, is Fc = 1 and Fs = 0.

Figure 13.1 shows the functions Fc and Fs as functions of the projected separation (or
phase difference ∆φ) and magnitude difference ∆m. It can be noted that the determina-
tion of the two parameters β4 and β5 to some extent complement each other, since Fs

is most sensitive to projected separations in intervals where Fc is relatively insensitive.
However, neither parameter is sensitive to projected separations close to zero (modulo
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Figure 13.1. Variation of the functions Fc and Fs with the projected separation and magnitude difference of a double

star. The projected separation is measured here by the phase difference ∆φ = φ2− φ1 between the signals of the individual

stellar components; ∆φ runs from 0 to 360� over a grid period (s = 1.2074 arcsec), see Equation 13.15. The single
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Figure 13.2. Variation of the function -2.5 log Ft (equal to the expected value of Hpac − Hpdc ) with the projected

separation and magnitude difference of a double star. The projected separation is measured by the phase difference

∆φ = φ2 − φ1 between the signals of the individual stellar components (see Figure 13.1).

the grid period): in that case the signal cannot be distinguished from that of a single
star. The typical measurement noise on β4 / eR and β5 / eR is of the order of 0.1 to 0.2
for a single transit, which indicates a detection limit of about 0.2 arcsec in projected
separation and 2.5 mag in magnitude difference. Thanks to the accumulation of many
transits in various geometric orientations over the mission, the actual limits were closer
to 0.1 arcsec and 3.5 mag.

A third, independent criterion was constructed from a comparison of β1 and β2. Apart
from the background term (which may be subtracted), β1 represents the total intensity of
the object, while β2 represents the amplitude of the modulated intensity. For single stars
the two quantities are proportional, β2 = fMβ1, and the factor fM could thus be calibrated
as functions of time, position in the field of view, and colour index. The normalised
ratio, β2 /(fMβ1) is then close to unity for a single star. For a composite object or an
extended source like a minor planet with a sizeable diameter, the degree of modulation
invariably decreases, leading to a normalised ratio < 1 (Chapter 15). For historical
reasons this was usually expressed in magnitude units as −2.5 log[β2 /(fMβ1)], which
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Figure 13.3. Observed difference Hpac − Hpdc between the magnitude scales based on the unmodulated signal β1

(Hpdc ) and the modulated signal β2 (Hpac ), plotted for the first 20 000 stars as function of the magnitude Hpdc .

The detected double and multiple stars are those significantly above the line Hpac − Hpdc = 0.

corresponds to the magnitude difference Hpac − Hpdc of the Hipparcos Photometric
Catalogue (see also Chapter 14).

For a double star with intensity ratio r and phase difference ∆φ the following expression
is obtained:

β2fMβ1

=
(1 + 2r cos ∆φ + r2)1 /2

1 + r
≡ Ft(r, ∆φ) [13.14]

The quantity −2.5 log Ft (= E[Hpac − Hpdc]) is shown in Figure 13.2. It can be seen that
it is always positive, implying that the testing for duplicity is unilateral. The observed
distribution of Hpac − Hpdc for the first 20 000 Hipparcos entries is shown in Figure 13.3
as a function of the star magnitude. The central and most populated distribution is
associated with single stars while the scattered population with Hpac − Hpdc significantly
positive corresponds to the stars detected as non-single by Hipparcos. The width of the
negative distribution provided a reliable estimate of the acceptance region for the null
hypothesis.

The Hipparcos Double Stars

There were several detection limits which restricted the capability of the instrument
and data reductions to recognise that a light source was not point-like. When a star
was detected as non-single it was categorised as double or multiple, otherwise it was
considered as single within the Hipparcos data analysis, although it may in reality be
double.

Regarding the small separations, diffraction sets the limit at % > 0.10 to 0.12 arcsec.
Double stars with smaller separation went unnoticed by Hipparcos and were processed
in the same way as the single stars without impairing the astrometric solution, except
for short-period astrometric binaries. The separation limit depends however also on the
magnitude difference of the components: detection close to the diffraction limit was
only achieved for small magnitude differences (see Equations 13.40–13.41).
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As for the large separations, only companions within some 20 to 30 arcsec from the
primary could be detected, depending on the magnitude difference. This instrumental
limitation followed from the use of an image dissector tube with a sensitive ‘instanta-
neous field of view’ having a nominal diameter of 38 arcsec. Actually, the sensitivity
decreases gradually from the centre of the instantaneous field of view, causing an at-
tenuation of stellar images not properly centred. For instance, a star 20 arcsec off the
centre of the instantaneous field of view would appear about 1.5 mag too faint. A
plot of the attenuation profile Ψ(%), as adopted in the data reductions and expressed in
magnitudes, is shown in Figure 13.4. If the detector was pointed at the primary of a
double star system, the secondary (at separation %) looked fainter by Ψ(%) magnitudes,
and the probability of its detection became correspondingly smaller. For well-resolved
binaries the detection limit in magnitude difference is about ∆m ' 4 mag, including the
attenuation effect. Pairs with % >~ 25 arcsec thus generated signals hardly discernible
from those of single stars, and were consequently treated as single.

Both reduction teams followed the principles laid out above, however with significant
differences in the implementation depending on the local organisation of the data flow.
The details of the calibrations were defined independently in each consortium and
eventually resulted in different detection levels according to separation and magnitude
difference. It must be stressed that the number of accepted or suspected double stars
depends strongly on the thresholds set in the various tests. Depending on the adopted
criteria, anywhere between 10 000 and 20 000 objects could have been accepted as non-
single. At the end a fairly conservative policy was adopted: only double stars detected by
both consortia and with astrometric and photometric solutions in good agreement were
categorised as reliable solutions; other cases were flagged as less reliable solutions, or
simply as ‘suspected non-singles’ without providing a double-star solution. A summary
of the number of solved or detected non-single stars is given in Table 13.1. Of the
18 800 entries solved as non-single by at least one of the consortia, only about 13 200
were finally included in Part C of the Double and Multiple Systems Annex. All the
remaining entries (some 8150) either had other kinds of double-star solutions (Part G,
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Table 13.1. Number of entries solved as double stars by each consortium, and the number of unsolved but

possibly double systems, divided into detected cases and those only detected by the other consortium.

FAST

Solved Detected Undetected Total

Solved 12710 1030 2250 15990

NDAC Detected 500 210 2190 2900

Undetected 2310 160 – 2470

Total 15520 1400 4440 21360

O or V) or were flagged as ‘suspected non-singles’ in the main Hipparcos Catalogue
(Field H61).

13.3. The Astrometric and Photometric Solution: FAST Method

In the FAST processing of double and multiple stars, a relative astrometric and photo-
metric solution was first built. This was then used as an input to the main algorithm
of the absolute astrometry, i.e. the same algorithm as used for the single stars. The
required input consisted mainly of the corrections to be applied to the great-circle ab-
scissae as if the point observed on the grid had been the primary star or, for a close
pair, the photocentre. This section therefore describes separately the processing for the
relative astrometry, the relative photometry, and the absolute astrometry.

The FAST method contrasts with the NDAC method where the double and multiple
stars were processed in a chain fully independent of the single star processing, by
fitting the absolute astrometry and photometry directly to the parameters derived from
Equation 13.2.

The Relative Astrometry of Double Stars

From the fitted five-parameter model, Equation 13.2, it was possible to solve, in each
field transit, for the projected difference in phase between the secondary and primary
component, ∆φ = φ2 − φ1. The geometry of the problem is sketched in Figure 13.5.
In Equations 13.8–13.11 the left-hand sides were known from the observations at the
frame level and were calibrated to account for the inhomogeneity of the sensitive surface.
The right-hand sides comprise four unknowns: the two intensities and the two phases.
The ratio I2 /I1 is directly related to the magnitude difference, and the phase difference
φ2 − φ1 is linked to the projected separation in the scanning direction, ∆G = % cos(γ − θ),
according to:

∆φ = 2π mod(∆G /s, 1) [13.15]

where s = 1.2074 arcsec is the angular size of the grid period (or grid step).

For every transit Equations 13.8–13.11 were solved for the intensity ratio and the phase
difference ∆φ by a numerical method based on an adapted Newton-Raphson algorithm
for non-linear systems. To avoid statistical bias, several transits were combined together,
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provided the geometry (angle γ in Figure 13.5) did not change too much over the
timespan involved in this combination. The number of transits combined depended
also on the separation of the double star. For wide pairs, the combination was always
limited to the two consecutive transits, respectively in the preceding and following fields.
For a separation of the order of 0.3 arcsec the precision of the phase difference in this step
was in the range of 10 to 50 mas. It was also noted that for small projected separations,
it happened that the sign of the phase difference remained largely undetermined, while
its magnitude was correct. This is equivalent to saying that in such a configuration the
position angle of the binary had a 180� ambiguity. In some sequences of observations,
when the orientation of the binary on the sky remained more or less parallel to the grid
slits for many transits, the projected separation could remain very small. Consequently
there was a risk of having inconsistencies in the set of phase differences. A special
treatment was implemented in the final step of the relative astrometry solution to identify
these transits and reverse the sign of the phase differences ∆φ.

The relationship, Equation 13.15, between the projected phase difference (∆φ) and
the projected angular separation (∆G) indicates that the detector signal only provides
information on ∆G to within an integral number of grid periods and that the possible
ambiguity for separations larger than the grid period had to be resolved at a later stage
of the processing.

At the end of the above steps all the projected phase differences, ∆φ j ( j = 1, . . . , m),
were known together with the orientations γ j of the scans on which they were obtained.
The final step consisted of finding the relative astrometry, % and θ, that accounted for
the observed ∆φ j . In the jth observation the projected separation on the Hipparcos grid
was:

∆Gj = % cos(γ j − θ) [13.16]

In terms of the rectangular coordinates X = % sin θ and Y = % cos θ of the secondary
with respect to the primary, the projected separation is also written:

∆Gj = X sin γ j + Y cos γ j [13.17]
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Subsequently it is convenient to use, instead of the angles γ j , the components of the
main spatial frequency of the grid along the X and Y axes:

α j = (2π /s) sin γ j

β j = (2π /s) cos γ j
[13.18]

From Equations 13.15 and 13.17 the set of m observation equations can now be written:

∆φ j = mod(α jX + β jY, 2π) [13.19]

in which the unknowns are the relative coordinates of the binary (X and Y ), and the
observational data are the phase differences ∆φ j derived from the signal parameters.

A special minimisation procedure was developed to find the values of X and Y which
made the norm of the vector of the residuals as small as possible. For this purpose
it is easier to use the following two equations, which taken together are equivalent to
Equation 13.19:

cos ∆φ j = cos(α jX + β jY )

sin ∆φ j = sin(α jX + β jY )
[13.20]

This formulation avoids the use of the discontinuous modulus function, which is awk-
ward in minimisation algorithms, and allowed the grid-step factors to be automati-
cally managed, without trial and error. A maximum likelihood estimator, based on
an assumed von Mises distribution of the angular quantities ∆φ j , led to searching the
minimum in the (X , Y ) space of the function:

U (X , Y ) = −
Pm

j=1 κ j cos(α jX + β jY − ∆φ j )Pm
j=1 κ j

[13.21]

which would have been exactly −1 for a perfect fit. The weight of each observation was
κ j ' 1/σ2

j .

The problem was thus reduced to a classical one of numerical analysis, but with some
very specific peculiarities:

• U (X , Y ) has many minima in the X , Y plane, more or less evenly distributed on a
lattice with period of the order of the grid step in each direction;

• because of the noise and the possible outliers among the ∆φ j it happened that the
deepest minimum was not necessarily the point closest to the true parameters of
the binary stars;

• for large separations it proved quite important to have a starting point in order
to limit the exploration of the X , Y domain to a region of a few arcsec around
this point. This saved computing resources and limited the risk of finding a false
minimum far away from the true solution;

• because of the sign indeterminacy of the ∆φ j for the small separations and the small
projected phase differences, the search was always done first for a solution with a
180� ambiguity for the orientation of the binary, that is to say without distinguishing
between the double stars of relative coordinates X , Y and −X , −Y . This was done
by minimising the function:

V (X , Y ) =
1
n

mX
j=1

�
cos(α jX + β jY ) − cos ∆φ j

σ j

�2

[13.22]

which has the desired symmetry, V (−X , −Y ) = V (X , Y ). Then the phase signs
were adjusted by looking at the residuals on every transit for both solutions. Usually
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one was much better than the other and the phase ∆φ j was changed to −∆φ j when
necessary;

• the second-order expansion of U (X , Y ) in the vicinity of the minimum yielded the
covariance matrix of the parameters, and the value of U (X , Y ) at the minimum was
directly related to the unit weight variance with the quadratic mean of the residuals
equal to 2(1 + Umin);

• for stars with significant orbital motion a linear model was introduced, with relative
coordinates expressed as X + Ẋ t and Y + Ẏ t; the minimum was searched in the
four-dimensional space (X , Y, Ẋ , Ẏ ).

More details about the actual implementation and the numerous settings of the software
can be found in Mignard (1992).

As a result of the grid-step ambiguity, several solutions were often found which fitted
the observations equally well, with no real possibility of discriminating between them.
In such cases, all the acceptable solutions were saved in a special file and examined
individually, using several indicators supplied by the minimisation routine to help choose
one solution. Ground-based measurements of the separations, when available, were also
used to resolve ambiguities. For this purpose a data base was set up at the Observatory
of Torino to collect the most up-to-date information on double and multiple systems.
In addition, all publications of recent speckle observations were cross-checked with the
Hipparcos Input Catalogue to determine the relative astrometry of a number of close
binaries at the mid-epoch of the space observations.

It must be stressed however, that for the unambiguous doubles, i.e. for systems with
magnitude difference ∆m <~ 2.5 mag and separation % >~ 0.2 arcsec, the Hipparcos
determination of the relative astrometry is usually very reliable, even without good
a priori starting values. For those unambiguous cases, the main advantage of having
ground-based separation values, was to make the search for a solution faster, without
influencing the solution itself. For separations larger than a few grid steps, a blind
search, while feasible, would have been too costly and unsafe without reasonable starting
values for the separation and position angle. Hopefully, the data in the Hipparcos Input
Catalogue were sufficiently reliable for this category of doubles.

The Photometric Solution

The relative astrometry and photometry were considered as two different processes in
the FAST data reduction. This had the advantage of making the processing easier
to handle and probably more robust, but with the drawback of neglecting important
correlations between astrometry and photometry. This is particularly important for the
very small separations where the errors in separation and magnitude difference become
strongly correlated.

The preceding steps ended up with the relative coordinates X , Y of the components
of the double star. For every grid transit ( j = 1, . . . , m) the scanning direction (γ j )
was also known, so the projected phase differences ∆φ j could be computed according
to Equation 13.19. On the other hand, the normalised signal parameters β4 / eR and
β5 / eR were also known from the analysis of the detector signal. The latter are related to
the phase differences and the intensity ratio through the functions Fc and Fs defined in
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Equations 13.12 and 13.13. This allowed the intensity ratio r that gave the best fit to
the 2m observation equations to be determined, by minimising the function:

χ(r) =
mX
j=1

ω

 
(β4 / eR) j − Fc(r, ∆φ j)

σc, j

!
+

mX
j=1

ω

 
(β5 / eR) j − Fs(r, ∆φ j )

σs, j

!
[13.23]

where σc, j and σs, j are the standard errors of the normalised signal parameters. ω(x) is an
influence function chosen to make the statistical procedure both reasonably efficient and
robust, i.e. protected against outliers. The classical least–squares method corresponds
to the choice ω(x) = x2, and would have led in the present case to a one-dimensional
non-linear least-squares estimate of r. It is well known that the least-squares method is
very sensitive to outliers, or the contamination by observations with a more extended
error distribution than the Gaussian. Several influence functions were tried before
selecting:

ω(x) = log(1 + x2 /a2) [13.24]

associated with the Cauchy distribution. The scale factor a = 1.64 was adopted as a
compromise between robustness (small a) and good asymptotic efficiency (large a).

Extensive simulation software was written to test the procedures on virtually any kind
of double star and to investigate the bias of this estimator. Not surprisingly there was a
bias both for very small separations and for large magnitude differences. A large lookup
table, containing the bias correction as a function of the double star parameters and
signal-to-noise ratio, was built and incorporated into the software to supplement the
estimator. The minimum of χ(r) was then obtained with the ‘golden section search’
(Press et al. 1992) after the minimum was bracketed by a discrete search.

The final step in the photometric solution was to account for the attenuation profile,
Ψ(%), of the instantaneous field of view (Figure 13.4). In the simplest case when the
detector was pointed at the primary, and the secondary was consequently at a distance
% from the centre of the instantaneous field of view, the corrected (true) magnitude
difference was obtained as:

∆m = ∆m0 − Ψ(%) [13.25]

where ∆m0 = −2.5 log r is the apparent magnitude difference computed from the mea-
sured intensity ratio. This formula is easily generalised to the situation when the pointing
was at the secondary, or at an intermediate point between the two components, as was
the case for some binaries with known separations around 10 arcsec.

While more than 22 000 Hipparcos entries were recognised as probably non-single
objects, there were only about 16 800 for which a solution for the relative astrometry
could be derived with some reliability. The magnitude differences were then computed
as described above for all these objects. The final catalogue includes a significantly
smaller number of solutions since a rather conservative policy was adopted for the
merging of the FAST and NDAC solutions (see Section 13.7).

Results of the FAST Solutions

Two different software packages were written and implemented, one by a group in
CERGA and the second by teams in Istituto di Astrofisica, CNR, in Frascati and in
Osservatorio Astronomico di Torino, which focused primarily on known double stars.
The FAST solution is a merge of these two solutions, adopting either solution when
only one was available and some weighted mean when the two groups produced similar
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Figure 13.6. The rating of the double star solutions in FAST, from 0 for the poor solutions to 10 for the most reliable.

The distribution in the left diagram is for the systems known to be double before the Hipparcos mission while the diagram

on the right refers to the double stars discovered by Hipparcos.

solutions. When two discrepant solutions were obtained various criteria based on the
ground-based separation and position angle or on the standard errors were used to select
the one considered as most likely correct.

The FAST solution for the relative astrometry and photometry consisted of 16 634
entries with separation, position angle and magnitude difference together with their
standard errors. Because of the two-pointing systems these solutions accounted for
about 15 200 different systems: 9500 known systems and slightly more than 5500 new
systems. The separation between the two groups cannot be made more precise because
it would have required a careful investigation of the existing data base with the problem
of cross-identification of systems and components. This has been done at the end for
the final Hipparcos Catalogue. There was an additional set of 6000 entries suspected
of being non-single but with no satisfactory double star solutions.

A quality factor was computed to grade each solution between 0 and 10, taking into
account various factors such as the detection level, the standard errors, the number of
alternate solutions, whether the convergence toward the solution was direct or tortuous,
the number of phase ambiguities, etc. Solutions with a mark close to the maximum are
highly reliable while a mark below or equal to 3 indicated that the quality of the solution
may be questioned. The distribution of this rating is shown in Figure 13.6 for the known
double stars on the left and those newly discovered by Hipparcos on the right. The two
distributions differ markedly, reflecting the higher than average difficulty encountered in
solving the new double stars, which were of smaller separation in general. A significant
fraction of the new double stars falls in the category of low rating and this constitutes
the typical set with separations in disagreement with the NDAC solution. They were
eventually rejected during the merging phase (Section 13.7).

The main results obtained by FAST are shown in Figure 13.7 for the systems whose
duplicity was known from ground-based observations before the Hipparcos mission
and in Figure 13.8 for the new doubles stars detected and solved by FAST. One must
stress that these plots refer to the FAST processing, before the final selection of double
and multiple solutions based on the comparison between the FAST and NDAC solution
(Section 13.7). The distribution of the separations extends up to more than 25 arcsec for
the population of known double stars with a large fraction of systems with % ' 1 arcsec.
The separations for the new double stars is strikingly different with a maximum of
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Figure 13.7. Distribution of the separations (left) in the FAST solution for the systems known to be double before the

Hipparcos mission. The distribution of the mean error is shown on the right for the same systems.
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Figure 13.8. Distribution of the separations (left) in the FAST solution for the systems discovered to be double from

the Hipparcos observations. The distribution of the mean error is shown on the right for the same systems.

the distribution at about 0.3 arcsec and very few systems above 2 arcsec. For these
difficult cases, it was usual to end up with at least two solutions, one with a small
separation, % ≤ 0.3 arcsec, and another one or two grid steps larger. For such a system
statistics of the projected phase difference were computed over the set of transits where
a positive detection had occurred. If the true separation of the double star was larger
than a few grid steps, the set of phase differences was expected to be more of less
uniformly distributed between 0� and 360�, while for true separations less than a grid
step one expected a cluster of small values. The consistency between the observed
statistics and the fitted separations eventually helped choose between alternate solutions
corresponding to separations differing by one or several grid steps.

In Figures 13.7–13.8, the right panels show the distribution of the mean error on the
relative position of the secondary respectively for the population of known and new
double stars. Not surprisingly the first population gives a median in the error of the
order of 5 mas while for the new double stars, with a much lower signal-to-noise ratio,
the distribution is wider with a median value of about 20 mas.

The Multiple Stars

A dedicated treatment has been applied by FAST to process systems with more than
two components and to obtain their relative astrometry and photometry. The absolute
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astrometry was then derived in the same way as for either double or multiple systems
and is considered in this section.

The problem of multiple star treatment is more difficult than that of double stars be-
cause, with the same amount of information collected at the level of the image dissector
tube data reduction, at least three additional parameters per component must be deter-
mined: separation, position angle and magnitude difference. This must be done while
the same difficulties already described for double stars (in particular grid-step errors
and the indeterminacies occurring when two components are close and with similar
brightness) may exist for any pair within the multiple system.

There is no criterion that could be derived from the Hipparcos data that would permit
the recognition of specifically multiple systems. Actually, the same criteria used to
detect double stars (Section 13.2) apply just as well to systems with more than two
components, so that multiple systems are to be found among the stars recognized as
non-single by the double star detection software.

Because of the larger number of unknown parameters to be determined, classes of
systems for which realistic solutions could be obtained are more restricted than in the
case of double stars. Not only the observability conditions stated for double stars must
be satisfied by any pair of components, but they must be even more stringent: each
component must provide sufficient information to be clearly recognized and separated
from any other. And the larger the number of components is, the more restricted become
these conditions and, assuming a given number of observations, the less chances exist
to obtain a solution.

For these reasons, in FAST, only triple systems were considered and experience showed
that a minimum of 25 observations (well distributed over the scanning directions) were
necessary to obtain a good solution.

Selection of systems: In the absence of specific criteria to recognize multiple systems,
the choice of stars to be tested with the triple star reduction software was made as
follows:

• first, all stars in the Hipparcos Input Catalogue which were known to be multiple
with three components obeying the double-star observability conditions for the
three possible pairs. In many cases, when two of them had a small separation
(< 0.25 arcsec), a double star solution in which the closest pair of stars was replaced
by their photocentre was found to be more reliable;

• double stars for which no relative solution could be found without rejecting a large
number of observations or for which the absolute astrometric solution was obtained
with a bad goodness-of-fit or which necessitated many rejections of observations.

In FAST, two completely different methods were used:

(1) the scanning angle functions method, created and implemented in CERGA, Grasse;

(2) the global fitting method, developed at the Osservatorio Astronomico di Torino,
Italy.

In addition, an application to multiple star systems of the CLEAN imaging method was
studied, but not applied because the relative astrometry approach adopted in FAST for
double and multiple star reduction, did not permit the definition of a common reference
frame for all the observations. This was actually possible for NDAC which performed
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Figure 13.9. Projections of the positions of the components of a triple system on the tangent plane and on the reference

great circle whose position angle is γ .

the reduction simultaneously with absolute astrometry so that a single reference was
available for all the observations.

In the case of FAST methods, an a priori approximate solution was necessary to start
converging toward the solution. The two methods described below differ in particular
by the way that such an approximate solution is obtained.

Scanning angle functions method: The observed signal of a triple star could be
represented by Equation 13.2 in which it was assumed that ψ has been corrected by the
calibrated phase shift which exists for single stars as already explained in Section 13.2.
The relations with the parameters of the components are extensions of Equations 13.7–
13.11 with three terms rather than two. Let us consider a system of local coordinates
XY with their origin at one of the components of the systems, S1 (Figure 13.9). One
considers the two vectors

−−−−!
S1S3 and

−−−−!
S3S2 whose coordinates are respectively (X2, Y2)

and (X1 , Y1).

The projections on the reference great circle, which were proportional to phases, modulo
2π, were such that for the jth observation we have:

(φ3 − φ1) j = mod(α jX2 + β jY2, 2π) [13.26]

(φ2 − φ3) j = mod(α jX1 + β jY1, 2π) [13.27]

where α j , β j are given by Equation 13.18. In addition, the intensities were normalised
with respect to the total intensity, so that the actual intensities were determined at the
very end, using the global calibrated intensity provided by the photometric treatment
as:

Jk =
p

2 Ik

I1 + I2 + I3
, k = 1, 2, 3 [13.28]

with
J1 + J2 + J3 =

p
2 [13.29]
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With these assumptions, namely using only phase differences and normalised intensities,
only three relations between the parameters were left. Any three combinations of
Equations 13.8–13.11 could be used. The choice was to take:

F = 1 − (M /fM )2

G = 1 − (N / eN )2

H = 2
p

2 (M /fM )2(N / eN ) sin(2φ − ψ)

[13.30]

where F , G and H are functions of X1, X2, Y1, Y2, J1, J2, J3 and γ , while fM and eN
were as before the mean calibrated values of the modulation coefficients.

Values of the three functions were computed for each group of transits corresponding to a
given orbit and reference great circle. Equations 13.30 are strongly non-linear and it was
not possible to solve them by least-squares unless an approximate solution was available.
In a first instance, each function F , G and H was represented by a Fourier series of γ ,
developed to the 10th or higher order depending on the number of observations. Then,
two angles γ1 and γ2 were chosen and the seven Equations 13.26–13.30 were solved for
the seven unknowns. The solution was obtained by successive approximations using 5th
degree polynomial expansions of the equations. The coefficients of these expansions
were computed analytically as functions of the seven parameters.

The choice of γ1 and γ2 was arbitrary, although many simulations have shown which
combinations were the most efficient. Actually 12 such combinations, depending or not
on the distribution of the angles γ were programmed and the solution was computed
by a programme for the resolution of non–linear equations. Some combinations were
rejected by the programme as impossible to solve. Others gave solutions which were
used as starting point to the next step.

This next step consisted of studying how any of the solutions obtained changed when
its parameters were slightly modified. This was a means of searching for a minimum of
the root-mean-square residuals in the vicinity of the solution in the space of parameters.
This space was not systematically scanned, which would have taken too much computer
time, but tested in ten pre-determined directions. The goodness-of-fit of these new
solutions and of the original one were compared, and the one that showed the best fit
was retained.

At the end of this step, one had up to twelve solutions, not necessarily all different. The
goodness-of-fit values were compared and the solution with the best fit was retained.
Then, a new iteration was started, using the parameters of this solution as the starting
point of the first step for the choice of γ1 and γ2. The iteration was stopped when the
last retained solution did not improve the quality of the fit by at least 1 per cent.

Next the various solutions obtained for each couple (γ1, γ2) were compared by direct
inspection. The one giving the best fit and the smaller number of rejections was kept.
Observations which were systematically rejected at the 2.5σ level by the majority of
solutions were suppressed and a new round of iterations was started.

If after one, or sometimes two, rounds more than 12 per cent of observations were
rejected, or if there were no solutions with a goodness-of-fit smaller in absolute value
than 4, it was considered that there was no solution possible for this star. Otherwise,
the final best solution (sometimes two if the goodness-of-fit values were similar) were
kept for the final test using absolute astrometry determination.
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Global fitting method: This method is a classical iterative least-squares procedure
which was applied in Torino and Frascati for the double star treatment and was extended
for multiple stars. As in the case of the preceding method, one observation provides
three equations of condition, chosen to be:

A = IM

C = IN cos(2φ − ψ)

D = IN sin(2φ − ψ)

[13.31]

The usual assumption was that the system does not change with time, though the method
could easily be extended by adding first or even second derivatives of the rectangular
local coordinates Xk, Yk (k = 2, 3) of the components with respect to the primary. In
addition to these four unknowns, the method considered all the products I jMj and I jN j

( j = 1, 2, 3) for each of the three components considered as independent.

The main idea of the method was to use a classical least-squares method to solve
linearised equations of condition. The problem was that equations that link A, C
and D to the actual star parameters are highly non-linear and one can start such a
procedure only when one has in hand a set of parameters that represent already a
reliable solution. So, the first approach of the method is a ‘pre-global fitting’ approach,
starting from system parameters provided by ground-based observations and found in
the Osservatorio Astronomico di Torino data base.

The equations were simplified taking only the six unknowns I jMj and I jN j and the
Levenberg-Marquardt method for non-linear systems of equations. The idea was to
define a χ2 merit function and determine the parameters by its minimisation. This
was successively done using the steepest descent method combined with the inverse
Hessian method. This was iterated until the merit function showed instability around
its minimum.

Then the global fitting which assumed that it is possible to linearise the equations with
respect to the unknowns was applied. The linearisation was made by the Newton-
Raphson technique, expanding Equations 13.31 by a Taylor series up to the first order:

A = A(X0) +
10X
k=1

δXk
∂A
∂Xk

����
X=X0

[13.32]

where X is the vector of parameters and δXk their increments from the previously
estimated approximate solution X0. Equations 13.32 were solved by an iterative scheme
with singular value decomposition algorithm, which is particularly well adapted to this
type of problem for its numerical properties and stability.

The Absolute Astrometry of Double Stars

As mentioned earlier, the overall principles applied by FAST consisted in first obtaining
the relative parameters of a double or multiple star (separation(s), position angle(s),
and magnitude difference(s)), and then correcting each great-circle abscissa for the sys-
tematic offset between the, still unknown, signal phase of the primary and the observed
phase of the whole system. After these two steps, all the relative parameters %, θ and
∆m were known for all the double stars. For a ‘fixed solution’ these parameters were
sufficient to characterise the double star over the whole mission. In contrast, when a
significant relative motion of the components had been detected, two additional param-
eters had been determined, namely the first time derivatives of the relative rectangular
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coordinates, Ẋ and Ẏ (‘linear solution’). The variances of each of the above parame-
ters were also available and were used to propagate the random errors to the corrected
abscissae.

In the FAST processing of the great-circle abscissae all the stars were processed in
exactly the same way, whether they were single or not. This meant that, in every
observation frame, the grid coordinate (G) was computed from the phases of the five-
parameter model of Equation 13.2, as if the star were single. Actually the signal phases
only defined the grid coordinate modulo the grid step s, and the integral number of
grid steps had to be computed from the a priori position given in the Hipparcos Input
Catalogue, even though it could refer to a point not directly linked to the phase of
the signal. Equations 13.8–13.11 provide the relationship between the observed phases
(φ, ψ) and the phases of the primary (φ1) and secondary (φ2). To get the grid coordinate
of the primary, the observed value had to be shifted by φ1 − φ, and a corresponding
correction was needed for the great-circle abscissa. Obviously, after this process, the
corrected abscissa of the primary could still be wrong by an integral number of grid
steps. This was accounted for in the astrometric processing by a mesh search dedicated
to the double stars, since the number of grid steps was in general much larger for these
objects than for single stars.

Equation 13.16 links the geometric parameters of the double star and the scanning
direction to the projected separation on the reference great circle. Using Equation 13.15
the phase difference ∆φ = φ2 − φ1 between the secondary and primary was computed,
while the intensity ratio r was obtained from the magnitude difference. The following
equations were then used to translate the observed phases φ and ψ into the phase of the
primary (φ1):

tan(φ − φ1) =
r sin ∆φ

1 + r cos ∆φ
[13.33]

tan(ψ − 2φ1) =
r sin 2∆φ

1 + r cos 2∆φ
[13.34]

From this, corrected great-circle abscissae could be computed for every great circle
on which the double star had been observed. The corrected abscissae are statistically
equivalent to what would have been obtained if the primary star had been observed
without perturbation from the secondary.

The same kind of correction was applied to the secondary or to the photocentre of
the system, with straightforward modifications. Likewise for an orbital double star,
an ephemeris was computed and the instantaneous separation and position angle were
used to determine the abscissa shift needed to refer the observations to the centre of
mass. (The same could in principle have been done for double stars with a variable
component, had an ephemeris of ∆m been available.) By adding further components,
it was also easy to generalise the above method to triple stars, and this was done for the
absolute astrometry of these systems.

Regarding the propagation of the error estimates, this was easily done for a particular
reference great circle by computing the derivatives of the phase shift with respect to
the separation, position angle and magnitude difference and then adding the variances
to the variance of the initial abscissa. However, there was a small difficulty here, in
that the corrected abscissae could be strongly correlated (because roughly the same
correction—including the same error from the relative astrometry—would apply to all
great circles with roughly the same scanning angle γ ). Neglecting this correlation would
have resulted in an underestimation of the variances of the final astrometric parameters,
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and the comparison of the astrometric variances of the primary and secondary would
also have disagreed with the variances of the relative solution. To rectify this, an average
correlation coefficient was computed by comparing the variance of φ − φ1 with the
variance of the great-circle abscissae; this correlation was then used to estimate the final
variances of the astrometric parameters.

Extensive validations were needed to get everything working properly. Two indepen-
dent solution programs were written for the astrometric parameters of the double stars.
Although the routines for the abscissa shifts were identical, the determination of the
position, parallax and proper motion from the corrected abscissae was based on dif-
ferent methods. Once the principles had been validated, one of the two programs was
specialised into a systematic search for the position in a mesh extending to a distance as
large as 30 arcsec from the a priori position. The candidate solutions were then used as
starting values for the main routine, from which all the FAST solutions were eventually
derived.

As for the absolute astrometry of triple stars, there was an additional check of the
relative solutions carried out at this level. Several solutions for the relative astrometry
were usually obtained by one or both methods described in the previous section. All
these solutions were tried for the absolute astrometry and the results were compared
with the results obtained from a double star solution or even sometimes from a single
star model. A triple star solution was retained if it improved the goodness-of-fit and/or
reduced the number of rejections. Also when two triple star solutions were available,
the one which gave the best fit was finally retained. In total, out of more than 350
systems tested by any of the methods, 170 were accepted by at least one of the triple
star programs, but after passing the absolute astrometry test, only 102 solutions were
selected to be merged with the NDAC solutions.

13.4. The Astrometric and Photometric Solution: NDAC Method

The key idea for the NDAC double-star treatment was established by L. Lindegren in
1985. Instead of making the doubles behave like the single stars, by correcting the abscis-
sae, the known or suspected non-singles were passed through a completely independent
chain of reductions. In this way, the standard reductions were freed from possible con-
tamination, and the double-star reductions could be made on a case-by-case basis. This
required a certain time-lag, in that the main reduction had to be completed first, and
the calibrations obtained were subsequently used to derive calibrated observations for
the non-single objects.

These calibrated observations were collected into self-contained ‘case history files’, each
one containing all the observations for a given object. All subsequent reductions for that
object, whether it was modelled as a single, double or multiple star, needed only the
case history file as input for the model fitting. Normally, a standard double-star model
was first tried, and if that failed, more refined models could be tried. This general
strategy proved to be very useful, not least in enabling new solutions to be rapidly
computed for individual objects identified as problematic during the later stages of the
reductions. The case history files have been archived, in a slightly transformed version,
as the Transit Data File described in Volume 1 (Section 2.9), and are thus available for
future re-examination of the solutions for about a quarter of all the Hipparcos Catalogue
entries. Similar files have been also archived within the FAST Consortium.
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The above strategy separated naturally the NDAC double-star reductions in two main
tasks. First, all the case history files were generated, using the best calibration data
available. This had to be done in a single batch by going through all the observations
in chronological sequence. Then, the actual solution searches could be performed, for
one system at a time. Since several reductions were carried out in sequence, using a suc-
cessively larger amount of observational material (the 12-month, 18-month, 30-month,
and 37-month solutions), there were equally many (or more) separate generations of
the case history files, and corresponding intermediate double-star solutions.

Generation of Case History Files

The task of obtaining the case history files from the actual satellite data was a large and
complex one, and the final double-star results depended critically on its correctness.
There were many details and problems to be solved in the process, and only an overview
can be presented here.

The input to the generation of case history files had two large and many smaller com-
ponents. The largest data set consisted of the original five-parameter fits to the image
dissector tube counts (β1 to β5 in Equation 13.1), together with their information ma-
trices (i.e. the inverse covariance matrices). These parameters, available from the image
dissector tube processing carried out at the Royal Greenwich Observatory in Cambridge
(Chapter 5), had to be calibrated geometrically and photometrically before being as-
sembled in the case history files. Most importantly, the signal phases (β3) had to be put
on an absolute scale, so that β3 = 0 corresponded to a certain point on the sky, with
known astrometric parameters. A fundamental input for this was the frame-by-frame
spin phases, i.e. the along-scan attitude angle as a function of time, derived in the great-
circle reductions performed at Copenhagen University Observatory (Chapter 9). These
two inputs were each a couple of gigabytes in size. Smaller but equally important inputs
were the geometric instrument parameters, determined once per orbit (' 10.7 hour
interval) as part of the great-circle reductions, the time-dependent photometric calibra-
tion parameters from the photometric processing (Chapter 14), and the abscissa zero
points from the sphere solution (Chapter 11).

Ideally, it would have been useful to have a case history file for every entry in the
Hipparcos Input Catalogue. Because of the large amounts of data involved, this was
not practical, and an important part of the process was to select the subset of known
and suspected non-singles for which the case history files should be derived. This
subset evolved over the successive generations of case history files, taking into account
also the detections reported by the FAST consortium, so that in the end it could be
assumed with some confidence that only stars that could be passed as single in the
main reduction chain had not been included. Known doubles and multiples were
extracted from the Hipparcos Input Catalogue and from later compilations, and were
automatically included in the subset. From the different statistical criteria described in
Section 13.2, a similar number of suspected non-single objects was also included. As
an important check, case history files were also derived for several thousand bona fide
single stars, enabling more direct comparisons with the ordinary single-star reductions.
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The main steps of the generation of the case history files can then be summarised as
follows:

1. a special version of the Hipparcos Input Catalogue was created with some key data
for each entry. For two- and three-pointing systems, a primary was designated,
becoming the identification for the whole system. The photocentre of the system
was calculated from the available Hipparcos Input Catalogue data, and this (with
an assumed parallax and proper motion, also taken from the Hipparcos Input
Catalogue) defined the reference point on the sky to which all observations of the
system were referred;

2. a dedicated process was used to select the systems that should have their case history
files derived. In its final version this list included about 13 500 known double or
multiple systems, 14 400 suspected doubles from the NDAC criteria, and 5000
bona fide single stars. 4400 more objects were added as being suspected by FAST,
or in previous NDAC solutions;

3. the tapes with original signal parameters (β j ) for all stars were then read through,
to extract the data related to the objects selected for the case history files;

4. most of the calibration data were then collected in a single direct-access file, with one
record per orbit or great-circle reduction. This included the geometric instrument
parameters, specifying the large-scale field-to-grid transformations, the abscissa
zero points from the sphere solution, the photometric calibration parameters, and
estimates of the background count rate (B in Equation 13.2) for every ' 2 min of
time. The calibration file contained also the geocentric velocity and position of the
satellite used for correcting stellar aberration and calculating the parallax factors;

5. the main calculations were made by a single program. Using the attitude spin
phases and the geometric and photometric calibrations, the signal parameters β j

for each field transit of an object were transformed to the calibrated parameters b j

described below, referring to an accurately specified scanning geometry;

6. at this stage the output was still in chronological order, with the transits of a given
system scattered in the file. This was then sorted according to the system identifiers,
resulting in one case history file per system.

In order to refer the observed phases to the adopted reference point, the detailed ge-
ometrical model of the field-to-grid transformation was needed, as well as the attitude
angles and in particular the spin phases (along-scan attitude). As already mentioned,
these data came from the great-circle reductions, but with the spin phases corrected for
the abscissa zero points determined in the sphere solution. The sphere solution supplied
also the time-varying chromaticity and some subtle phase shifts depending on the sixth
harmonic of the satellite spin angle. Care was needed to apply correctly the first- and
second-order relativistic stellar aberration (using the known motion of the satellite) and
the gravitational light deflection due to the Sun. The photometric sensitivity variations
over the field of view and over time were large (several tens of per cent), and again care
had to be exercised to derive values calibrated at the millimagnitude level (see Chap-
ter 14). The whole chain was accepted as correct only after passing the stringent test
of giving astrometric data for the bona fide single stars in almost perfect agreement with
the (independent) standard astrometric solution.

All calibrations, especially for the image dissector tube sensitivity, depend on colour,
which gives two kinds of problems. On the one hand, the mean colour assumed in
the reductions often differs from the more accurate values now available. This can be
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rather simply corrected, however, using some auxiliary output in the case history file.
On the other hand, there is a more fundamental problem for single-pointing doubles
with two components of unequal colour: the mean of the calibrations is not necessarily
equal to the calibration based on a mean colour. When the individual colours and
intensities are known, a re-derivation of case history files would in principle be possible,
but the amount of work involved makes this very impractical. Also, for most of the close
Hipparcos doubles, the individual colours are not known, and the differential colour
problem had to be left unsolved.

Interpretation of Calibrated Data

For a given object, the case history file contained the calibrated signal parameters for
all the field transits of the object collected over the mission. By calibrated it was
meant that all known variations of the instrument response and attitude had been
taken into account, so that the parameters could be interpreted directly in terms of
absolute quantities such as the astrometric parameters (in the reference frame of the
corresponding NDAC sphere solution) and the magnitude Hp.

For each transit of the object across the field of view, the case history file gave the Fourier
coefficients b j describing the calibrated image dissector tube counts according to the
general model:

Ak = b1 + b2 cos pk + b3 sin pk + b4 cos 2pk + b5 sin 2pk [13.35]

where the reference phases pk were now defined with origin at the reference point. The
changing sensitivity of the image dissector tube over the field of view and with time was
taken into account, and the background count rate subtracted, so that zero magnitude
(Hp = 0) corresponded to exactly b1 = 6200 counts per sample. The case history file
also contained the variance-covariance of the coefficients b j .

The calibrated phases and amplitudes were defined such that a point source of unit
intensity at the reference point (i.e. with the astrometric parameters adopted for the
reference point) produced the detector signal:

Ak = 1 + M̄ cos pk + N̄ cos 2pk [13.36]

where M̄ = 0.7100 and N̄ = 0.2485 are modulation coefficients fixed by convention.
This expression defined more precisely the meaning of the reference phase pk.

A point source at some distance from the reference point produced a signal phase-
shifted with respect to Equation 13.36, so that pk had to be replaced by, say, pk + φ in
that equation. The phase shift φ depended on the offset (ξ, η) from the reference point,
the position angle of the scan (γ in Figure 13.5), and the effective grid period (s) for the
observation in question. All these dependencies were taken into account by rigorously
computing the derivatives fx = dφ /dξ and fy = dφ /dη for each transit. In doing so, the
offset coordinates (ξ, η) were regarded as barycentric, which meant that the effects of
parallax and stellar aberration (differential with respect to the reference point) could
not be taken into account when (ξ, η) were computed for a specific source in a specific
observation. To account for a difference in parallax with respect to the reference point,
the derivative fp = dφ /dπ was also computed. The total phase shift for a point source at
the barycentric position (ξ, η) and with parallax ∆π relative to the reference point was
then computed as:

φ = fxξ + fyη + fp∆π [13.37]
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Naturally, ξ and η could be functions of time to describe the combined effects of the
proper motion and orbital motion of the components, all reckoned relative to the (in
general already moving) reference point. The case history files included the factors fx,
fy and fp for each transit of the object. It must be noted that fx and fy closely correspond
to the spatial frequencies α j and β j of Equation 13.18.

General Solution Principle

The basis for the NDAC double and multiple star analysis was the theoretical model
for the calibrated photon counts of an object with n stellar components, obtained by
summing the phase shifted and scaled signals, Equation 13.36, from the individual
components (i):

Ak =
nX

i=1

Ii [1 + M̄ cos(pk + φi ) + N̄ cos 2(pk + φi )] [13.38]

Here Ii = 6200 × 10−0.4Hpi are the component intensities (expressed in counts per sam-
ple) and φi the phases relative to the reference point, calculated from Equation 13.37.
Expanding the trigonometric terms and comparing with Equation 13.35 gives the fol-
lowing basic relations:

b1 =
P

i Ii

b2 = M̄
P

i Ii cos φi

b3 = −M̄
P

i Ii sin φi

b4 = N̄
P

i Ii cos 2φi

b5 = −N̄
P

i Ii sin 2φi

[13.39]

Writing the phases φi in terms of the component positions (ξi , ηi ), which were functions
of time suitably parametrised to account for proper motion and orbital motion, and of
the parallaxes of the components relative to the reference point, ∆πi , Equations 13.39
provided a set of non-linear observation equations for the intensities and geometric
parameters of the components, in which the coefficients b j were the ‘observations’.
With five equations per transit, there were typically some 500 to 1000 observation
equations for a given system.

In principle, all that was now required was to specify the object model (number of
components, form of motion for each component, constant or variable intensity, etc.),
to insert the relevant parameters (unknowns) in Equations 13.39, and perform a robust,
non-linear least-squares estimation of all the parameters. Combined with the parameters
of the reference point this gave directly the absolute astrometry and intensity of each
component, including their standard errors and the full correlation matrix.

Practical Considerations

In practice several different solution programs were set up to cope with the various kinds
of objects, and many detailed considerations were necessary before the final solutions
could be obtained. For the vast majority of the systems, however, a standard 12-
parameter model was sufficient. This consisted, in its most general form (Table 13.2),
of one photometric and five astrometric parameters for each of two components. For
two-pointing systems, a correction to the assumed attenuation profile of the instan-
taneous field of view could be introduced as the 13th parameter. This general form
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Table 13.2. Astrometric and photometric parameters solved for in the NDAC double-star analysis. Three

different physical models of the double star result from the use of various constraints: without any constraints

the solution is of type ‘I’, with u10 = 0 a solution of type ‘L’ results, and with u10 = u11 = u12 = 0 the solution

is of type ‘F’. The parameter u13 applies only to double-pointing systems, independent of solution type.

Parameter Description

u1 magnitude of primary (Hp1)

u2 offset (ξ1) in α of primary from reference point

u3 offset (η1) in δ of primary from reference point

u4 offset (∆π1) in parallax of primary from reference point

u5 offset (ξ̇1) in µα� of primary from reference point

u6 offset (η̇1) in µδ of primary from reference point

u7 magnitude difference (∆m = Hp2 − Hp1)

u8 relative position in α of secondary (ξ2 − ξ1 = X )

u9 relative position in δ of secondary (η2 − η1 = Y )

u10 relative parallax of secondary (π2 − π1)

u11 relative proper motion in α of secondary (ξ̇2 − ξ̇1 = Ẋ )

u12 relative proper motion in δ of secondary (η̇2 − η̇1 = Ẏ )

[u13 correction factor for the attenuation profile (' 1)]

was directly applicable to optical double stars (solution type ‘I’, see Field DC3 in the
Double and Multiple Systems Annex), and, by constraining some of the parameters to
zero, to physical binaries with approximately linear relative motion (solution type ‘L’)
and physical binaries with fixed relative geometry (solution type ‘F’).

The main difficulty was to choose the initial values for the model parameters. The
1.2 arcsec grid period imposed a strict 0.3–0.5 arcsec limit for the a priori position
error in order for the least–squares adjustment to converge towards the correct position.
This a priori accuracy was seldom available for all components of a system, and usually a
double iteration had to be used to find the relevant solution. In other words, starting with
a trial set of parameters, the least-squares solution was iterated some 5–8 times. If there
was no convergence, the process was repeated with another set of initial parameters.
In some cases, there was convergence to several different solutions with the secondary
displaced by one or more grid steps, and it was necessary to choose the one which best
fitted the observations. A fundamental principle in all cases was to compare also with
the best single-star solution, and only accept a double-star solution if its χ2 fit to the
observations was significantly better. Along such general lines, several different analysis
programs were constructed and used as outlined below.

The 12-parameter model of Table 13.2 applied rigorously only to systems with pho-
tometrically constant components. For double stars showing significant photometric
variability, the double-star parameters were determined only from a subset of the data
with total magnitude close to the median value. Actually, a large effort was put into
a special scheme solving for the individual magnitudes at each field transit in addition
to the fixed (5+5) set of astrometric parameters. Although this is straightforward in
principle, it was in practice very difficult to obtain stable and reliable solutions, and
most of these results had to be discarded.
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For systems with n > 2 components, a set of 6n unknowns was defined in close analogy
with the double-star case. Again, the first six unknowns (u1 to u6) were ‘absolute’,
referring to the designated primary component, the following unknowns for the other
components (u7 to u6n) were defined relative to the primary, and a final unknown
u6n+1 took care of the profile correction, when necessary. In principle, the observation
equations were derived as for the double stars, but because of the larger dimension of the
system of equations and the exponential growth of the mesh searches with the number
of components, multiple-star solutions were only made when reasonably accurate a
priori parameters were available. This restriction, coupled with severe time constraints
during the last stages of the data reductions, led to a relatively small number of multiple-
star solutions. With a larger effort in the future, especially in trying to find new third
components to known doubles, the Hipparcos data may eventually yield many more
multiple-star solutions.

13.5. NDAC Implementation and Results

Most of the double-star reductions in NDAC were made by a single person, working
nearly full-time on this task since 1985. In retrospect, the path towards the final
results was winding and tortuous, and several interesting side-tracks had to be left
unexplored. In this section some definite milestones are recorded, before the main
results are described.

Pre-Launch Simulations

As early as 1985, fairly realistic simulations of the whole double-star processing were
started in Lund. An important result of these experiments was the realisation that
double stars with 10 to 30 arcsec separation, although problematic, could be successfully
treated, and thus had not to be excluded from the Hipparcos Input Catalogue. Another
result was the demonstration that the parameters for previously unknown doubles could
be found by a four-dimensional mesh search over the primary and secondary positions.
Also, a first solution program for multiple stars was written and found to work for up
to five components. Thus, already in 1986 many of the principles applied later were
already decided on, and much of the later work can be described as an implementation of
these principles, taking into account all the practical details and difficulties. A summary
of the assumptions included in the simulations was presented at the INCA Colloquium
in Sitges (Söderhjelm 1988). This included an outline of the practical steps needed to
construct the ‘case history files’.

Subsequent pre-launch simulations focused on the development of the two main solution
programs (for known doubles, and for seeking the companions of suspected doubles).
From a series of large-scale simulations the detection capabilities of Hipparcos could be
specified in detail, as a function of the double-star parameters. It was found, empirically,
that the ‘difficulty’ in resolving a double star is mainly governed by a combination of the
magnitude difference (∆m) and separation (%), which was expressed by the parameter
D (sometimes called ∆meff ):

D =

(∆m − 20 log10(% /0.138) % < 0.10 arcsec
∆m − 5.5 log10(% /0.32) 0.10 < % < 0.32
∆m otherwise

[13.40]
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Figure 13.10. Normalised differences, ∆a, between the double star and sphere solution results for the astrometric

parameters of components of two-pointing double stars. The differences (divided by their estimated mean errors) in the

five parameters are plotted against the ‘observed’ magnitude difference ∆m0 = ∆m + Ψ(%) being the sum of the true

magnitude difference on the sky (negative for a secondary component) and the attenuation when the instantaneous

field of view was pointed at the other component.

Typical diagrams showing a discovery limit for new doubles around D = 3.5 to 4 are
shown in Perryman et al. 1989 (Volume III, Chapter 13). In 1993, the definition of D
was changed to be in better agreement with the real solutions, giving instead:

D =

(∆m − 34 log10(% /0.112) % < 0.10 arcsec
∆m − 2.4 log10(% /0.50) 0.10 < % < 0.50
∆m otherwise

[13.41]

First Reductions

During the spring of 1991, a small fraction of the actual observations from the first year
of the mission was released to the reduction consortia in order to allow full-scale testing
of the reduction procedures. In May 1991 the first solution for a ‘new’ double-star
(HIC 927) was obtained. Within a month, the general validity of the NDAC approach
had been demonstrated on the one hand by the good agreement between the single-star
absolute astrometry and the independent sphere-solution results, and on the other hand
by the agreement of the double-star relative astrometry with existing ground-based data.
The very preliminary results for some 1000 known and 300 new doubles (Söderhjelm
et al. 1992; Söderhjelm & Lindegren 1992) rather exceeded the expectations, and the
reduction work could be continued with confidence.

In the course of the routine processing in NDAC, a new set of case history files was
generated after each major sphere solution. Thus, successive versions using 12, 18 and
30 months of observations were generated during 1992–1994. In parallel, the solution
programs were considerably developed and improved. As data accumulated and the
detection criteria became more powerful, more objects could also be added to the list
of known or suspected non-single stars, for which case history files had to be generated.
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Crucially important for the validation of the absolute astrometry was a continual com-
parison of the double-star results with the sphere solution results for some objects which
were allowed to go through both reduction chains (bona fide single stars, and doubles
with % <~ 0.3 arcsec or ∆m >~ 3 mag). Already in the 12-month reductions this compar-
ison gave a good agreement in positions and parallaxes. The random differences were
of the order of the standard deviations, and no systematic differences above the 1 mas
level could be detected. The covariances were however found to be systematically differ-
ent, reflecting the complicated correlations between the attitude-errors in neighbouring
scans using a common set of ‘star-mapper’ stars. No rigorous model could describe
this problem, but semi-empirical correction terms were introduced in the double-star
solution to make the covariances reasonably similar. Another illuminating test was to
compare the (disturbed) sphere-solution data for wide two-pointing doubles with the
results of the double-star processing. An illustration from a May 1993 report on the
18-month results (Figure 13.10) shows the typical ‘trumpet’ shape of the differences,
with less and less disturbance as the ‘observed’ magnitude difference increases. The
double-star solution is able to correct for the ‘mixing’ of signals from both components,
but only when ∆m0 (Figure 13.10) reaches about 4 mag does the sphere solution give
correct results. Starting with the 30-month reductions, the covariances were calibrated
not only by comparison with the sphere solution, but also by making two independent
double-star solutions for each object, each solution using alternate halves of the data.
Magnitude-dependent correction factors were derived in such a way that the combined
standard deviations of the two solutions were in agreement with the rms differences
between them.

Final Reductions

A preliminary set of 37-month case history files was derived in September 1994, using
‘extrapolated’ results for the instrument calibrations and abscissa zero points. A large
number of test solutions were made in order to settle, in particular, the covariance
calibrations. The final result was a ‘half-observation’ scatter generally within 20 per
cent of the calibrated standard errors, with no remaining dependence on magnitude,
separation or magnitude difference. Another important test performed at this stage was
to solve the known doubles without any a priori information on the relative parameters,
using the solution programs developed for searching the components of a new double
star. The expected solutions were recovered for a large majority of the systems, with the
failure rate reaching 50 per cent only at D ' 4.5.

After completion of NDAC’s final sphere solution (N37.5) in April 1995, a ‘real’ set of
37-month case history files were derived. After some (small) updating with photometric
‘ageing corrections’ in August 1995, these case history files provided the input for the
final double and multiple star solutions in NDAC.

Aided by the many preliminary results, the final large-scale double-star reductions were
made during the summer of 1995. In October, a systematic round of test solutions
was attempted for about 1800 systems where the solutions by FAST and NDAC dif-
fered, using the FAST results as starting values. In many cases the original NDAC
interpretation could be confirmed; in others, new solutions closer to those by FAST
were obtained. A similar large-scale comparison with Hipparcos Input Catalogue data
(which had so far not been allowed to influence the end results) generated another set of
alternative solutions. Generally, however, the new solutions were retained only if they
gave an improved fit to the observations, as measured by the χ2 statistic.
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For the multiple stars, solution programs had in principle been available for many
years. Only after the completion of the double star processing could they be brought
up-to-date, and some 180 multiple-star solutions were obtained in January 1996. In
practice these solutions required rather good a priori relative parameters. Ideally, the
large number of poor double-star solutions should also have been checked for a possible
third component, but this was not accomplished in the present reductions.

In early 1996, the final merging of FAST and NDAC double-star data was made
(Section 13.7). During this work, several grid-step errors were positively identified, and
new solutions were calculated for individual cases. Similarly, several improved solutions
were obtained by the help of dedicated ground-based observations communicated by
R.S. Le Poole et al. (private communication). After the merging had been completed
any further errors or omissions discovered, or any further improved solutions, were only
listed for inclusion in the Notes to the Double and Multiple Systems Annex.

Overview of the NDAC Results

The double-star processing produced a total of 16 016 resolved double solutions. To
this should be added the 180 solutions for triple and quadruple systems. For the double
stars an internal quality rating was constructed, ranging from Q = 3 (reliable solution) to
Q = 0 (marginal solution). This was based mainly on the parameter D in Equation 13.41
and on the improvement in fit, as measured by χ2, from the single- to the double-star
solution. The number of solutions in these quality classes were: 8415(3), 3841(2),
2485(1), 1275(0). For 14 679 additional cases, although a double-star solution was
tried, a single-star solution was found to fit the data equally well. Finally, there were
about 2820 systems for which no acceptable single or double star solution could be
found.

For each double star, three different solutions with different constraints (‘I’, ‘L’, ‘F’;
see Table 13.2) were usually available, each with a complete covariance-matrix for 12,
11 or 9 astrometric and photometric parameters. Although there was in each case a
preferred solution, the final selection between them was only made in connection with
the merging (Section 13.7).

The NDAC approach to the double-star processing ensured that all observations col-
lected over the mission were taken into account in a nearly optimal way, both for the
detection of duplicity and for the determination of the actual parameters (absolute and
relative). There was however one crucial difficulty, related to photometric variability. As
described above, the NDAC solutions were made directly from the Fourier coefficients
b j in Equation 13.39, assuming constant luminosity for the components. When one or
both components were variable, a model mismatch obviously resulted, and observations
with important astrometric information had to be rejected. Unfortunately, this aspect
of the solution process had not been tested in the early simulations, creating unexpected
large problems in the reductions for variable doubles. The extensive experiments with
field transit magnitudes produced in the end no useful results, but a small number of
cases were noted where the secondary appeared to be the variable component.

In the standard reductions, it is clear that variability increases the probability of spurious
‘new’ double-star solutions, as shown by an increased number of solutions with partic-
ular values for the separation, related to the grid period of 1.2 arcsec (Figures 13.11–
13.12). The detailed cause and mechanism for this problem is not well understood,
but its relation to variability is shown clearly when the material is divided according
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Figure 13.11. Distribution of ‘new’ doubles, as obtained by NDAC, with respect to separation (%) and magnitude

difference (∆m). Only stars with reasonably constant total magnitude are included.
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Figure 13.12. Distribution of ‘new’ NDAC doubles, for the subset of stars with significantly variable total magnitude.

Note the concentration of (often spurious) solutions at either small % and small ∆m, or to ‘bands’ on each side of

%' 1.2 arcsec or its multiples.
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Figure 13.13. Distribution of the NDAC solutions for ‘known’ doubles in the same %-interval as Figures 13.11 and

13.12. No preferred separation values are apparent.
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to ‘constant’ or ‘variable’ photometry. For systems with known a priori parameters,
there is however no similar effect, as clearly seen in Figure 13.13. (In other words,
a solution in the ‘band’-region may be correct, it only has an enhanced probability of
being spurious). The only practical remedy for this problem has been to accept new
solutions very conservatively, and for variable stars only when they are confirmed by
FAST solutions. By treating the relative astrometry independently of the photometry,
the FAST approach is much less liable to these problems.

13.6. NDAC/FAST Comparisons

As described above, the methods used by NDAC and FAST for the double-star pro-
cessing were radically different. The two approaches had their strong and weak points,
sometimes nicely complementing each other, but a major drawback has been the dif-
ficulty of making meaningful comparisons of the results. Unlike the case of single
stars, there were no intermediate results that could be compared, allowing the differ-
ences in the final results to be traced back through the various stages of the processing.
Throughout the comparisons, there was always a core of well-behaved objects, for which
the results were in excellent agreement, but then there were also some fraction of the
objects with unexpectedly large differences, and a sizable number of cases where only
one of the consortia found a solution.

The first large-scale comparisons, including hundreds of solutions, were made in 1992,
using solutions based on 12 months of observations. For a majority of solutions,
the agreement in both the relative positions and photometry was surprisingly good,
considering the radically different methods used. The differences tended to be somewhat
larger than the calculated standard deviations, and some systematic effects could be seen
especially in the photometry; on the whole, the agreement was however as good as could
reasonably be expected. The differences were larger for the newly detected doubles,
but in many cases these could be explained by grid-step errors, which, according to
simulations, should be common for such a short observation interval.

A second round of comparisons was made in 1993 with the 18-month results. Again,
there were thousands of stars showing good agreement in the relative data, and an
effort was made to compare also the absolute astrometry (positions, proper motions
and parallaxes) between the consortia. The first such attempts failed blatantly, with
typically 20 to 30 mas differences in the positions, although the calculated standard
errors were ten times smaller. After debugging on each side, the situation did improve
early in 1994, and from then on, ‘absolute’ and ‘relative’ comparisons have shown
similar differences, after normalisation by the combined standard errors, although still
significantly above unity (typically 1.5 to 2). Subsequent comparisons of the 30- and
37-month results confirmed the general correctness of the solutions, but also generated
lists of several thousand objects where FAST and NDAC did not agree. Big efforts were
made to improve the situation, resulting in many new or alternative solutions. However,
because of the very different procedures of FAST and NDAC, few of the new solutions
showed radically better agreement. In the end, the remaining problem cases had to be
referred to the double-star merging.
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13.7. Merging of the Results for Resolved Double and Multiple Stars

Although the double-star processing in FAST and NDAC produced two sets of data,
which were not always compatible, it was decided that the Hipparcos Catalogue should
contain only one solution of each system. In the majority of cases, where the FAST
and NDAC solutions were in reasonable agreement, this caused no problem and the
published result is then essentially a mean of the two solutions (' 11 000 systems).
Similarly, for about 6000 systems solved by one consortium but not by the other, there
was no practical difficulty in accepting the one available solution, except that some
criterion was needed to decide whether that solution was sufficiently trustworthy.

The greatest problem was caused by the about 1800 cases where FAST and NDAC
differed very significantly in their solutions, often by a multiple of the grid step ('
1.2 arcsec) in the relative position of the secondary. Some 700 of these were in the
end treated as single stars, or received stochastic solutions but for some 1100 entries
various criteria had to be applied in order to select one of the solutions as being the
most probable one (see below).

Apart from these difficulties, the merging of the results proceeded, after some initial
experimentation, following a very simple recipe: a straight mean was adopted, giving
equal weight to the two solutions. This averaging applied equally to the absolute and
relative astrometry, and to the photometric parameters expressed in magnitudes. The
main difficulty was to estimate the standard errors and, in particular, the covariance
matrix of all the parameters in a merged solution.

Data Input to the Merging

The merging for the double stars was based on solutions received, in their quasi-final
form, in December 1995. The FAST data consisted of:

• relative data for 16 634 entries. The following data were always included: X , Y ,
and ∆m, with standard errors and the correlation coefficient ρXY , and a quality
rating on a scale from 0 (poor) to 10 (highly reliable). For 5715 of the entries,
relative motions were also provided in the form of the parameters Ẋ and Ẏ , with
standard errors and the correlation coefficient ρẊ Ẏ ;

• the five astrometric parameters (with complete 5 × 5 covariance matrix) for 15 528
entries. In 5195 cases these data refer to the photocentre of the binary (where the
FAST relative astrometry gave % ≤ 0.35 arcsec); in the remaining cases they refer to
the primary component, or the secondary of a two-pointing system. The number
of accepted and rejected observations (abscissae) and the goodness-of-fit statistic
F2 were also provided with the absolute astrometry.

1155 entries thus had relative solutions but the corresponding absolute astrometry had
not been accepted (e.g. because F2 > 6). The FAST relative and absolute astrometry
were expressed in the ecliptical system, and a first step was to transform them to
equatorial quantities (see Volume 1, Section 1.5.3), and then from the reference frame
of the final FAST sphere solution (F37.3) to the provisional H30 frame by the same
rigid-body rotation as was used for the merging of the single stars (see Section 17.2).
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The NDAC data consisted of 15 913 entries for which the complete solution vectors (u1

to u12 in Table 13.2) were given together with full 12 × 12 covariances. For most of the
entries, all three kinds of solution (I, L and F) were given. Statistics on the number of
accepted and rejected observations (field transits) and the goodness-of-fit (F2) were also
given. These data referred to the equatorial system and the reference frame of the final
NDAC sphere solution (N37.5); they were consequently transformed to the provisional
H30 frame by the same rigid-body rotation as in the single-star merging.

An additional minor complication was that FAST and NDAC, at this stage of the reduc-
tions, used slightly different numbering systems for the catalogue entries. This affected
some 80 entries. Before merging, the lists were transformed to the final numbering
system of the Hipparcos Catalogue.

The Neutral Point

The content and format of the Double and Multiple Systems Annex had been worked
out and agreed upon before the merging of the double star data started. Since the most
complex model of the resolved systems involving orbital motion would only include
the linear terms of the relative motion, it was evident that each component could be
described by the same five parameters as used for single stars. The format of the Annex
was therefore modelled, as far as applicable, on the format of the main Hipparcos
Catalogue. The main complication to be considered was the existence of correlations
between the astrometric parameters of the different components in the same system, and
between these parameters and the magnitudes of the components. The correlations are
often very considerable, and essential for estimating the standard error of any quantity
calculated from the component data, such as the photocentre. Consequently, the Annex
should list all the correlations between the astrometric and photometric parameters
estimated for a given system.

The NDAC solution method provided the full covariance matrix for each system solved,
and from this the required correlations were easily calculated. The FAST method, on the
other hand, gave separate solutions for the relative astrometry, the relative photometry,
and the absolute astrometry, and the correlations existing between the three kinds
of data were not explicitly obtained. In order to merge the results properly, and to
provide complete information also in the case of FAST-only solutions, it was necessary
to reconstruct at least some of the correlations implicit in the FAST data. The major
point to consider was to reconcile the relative and absolute astrometry.

The practical solution to this problem was based on the observation that, for sufficiently
close pairs, the absolute position of the photocentre is independent of the assumed
relative parameters. For well-resolved pairs, it is similarly found that the absolute
position of the primary is fairly independent of the relative parameters. By generalisation
it can be inferred that there is always a neutral point in a system where the absolute
and relative astrometry are minimally coupled. It was assumed that this point is always
located between the primary and the photocentre, the fractional distance given by a
parameter q in the range from 0 (primary) to 1 (photocentre). Thus, with p and s
denoting the positions of the primary and secondary, and r = 10−0.4∆m the intensity
ratio, the neutral point can be written:

n = p + (s − p)
qr

1 + r
[13.42]
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Figure 13.14. The parameter q defines the location of the ‘neutral point’ as a fraction of the distance from primary

(q = 0) to photocentre (q = 1). This diagram shows the determination of q versus separation (%) by two completely

different and independent methods: (1) the points and bars show the q-values minimising the correlation between the

position of the neutral point and the relative coordinates of the components. Based on individual q-values computed

from the covariance matrices of 9740 NDAC solutions, the points and bars give respectively the mean values and

the ±1σ ranges within each interval of separations; (2) the solid curve gives the empirical relation (Equation 13.43)

minimising the positional differences between FAST and NDAC.

The quantity q can be computed directly from the covariance matrix provided with the
NDAC solutions, and is found to depend mainly on % (Figure 13.14).

The neutral point was also derived empirically from a comparison of the FAST and
NDAC absolute astrometry. For a set of doubles with a narrow range of separations,
the q value was varied to minimise the mean positional difference between FAST and
NDAC, hjnN − nFji. Repeating this process for a number of separation intervals, it was
found that the best positional agreement between the consortia was obtained with a q
value varying with separation roughly according to the formula:

q =

(1 for % ≤ 0.25 arcsec
1 − (% − 0.25)/0.45 for 0.25 < % ≤ 0.70 arcsec
0 for 0.70 < %

[13.43]

This relation is also drawn in Figure 13.14 and shows good agreement with the mean
values calculated from the NDAC covariances. Based on the neutral point defined
by Equation 13.43, the FAST correlations between the astrometric parameters of the
components were computed such that the standard errors supplied by FAST (after
modifications described below) could be recovered both for the relative positions of the
components and for the absolute position of the primary or photocentre.

The concept of a neutral point was also used in order to merge the FAST and NDAC
results (Figure 13.15). The relative astrometry and photometry were first merged (i.e.
averaged); later, the neutral points of the two absolute solutions were also averaged,
yielding the neutral point of the merged data (nm in the figure). Finally, the merged
separation, position angle and magnitude difference were applied to the merged neutral
point, resulting in the merged positions of the components. Normally this somewhat
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roundabout method produced virtually the same result as a direct averaging of the abso-
lute positions of the components. However, in cases where FAST and NDAC differed
significantly in ∆m direct averaging could lead to unlikely results for the photocentre,
which were avoided with the present method.

Discrepant Solutions

The relative astrometry and photometry were compared and merged before the (abso-
lute) astrometric parameters were considered. The criterion for an ‘acceptable’ agree-
ment included limits on the differences both in relative position and in position angle:�

(XN − XF)2 + (YN − YF)2
�1 /2 ≤ 0.3 arcsec and j sin 1

2
(θN − θF)j ≤ sin 22.�5 [13.44]

No limit was set in ∆mN − ∆mF, except that ∆mN and ∆mF should both be non-negative.
A limit of 0.3 arcsec was adopted for the relative astrometry, because this is approxi-
mately the maximum range over which it makes sense to average quantities which vary
periodically with the grid step of 1.2 arcsec. The onset of non-linear effects at about this
distance is, for instance, illustrated by the behaviour of the neutral point, which starts
to depart from the photocentre, and hence from the linear regime, at a separation of
0.25 arcsec. The criterion on the difference in position angle is needed for close pairs
(% <~ 0.3 arcsec), where the first criterion is almost always satisfied, irrespective of the
relative orientations.

Among the cases rejected by the criterion above, there was an excess of cases with
θN − θF ' ±180�. If both ∆mN and ∆mF were small, this could be attributed to the noise
in the magnitude differences causing a simultaneous reversal of ∆m and θ in one of the
solutions. In such cases the smaller of the ∆m values was given a negative sign and the
corresponding θ value changed by ±180�. After averaging, the resulting ∆m was then
still non-negative. This affected some 500 pairs.
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However, in some 40 other cases the position angles differed by ' 180� even though
both ∆m were strongly positive. These were almost always close pairs, and the effect
was attributed to the indeterminacy of the sign of ∆φ in the FAST reductions (see
Section 13.3). Consequently, in these cases θF was changed by ±180� while ∆mF was
not touched.

After this ‘cleaning up’ of the relative astrometry and photometry, there still remained
about 1400 doubles for which the FAST and NDAC solutions could not be reconciled,
and for which no averaging would make sense. Several criteria were used in order to
select one solution in preference to the other:

• in about 60 cases, dedicated CCD observations (Le Poole et al., private communi-
cation) could definitely point out one solution as correct, and the other as incorrect;

• in about 600 cases, one solution gave a good fit in the FAST determination of as-
trometric parameters, while the other caused a large chi-square or many rejections.
In these cases the best-fitting solution was adopted;

• a large portion of the remaining systems were individually investigated by means
of the ‘imaging approach’ using the NDAC case history files (Perryman et al. 1989
Volume III, Section 14.5).

The imaging approach was found to be quite a powerful tool in the separation range of
0.2 to ' 8 arcsec, and for ∆m < 3 mag. The method, in the preliminary version imple-
mented for this specific purpose, was however very slow, and to go through hundreds of
objects required a significant effort. The ambiguous cases were therefore investigated
in order of decreasing importance, as measured by the FAST and NDAC quality rat-
ings. For the highest ratings (i.e. the ‘strong’ doubles), a positive decision could almost
always be reached. In some cases a third solution was found which was then passed
as starting point for a revised NDAC solution. With decreasing quality ratings, the
number of undecided cases grew rapidly, and the process was eventually terminated
when the yield was too meagre. In the end some 100 cases were decided on the basis
of the imaging approach, and a similar number were decided from the quality ratings
alone. The remaining cases were not retained as solutions in Part C of the Double and
Multiple Systems Annex: they were treated as single stars or given stochastic solutions.

All cases retained as valid double-star solutions, but with an alternative solution from
the other consortium, were graded as ‘uncertain’ in the Hipparcos Catalogue (flag ‘D’ in
Fields H61 and DC5). Some key parameters from the alternative solution are given in
the Notes of the Double and Multiple Systems Annex (Volume 11). It should be noted
that the agreement of the FAST and NDAC solutions does not preclude the possibility
that both are wrong by a multiple of the grid step: the probability of this happening
may be non-negligible especially for newly discovered doubles (Field H56 = ‘H’) with
relatively poor solutions (Field H61 = ‘C’).

Systematic Differences

From the earlier comparison activities (Section 13.6) it was known that small systematic
differences existed between the FAST and NDAC results, e.g. in the relative astrometry
and photometry. Because the differences are small, especially in comparison with
uncertainties in ground-based data, it has usually not been possible to ascertain that
one set of data is more accurate than the other. The general principle has therefore been
to accept an unweighted mean as the best compromise, also with regard to systematic
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Figure 13.16. Comparison of magnitude differences ∆m as obtained by FAST and NDAC for double stars with

relative astrometry in good agreement. On the vertical axis is the difference ∆mN − ∆mF , on the horizontal the mean

value (∆mN + ∆mF)/2. The line indicates the ‘mean’ relation adopted in order to correct the individual consortia

values before the merging.

errors. Because some solutions were taken from one consortium only, it was nevertheless
necessary to determine the systematic differences and apply half the difference, with
opposite signs, to each solution.

A significant systematic difference was found in ∆m. Figure 13.16 is a plot of ∆mN − ∆mF

versus ∆m ≡ (∆mN + ∆mF)/2 for single-pointing doubles with relative astrometry in good
agreement; subscripts N and F indicate the consortia. There is a considerable scatter,
which is also strongly asymmetric, making it difficult to define a mean relation. The
adopted relation, shown by the polygon line, corresponds to the ridge of the two-
dimensional distribution. The systematic differences are small (≤ 0.02 mag) for ∆m <
2.5 mag, but increases rapidly for doubles with a larger intensity ratio. There is no clear
trend of this effect with separation, except for very small separations (% ≤ 0.3 arcsec):
in this regime the increasing correlation between the estimation errors in % and ∆m,
combined with selection limits in both parameters, introduces statistical biases which
should not be corrected.

A comparison of separations shows some systematic differences for the close binaries
(Figure 13.17). Again, statistical biases related to the correlations between % and ∆m
may play a role, and it should also be remembered that % = (X 2 + Y 2)1 /2 in general
has a positive bias depending on the random errors in X and Y . Moreover, since the
FAST/NDAC averaging is made in the relative coordinates X , Y , the merged % does not
necessarily fall between %N and %F. Because of the generally good agreement and the
difficulty in interpreting the small differences, no systematic corrections were applied to
the separations.

The position angles θ were much easier to compare than both ∆m and %, because
the distribution of differences could be expected to be completely symmetric. Rather
late in the merging a significant bias was nevertheless discovered, corresponding to
a mean (or median) difference of θN − θF = −315 ± 15 arcsec for the single-pointing
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systems (Figure 13.18). The source of this discrepancy was positively identified in one
of the reduction chains, as being due to the neglected physical misalignment of the
grid with respect to the beam combiner. Both the sign and size of the discrepancy
agrees completely with the expected effect calculated from the instrument parameter
g01 (a quantity which varied between −325 and −333 arcsec over the mission). In
this exceptional case, the data were therefore unilaterally corrected by a fixed amount
(330 arcsec), after which no significant systematic difference remained in the position
angles.

No significant biases were found in any other parameter. In particular the differences
in absolute astrometry, including the parallaxes, showed no systematic dependence
on other parameters such as primary magnitude, colour, separation, or magnitude
difference.

Random Differences

The statistical analysis of the random differences between the FAST and NDAC esti-
mates of various quantities played a fundamental role in the merging process. From this
analysis certain correction factors were derived for the standard errors of the consortia
estimates, and these factors in turn affected the standard errors assigned to the merged
(averaged) data. This correction process depends however rather critically on the as-
sumed statistical correlation between the consortia estimates. The point is illustrated
by the following example:

Suppose that a certain quantity (x) is estimated by both consortia with the same, but
unknown, standard error σ. Furthermore, let ρ be the assumed statistical correlation



Double and Multiple Star Treatment 271

0.1 2 3 4 5 6 7 1 2 3 4 5 6 10

Separation ρ  (arcsec)

θ N
D

A
C

 −
 θ

F
A

S
T
  (

de
g)

 

-1.0

-0.5

0.0

0.5

1.0

1.5

Figure 13.18. Comparison of FAST and NDAC position angles (before correction of the bias) for double stars with

relative astrometry in good agreement. Each point gives the mean value of θN − θF for systems with % = (%N + %F)/2

in an interval of 0.1 dex. The error bars give the ±1σ uncertainty of the mean value.

between the two estimates xF and xN . The expected variance of the difference d = xN −xF

is given by σ2
d = 2(1 − ρ)σ2. Since this variance may be estimated from a homogeneous

sample of differences, the standard error of the individual estimates can be calculated
as σ = σd /

p
2(1 − ρ). The merging results in the mean quantity m = (xN + xF )/2, with

variance σ2
m = σ2(1 + ρ)/2. Consequently the standard error of the merged result may

be calculated as σm = (σd /2)
p

(1 + ρ)/(1 − ρ). Clearly this estimate depends strongly on
the assumed ρ, especially when the latter is close to +1.

Unfortunately the correlation coefficient cannot in general be reliably estimated, except
when external data of comparable (and known!) precision are available for comparison.
Speckle data for the relative positions of close binaries provide a possibility, but no such
analysis has been made. Only in one instance during the double-star merging was it
possible to estimate a correlation between the FAST and NDAC results, without intro-
ducing too many assumptions. This concerned the relative motion of the components:
Ẋ , Ẏ in FAST, and u11, u12 in NDAC. For binaries with a small parallax, no actual
relative motion is expected and the observed values could then be fully attributed to
measurement noise. In this case a mean correlation coefficient of ρ = 0.3 to 0.4 was
derived. For the astrometry of single stars, correlation coefficients around 0.7 were
typically found. Lower values should be expected for the double stars in view of the
much greater differences in methodology for these objects. The single-star correlations
may on the other hand be approached for the absolute astrometry, e.g. of the photocen-
tres of close binaries. Thus, reasonable values for the interconsortia correlations of the
double-star parameters fall in the interval from 0.3 to 0.7.

Even assuming a rather small correlation (' 0.3), the observed scatter of differences
in a diagram like Figure 13.16 clearly indicates that the consortia underestimated their
standard errors, at least for the relative double-star parameters. Correction factors of 2 to
2.5 in σ∆m , and of 1.5 to 1.6 in the standard errors of the relative positions, were required



272 Double and Multiple Star Treatment

in order to reconcile the FAST and NDAC solutions within their expected differences.
For the absolute astrometry the situation was much better, and the standard errors in
position were even somewhat overestimated by FAST.

Along these lines, the random differences in each parameter were extensively analysed,
mainly as functions of magnitude and quality ratings. A set of assumed correlations
and calculated correction factors resulted, which were then systematically applied to the
consortia standard errors before computing the standard errors of the merged data.

Merging of the Double-Star Data

After application of systematic corrections (in ∆m only) and correction factors to the
standard errors, a file of the merged (averaged) relative parameters was first produced.
This was used for the definitive cross-identification with the CCDM Catalogue, resulting
in the system and component designations given in the Hipparcos Catalogue. It was
also used to correct the photometry of the double stars for the influence of the secondary
(Volume 1, Section 1.3.2). The next step of the merging was to compute the astrometric
parameters and magnitudes of each component, independently from each consortium,
and hence the parameters of the neutral points and the full covariance matrices. This
resulted in two files, each basically containing all the data needed for the final catalogue.
The final step was then the averaging of these two files for their intersection, and the
copying of the remaining data to a third file. This was directly generated in the format
of the machine-readable Double and Multiple Systems Annex, Part C.

13.8. Conclusions

The double star treatment of the Hipparcos data is a significant by-product of the
astrometric mission. The results collected in the various sections of the Double and
Multiple Stars Annex will have far-reaching consequences on the future of astronomical
research in this area, both because of the homogeneous sampling of the bright double
stars, including the discovery of thousands of new or suspected non-singles, and because
of the important and accurate new data given for these objects, such as the parallaxes and
magnitude differences. Several ground-based programmes over the coming years will
help to consolidate and extend the Hipparcos conclusions on an already sifted sample.

F. Mignard, S. Söderhjelm, J. Kovalevsky, L. Lindegren



14. PHOTOMETRIC TREATMENT

The Hipparcos main catalogue includes information related to the stellar mag-
nitudes as derived from the photon counts recorded by the main detector (the
image dissector tube) and the star mapper detectors (BT and VT ). This chap-
ter provides an overview of the treatment of the photometric data obtained
from the reduced image dissector tube photon counts. It describes briefly the
processing of the raw photon counts, the definition of the Hipparcos photo-
metric system, the photometric reduction models and techniques used by the
two consortia, and finally the results obtained in the comparisons of the final
consortia results and their merging to produce the Epoch Photometry Annex
and Extension. The photometry obtained from the star mapper detectors is
described in Chapter 6 and in Volume 4.

14.1. Introduction

The Hipparcos mission was designed to carry out high precision astrometric measure-
ments for some 118 000 pre-selected stars. During the preparation for the mission it
became clear that the on-board detectors (the image dissector tube, and the star mapper
detectors) could also be employed to analyse and monitor the intensity of the starlight.
The magnitudes obtained for each programme star with the main detector would be of
relatively high precision, defined in an all-sky uniform wide-band filter, referred to as
Hp.

The main detector was positioned behind a modulating grid in the focal plane of the
instrument. It registered the transits of selected objects through photon counts over
1/1200 s intervals. The photon counts reflected the stellar intensity, modulated by the
grid. The reduction of these photon counts to a simple modulated signal is described
in Chapter 5. The result of this reduction was a signal that represented the estimated
values of the observed counts Nk as:

E[Nk] ≡ Ik = Ib + Is
�
1 + M1 cos g1 + M2 cos(2g1 + 2g2)

�
[14.1]

where Is represents the intensity of the object, Ib the background intensity, g1 and g1 + g2

the phase of the first and second harmonics, and M1 and M2 the modulation coefficients
of the first and second harmonics. Two measurements for the intensity of the object
could be derived from Equation 14.1: the zero level or dc component, given by Is + Ib

and the amplitude of the first harmonic or ac component, given by IsM1 (NDAC) or
a weighted average of IsM1 and IsM2 (FAST). Both Is and M1,2 were functions of the
position in the field of view and of the colour of the object. These relations, in addition,
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changed as a function of time. In order to use the dc component, it was necessary
to define and subtract the background contribution Ib. The aim of the photometric
calibrations was to describe these corrections and to derive from the observed dc and ac
components of Equation 14.1 the best estimates of the magnitude Hp:

Hp = 2.5 log eIs + constant [14.2]

Equation 14.1 was always solved for data accumulated over an interval of 32/15 s,
referred to as a frame transit. It took a star 9 to 10 of these intervals to cross the
field of view, a duration referred to as a field transit. The photometric reductions were
carried out using the frame transits, but for the final data those frame transits belonging
to the same field transit were combined to provide one measurement of the stellar
magnitude. A total of 13 million such magnitudes were obtained, an average of 110 per
star. The typical accuracy was 0.01 mag for an 8 mag star. Data were rather unevenly
distributed over the 37 months of the mission, and large variations occur in the number
of measurements available (up to 385, depending mainly on ecliptic latitude). The
final data, made available as the Hipparcos Epoch Photometry Annex plus Extension,
represent the largest homogeneous multi-epoch all-sky photometric survey to date.

The photometric data were initially reduced using photometric standard stars selected
on the basis of pre-launch ground-based information, transformed to the pre-launch
estimate of the passband Hp. This set of standard stars was updated during the mission
to incorporate new stars and reject objects found variable on the basis of the Hipparcos
measurements. The new standards were recalibrated to provide an improved repre-
sentation of the Hp passband. All data were re-reduced using 22 000 standard stars,
covering a colour range −0.3 < V − I < 1.8 with a pronounced peak in the distribution
for V − I = 0.6 and two smaller peaks at V − I = 0.0 and V − I = 1.0. The V − I index
used here is the Cousins’ colour index, also referred to as (V − I )C below.

14.2. The Photometric System

The Hipparcos passband corresponded primarily to the spectral response of a S20
photocathode combined with the transmission of the optics. A pre-launch definition
was used to predict an Hp value for each programme star from the existing magnitudes
and colours. After the first in-orbit calibration a revised definition was obtained and
used to produce predicted Hp values for the final set of standard stars, with a precision
better than 0.01 mag. This was sufficient to define the magnitude scale with a precision
of 0.001 mag twice a day. The Hp band is shown in Figure 14.1, as a function of the
wavelength, superimposed on some commonly used broad-band filters. One should
note the marked extension of the sensitivity toward the extreme red. The numerical
values for the passband are given in Section 1.3 of Volume 1.

The VJ band has more or less the same effective wavelength as Hp, so that the amplitude
of Hp − VJ is smaller than 0.2 mag for stars with (B − V )J < 1.5. Several transformation
laws were derived to link the Hipparcos photometric systems to the VJ system according
to star colours. The difference Hp− VJ as a function of (V − I )C was very well defined in
the range −0.4 < (V − I )C < 3.0, from classical photometry, with uncertainties less than
0.01 mag. The extension to redder stars was obtained from dedicated observations of a
set of Mirae with a CCD chain equipped with the Cousins’ I band and Johnson-Geneva
V band. Thus the transformation was extended up to (V − I )C = 5.4 with an uncertainty
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Figure 14.1. Normalized response curve for the Hipparcos Hp passband (solid line), superimposed on (from left to

right) the Johnson BJ , VJ and Cousins’ R and I passbands.

Table 14.1. Relationship between (Hp − VJ ) and (V − I )C for types O to G5, class V to II and red giants of

types G5III to M8III.

V − I Hp − V V − I Hp − V V − I Hp − V V − I Hp − V

−.50 −.182 .40 .082 1.30 .147 2.90 −0.065

−.45 −.164 .45 .089 1.35 .147 3.00 −0.090

−.40 −.145 .50 .097 1.40 .140 3.20 −0.155

−.35 −.126 .55 .106 1.45 .135 3.40 −0.235

−.30 −.107 .60 .115 1.50 .128 3.60 −0.325

−.25 −.088 .65 .125 1.60 .116 3.80 −0.425

−.20 −.070 .70 .133 1.70 .106 4.00 −0.535

−.15 −.053 .75 .141 1.80 .096 4.20 −0.65

−.10 −.035 .80 .147 1.90 .090 4.40 −0.76

−.05 −.018 .85 .154 2.00 .082 4.60 −0.87

.00 .002 .90 .159 2.10 .072 4.80 −0.98

.05 .018 .95 .164 2.20 .060 5.00 −1.10

.10 .036 1.00 .167 2.30 .048 5.50 −1.38

.15 .050 1.05 .168 2.40 .032 6.00 −1.66

.20 .061 1.10 .168 2.50 .018 6.50 −1.94

.25 .068 1.15 .165 2.60 .001 7.00 −2.22

.30 .072 1.20 .162 2.70 −.018 8.00 −2.78

.35 .076 1.25 .157 2.80 −.040 9.00 −3.34
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Table 14.2. Relationship between (Hp − VJ ) and (V − I )C for G, K, M dwarfs with (V − I )c > 0.70.

V − I Hp − V V − I Hp − V V − I Hp − V V − I Hp − V

0.70 .133 1.10 .138 1.50 .108 2.20 .050

0.75 .137 1.15 .133 1.55 .105 2.30 .041

0.80 .140 1.20 .129 1.60 .102 2.40 .034

0.85 .142 1.25 .125 1.70 .093 2.50 .022

0.90 .144 1.30 .122 1.80 .085 2.60 .001

0.95 .146 1.35 .119 1.90 .076 2.70 -.023

1.00 .145 1.40 .115 2.00 .066

1.05 .142 1.45 .112 2.10 .058

Table 14.3. Relationship between (V − I )C and (B − V )J for early type stars and red giants.

V − I B − V V − I B − V V − I B − V V − I B − V

−0.379 −0.345 0.190 0.174 0.804 0.765 1.334 1.365

−0.299 −0.276 0.252 0.228 0.847 0.825 1.392 1.413

−0.231 −0.216 0.331 0.291 0.897 0.893 1.473 1.464

−0.168 −0.164 0.412 0.351 0.946 0.960 1.567 1.527

−0.105 −0.119 0.482 0.415 0.995 1.021 1.617 1.550

−0.050 −0.072 0.553 0.482 1.050 1.088 1.644 1.568

0.002 −0.020 0.617 0.543 1.107 1.143 1.724 1.583

0.040 0.021 0.667 0.597 1.155 1.196 1.831 1.604

0.072 0.062 0.722 0.659 1.211 1.253 1.882 1.615

0.124 0.110 0.770 0.717 1.271 1.311 2.021 1.635

Table 14.4. Relationship between (V − I )C and (B − V )J for K and M dwarfs.

V − I B − V V − I B − V V − I B − V V − I B − V

0.631 0.550 1.042 0.999 1.567 1.348 2.725 1.650

0.670 0.601 1.103 1.050 1.645 1.390 2.874 1.700

0.707 0.648 1.175 1.100 1.785 1.445 3.008 1.750

0.747 0.699 1.244 1.149 1.905 1.472 3.144 1.800

0.788 0.749 1.333 1.199 2.054 1.498 3.478 1.900

0.840 0.800 1.386 1.228 2.255 1.524 3.630 1.955

0.893 0.850 1.410 1.250 2.440 1.550 4.100 2.114

0.941 0.898 1.494 1.300 2.544 1.575 4.328 2.198

0.997 0.949 1.535 1.326 2.601 1.600 4.630 2.300
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of 0.03 to 0.05 mag. The values up to (V − I )C = 9.0 resulted from a linear extrapolation
and covered the whole range of (V − I )C colours in the Hipparcos Catalogue.

The final relationships between (Hp − VJ ) and (V − I )C for O, B, A, F, and G<G5
stars with low reddening and for G5 to M8 giants are given in Table 14.1. Table 14.2
gives the relationship for K and M dwarfs. The difference between both relationships is
usually less than 0.03 mag and may be disregarded for most of the applications.

For the sake of completeness, it is useful to provide links with photoelectric photometry.
The colour index (V − I )C is related to the Johnson (V − I )J as follows:

(V − I )J < 0.0 ) (V − I )C = 0.713 (V − I )J

0.0 < (V − I )J < 2.0 ) (V − I )C = 0.778 (V − I )J

2.0 < (V − I )J < 3.0 ) (V − I )C = 0.835 (V − I )J − 0.13

The relationships between (V − I )C and (B − V )J are summarized in Tables 14.3–14.4
for early-type stars and red giants, and for late type stars, respectively.

14.3. The Photometric Data

The Signal

As shown in the introduction, the photometric information obtained from the reduced
image dissector tube photon counts consists of a dc component, Is + Ib and an ac
component, IsM1 (or a weighted combination of IsM1 and IsM2), obtained over a
frame transit of 32/15 s. For single stars the photometric information was entirely
contained in both the ac and dc components, while for multiple stars, there was no such
simple separation between the amplitudes of the modulated signal and the photometric
information. These stars had to be processed separately (see Chapter 13).

The response Is for an 8 mag star with (V − I )C = 0.5 mag, in the centre of the
field, dropped from 6600 Hz at the start of the mission to 4000 Hz at the end. With
(V − I )C = 2.5 mag it dropped from 5500 Hz to 4000 Hz. These changes with time were
due to the ‘ageing’ of the optics (see Section 14.5). The background Ib varied between
20 and 70 Hz, except during the crossing of the radiation belts when it reached higher
values. As the image of a star crossed the grid over an angular distance of 0.�9 it was
observed on average in 9 observational frames. After the calibration was applied to each
frame, either (FAST) the median of the 9 frame magnitudes or (NDAC) a weighted
mean (with a rejection of outliers) were computed to produce the Hipparcos magnitude
of the field transit.

The ultimate precision, if only limited by the photon noise, would be given by:

σ2(Is) =
Is + Ib

T
[14.3]

where T is the time, expressed in seconds, allocated to the star during a field transit.
This was of the order of 4 seconds on the average, less for brighter stars and more for
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fainter ones. T also depended on the number of other stars also competing for observing
time. From this expression we can derive:

σ(Hp) � σ(Is)
Is

� 1p
Is T

[14.4]

which led respectively to an internal precision of 0.005, 0.01, 0.02 mag for stars of
magnitude 6, 8, 10. While a very careful calibration has allowed this precision for stars
fainter than 8 mag to be reached, it was not reached for bright stars because of small
systematic effects which remained uncalibrated.

The Two Magnitude Scales

As explained above, the photometric information is contained in both the unmodulated
(dc) intensity Is + Ib and in the modulated (ac) amplitudes IsM1,2. The resulting
magnitudes are designated by Hpdc and Hpac. For single stars both magnitudes are
identical in expectation. However, the relative error on the estimated amplitude for a
sinusoidal signal is

p
2 times larger than the relative error on the mean level. Since

the value of the modulation coefficient was M1 � 0.7, the absolute errors on the ac
components were on average twice those on the dc components.

The two magnitudes were calculated at every field transit and appear, together with
their standard deviation, in the Hipparcos Epoch Photometry Annex (HEPA) and the
Hipparcos Epoch Photometry Annex Extension (HEPAE). Strictly, only Hpdc should
be used as a realization of the Hp scale. A comparison between Hpac and Hpdc can
be used to test the hypothesis that the object observed is a single point source. Any
deviation from this assumption, such as duplicity or extension, will show up from a
comparison of the two magnitudes. Occasionally, an accidental duplicity arose when a
parasitic star from the complementary field of view was mapped on the focal plane near
to the programme star. In this case, Hpdc appears brighter than the observations made
in the other field of view (where the same superposition could not take place) and, at
the same time, Hpac becomes fainter than Hpdc (i.e. Hpac > Hpdc).

The ageing corrections (see Section 14.5) applied to the ac magnitudes were less rig-
orously determined than the corrections for the dc magnitudes. Detailed comparisons
between ac and dc magnitudes are meaningless for very red stars, as their ac magnitudes
can still contain small uncorrected, colour related systematic errors.

The Timescale

In the Hipparcos Epoch Photometry Annex all the field transits of each star are listed in
chronological order of barycentric Julian days: BJD − 2 440 000. This timescale is based
on Terrestrial Time (TT) as explained in the general introduction to the Hipparcos Cat-
alogue. Times were corrected to the barycentre using the barycentric Earth ephemeris
(Section 12.1) to correct for light-time effects. The epoch tE of arrival of the starlight
on Earth was transformed into tB for the arrival at the solar system barycentre by:

tB − tE = b0

Euc−1 [14.5]

where bE is the barycentre–Earth vector, u the unit vector in the direction of the star,
and c the speed of light. This well known correction had a range between −5.6 and
+5.6 minutes (limited by the constraints of the scanning law) and was evaluated for
every field transit.
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14.4. The Calibration

The Principles

The intensities Is + Ib and IsM1, IsM2 recorded at each observational frame were affected
by instrumental effects, which had to be taken into account in order to obtain the stellar
magnitude. The following effects were calibrated and removed:

(1) the inhomogeneity of the sensitive surface and of the residual defects of the op-
tics made the sensitivity of the detector variable over the field of view. This was
represented mathematically in various ways;

(2) the ageing of the optics and of the detector caused a steady decrease in the overall
sensitivity, with a marked chromatic dependence. The ageing was more pronounced
in the blue than in the red. This was represented by the colour-terms in the
calibrations;

(3) the sensitivity was not exactly the same in the preceding and following field of view.
Solutions had to be made separately for the two fields of view.

In addition to these instrumental effects, the background contribution had to be cali-
brated and removed from the dc component. A calibration programme aimed at con-
verting the observed intensity at each observational frame into Hp was run on all data
collected during an orbital period. Due to a 1 to 3 hour interruption of the observations
during the perigee passage, the orbital period became a useful unit for calibrations and
definition of data sets. The same unit was also used to constrain the data used in the
great-circle reductions.

Only measurements of standard stars were used in the calibration. These measurements
were still subjected to a series of quality tests, in order to reduce the number of faulty
data-points. A linear model, describing generally small corrections to an underlying
model, was used to fit the data, using a standard least-squares procedure.

Two different methods were used by the FAST and NDAC consortia in processing the
photometric data. In FAST the fits were done by adjusting the computed intensity of the
standard stars to the observed intensity, while NDAC fitted their model in magnitude
scale. The variables used in the models were somewhat similar, but the techniques
employed were different enough to justify a separate presentation of the FAST and
NDAC procedures.

The Basic Model Used by FAST

Let Ĩ = Is + Ib be the observed mean intensity on a particular observational frame of a
standard star and Iref the computed intensity derived from its a priori magnitude. With
(1− �(G, H, C)) representing the a priori model correction of the intensities as a function
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of colour (C) and position in the field (G, H ), the functional relationship between these
quantities was given by:

Ĩ (1 − �) = Iref

13X
k=1

ak Xk + b0 + b1 f1(λ − λ�, β) + b2 f2(b) [14.6]

where the Xk are listed in Table 14.5. The determination of the colour terms was given
great attention because of their importance in defining the photometric system. The
set of standard stars was sparse for stars redder than 1.5 mag, although the calibration
had to be applied to many late-type stars included in the Hipparcos programme. In
the FAST solution, to limit the risk of extrapolating the calibration formulae outside
the range of validity, additional calibration red stars were included. This was done by
adding single stars brighter than Hp = 9.5 mag and with colours in the range 1.6 mag <
V − I < 2.2 mag, provided the a priori standard deviation in magnitude was less than
0.009 mag and σV −I < 0.05 mag. This was sufficient to constraint the quadratic terms
up to V − I = 2.2 mag. Then, in the application of the formula, the extrapolation was
limited to the linear term above this colour and up to V − I = 3 mag, preserving the
continuity at each boundary.

The final three coefficients in Equation 14.6 represent the modelling of the unmodulated
light, where λ, β are the ecliptic longitude and latitude of the star, λ� the ecliptic
longitude of the Sun and b the galactic latitude of the star. These three terms were
present for the calibration of Hpdc but obviously not for that of Hpac. Each calibration
spanned an orbital period (a theoretical maximum of 10 hours but in practice 6 to 8
hours of data, referred to as a data set).

The coefficients (three for each field of view) were kept constant within a data set, which
means that the mean background was likely to be underestimated during the crossing
of the van Allen belts at either end of an orbit. The information for these coefficients
was mainly derived from observations of faint stars. Extra faint stars were added to
those originally included in the set of standard stars, in such a way that they did not
directly influence the other coefficients. The stars added were single stars fainter than
Hp = 10.7 mag and with σHp < 0.007, V − I < 2 mag, σV −I < 0.1. Because of the
structure of the observation equations this proved to be a very efficient method for
determining the background terms without affecting the other terms.

The unmodulated background in the Hipparcos photometry had a typical strength
ranging from 20 to 70 Hz, corresponding to a correction of 0.03 to 0.10 mag for a star
of 10 mag. It was not constant over the sky and originated primarily from the following
sources:

• the detector thermal noise which gave roughly a count level of 20 Hz even when no
star was in the instantaneous field of view;

• the zodiacal light brought about by the diffusion of the sunlight by interplanetary
dust which exhibited a strong dependence on λ − λ�;

• the scattered faint stars produced an unmodulated count as soon as there were
more than one star in the immediate vicinity (< 30 arcsec) of the programme star,
irrespective of whether the perturbing objects belonged, or did not belong, to the
same viewing direction as the programme star. This effect was at a maximum when
one field of view was in the galactic plane and dropped off sharply with galactic
latitude;

• radiation associated with the van Allen radiation belts.
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In FAST a model for the starlight based on the mean number of stars fainter than
V = 12 mag as a function of the galactic latitude was considered and fitted to an
analytical function Φ(b) which represented fairly well the normalized galactic luminosity
profile, with Φ(b) = 1/[1 + 5.3 (sin b + sin2 b)].

The actual model made use of a function Φ̃(b) that averaged out to zero over a great
circle and at any time the contribution of the preceding and the following field of view
were added up, so that:

f2(b) = Φ̃(bp(b)) + Φ̃(b f (b)) [14.7]

where bp and b f were respectively the galactic latitude of the preceding and following
field of view.

The contribution of the zodiacal light was taken from published mappings and given a
tractable analytical representation as:

f1(λ − λ�, β) =
1

[1 − cos(λ − λ�) cos β]
1

[1 + f1 + [1 + cos(λ − λ�)]2gj sin βj] [14.8]

and was computed for the two fields of view. The three coefficients b0, b1 and b2 of
Equation 14.6 were derived as explained above for each data set, and used to compute
the background contribution for each observation, using Equations 14.7 and 14.8.
For an individual star, these values were essentially constant over a field transit. The
background determined in this manner was then removed from the raw data. Its value
appears in the Hipparcos Epoch Photometry Annex Extension together with the value
used by NDAC, so that anomalous deviations of the magnitude that might originate
from the background can be traced back.

The a priori model �(G, H, C) took into account the spatial frequency of the sensitivity
of the detector in the form of three fixed two-dimensional maps that were established
from a large amount of data covering several weeks of observations. Each map was
appropriate for a specific colour range and had a resolution of 0.�02 in each direction.
Thus the calibration described by the model above was in fact differential, as most of
the spatial variation was accounted for by the maps.

The Basic Model Used by NDAC

In NDAC the model used was not fundamentally different from that of FAST except
for the background modelling, which incorporated data acquired with the star mapper.
The mathematical expression (see Equation 14.6 for FAST) was given by:

−2.5 log10(Ĩ − I 0b) − Hp =
15X
k=1

ak Yk [14.9]

where Hp is the calibration magnitude of the standard and the meanings of Yk are
listed in Table 14.6. The colour coefficients were applied without restrictions to stars
of all colours. This was known to be wrong for very red stars, but simplest to correct a
posteriori after the full calibration of the passband had been obtained (see Section 14.5).
I 0b was the modelled a priori background described below.

The calibrations were carried out in magnitude space. Since the accuracies of the counts
were so high (generally better than 10 per cent), this procedure did not cause any bias
larger than 0.001 mag in the frame transit magnitudes. Performing the calibrations
in magnitude space avoided a large range of values entering the least-squares solution.
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Table 14.5. Instrumental parameters for the photometric calibration of FAST.

Parameter Variable Meaning

k Xk

1 1 Zero point

2 G Grid abscissa

3 H Grid ordinate

4 G × H

5 P2(G) 2nd Legendre polynomial in G

6 P2(H) 2nd Legendre polynomial in H

7 P4(G) 4th Legendre polynomial in G

8 P4(H) 4th Legendre polynomial in H

9 P2(G) � P2(H)

10 C = V − I − 0.65 Colour

11 P2(C)

12 C � G mixed term

13 C � H mixed term

Table 14.6. Instrumental parameters for the photometric calibration of NDAC.

Parameter Variable Meaning

k Yk

1 1 Zero point

2 C = V − I − 0.5 Colour

3 C2

4 C3

5 G Grid abscissa

6 H Grid ordinate

7 C � G Mixed term

8 C � H Mixed term

9 100.4(Hp−8) Background term

10 R2 Radial terms

11 R3

12 R4

13 R5

14 R6

15 R7
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Table 14.7. Positions of the reference points of the NDAC radial model in grid coordinate units.

Radial distance 0.0 0.1 0.3 0.5 0.7 0.9 1.1 1.3

Variable name R0 R1 R2 R3 R4 R5 R6 R7

Also, since most of the influences on the intensities act as a factor, when transformed to
magnitudes they become offsets, which are generally easier to reconstruct.

While no significant bias was present in the frame transit magnitudes, a small bias of
order 0.01 mag was found to be present in the calibrations due to the weighting scheme
that had to be used. The size of this bias was determined by Monte Carlo simulation
and a correction was applied.

Two features of this model require further explanation: the radial grid dependence and
the background model, I 0b.

The model chosen for the calibration of the grid dependence was a radial one, using
linear interpolation, in which each observation equation contains terms representing
the relative fractions of the two nearest radial reference points. The positions of the
reference points in grid coordinate units are given in Table 14.7. It was based on an
examination of residuals accumulated as a function of position in the field of view and
colour, using several weeks of data.

The central location for the radial dependence was determined to be (0.03, 0.11) in grid
coordinate units. This was then considered to be the origin for all radial measurements.
The consistency of the central location was confirmed by analysis of maps of residuals
as a function of time.

Although the model contained R0 and R1 points, they were not solved but set to zero.
The reasons for this were that R0 was effectively the zero point Y1, and a zero derivative
at R = 0 was required which implied that R1 had to be equal to R0. Points outside
R = 1.3 were calculated as an extension of the line between 1.1 and 1.3. Thus, this
radial model contributed 6 parameters to the overall calibration model.

The variation of the background as a function of time was fairly complicated. Since it
generally only affected stars fainter than Hp ' 9 mag the calibration of it for each transit
was difficult due to the relatively small number of standard stars that were affected. In
the NDAC solution, only the offset term of the background model (Y9 in Table 14.6)
was solved for. The remaining three parts of the model were calculated from the star
mapper background count and the positions on the sky of the two fields of view of the
satellite. The three contributions to the background accounted for in the NDAC model
were:

(1) van Allen radiation belts (maximum 100 Hz);

(2) zodiacal light (peak 30 Hz);

(3) the Milky Way (peak 20 Hz).
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Figure 14.2. An example of a stretch of data with poor satellite pointing. The data points show the value of the

background as measured by the satellite and the line shows the independently derived NDAC background model. All

three components of the model are noticeable in this diagram. The position of the Zodiacal light and Milky Way

contributions are indicated respectively by the letters Z and G at the bottom of the diagram. The van Allen radiation

belt contribution can be seen by comparison with the star mapper background shown in the inset diagram (the units

are the same as for the main diagram).

The parameters used in this part of the model were derived mainly from stretches of
data with poor satellite pointing so that the background was being sampled rather than
the target stars. An example of such a stretch of data is given in Figure 14.2.

The largest contribution was caused by radiation associated with the van Allen radiation
belts and was very variable from orbit to orbit. It mainly affected data at the start and
end of a data set. Using data such as in Figure 14.2, a correlation was found between the
radiation-induced star mapper background and the main mission background. The star
mapper background was measured regularly, which allowed the radiation contribution to
the image dissector tube background to be determined. If this background contribution
was larger than approximately 100 Hz the frame transit was rejected.

While the contributions of zodiacal light and the Milky Way were noticeable in the star
mapper data too, they did not scale in the same way as the radiation contribution. It
was thus necessary to assume that these were approximately constant over time and just
functions of sky position. The forms adopted were derived mainly from the data and
checked against what was expected from the literature.
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The form of the Zodiacal light contribution to the background model was given by:

30 Hz × max

"
0.0,

�
1 −

jβj
45�

�#
× max

"
0.085,

�
1 −

(jλ − λ�j − 40�)
60�

�#
[14.10]

and that for the galactic contribution by:

20 Hz ×
����cos

l
2

���� ×
1

1 + (2jbj /15�)
[14.11]

where (λ, β) and (l, b) are the ecliptic and galactic coordinates respectively of the centres
of the field of view. Values were calculated for both the preceding and following fields
of view.

The value given in the Hipparcos Epoch Photometry Annex Extension for each transit is
the combination of all three contributions along with the background offset determined,
Y9.

The calibration to convert the counts to Hp magnitudes was a least-squares solution
using the method of Householder transformations (Bierman 1977), with weights applied
to the observation equations according to the estimated errors of the observations.

The calibrations were carried out on data accumulated over approximately one orbit
(10 hours). Separate solutions were carried out for both the preceding and following
fields of view and for both Hpdc and Hpac. The solution was calculated iteratively with
an a posteriori four sigma filter being applied to the data to reduce the effect of outliers.

The use of the Householder transformations made the application of a running solution
between the calibrations particularly easy. The prime advantage of this was to ensure
the stability of the calibration and to safeguard against the effect of outliers biasing the
calibration coefficients. However, this also meant that care had to be taken when it was
expected that the coefficients could undergo sudden changes. This was likely to occur
after a refocusing of the satellite optics or after a long period of satellite inactivity.

When such sudden changes occurred, it was necessary to reinitialize the running solution
in some way. After a refocusing, only a partial reinitialization was required since only a
few coefficients were affected by this, while after a long period of satellite inactivity a full
reinitialization was carried out. Figure 14.3 shows the effect of the reinitializations on
M1, the modulation coefficient of the first harmonic (see Equation 14.1), as derived from
the calibration coefficient for the dc and ac components. While most discontinuities
were directly related to refocusing of the optics, on one occasion (on day 755, see also
Chapter 2, Table 2.1), it was due to restoring proper thermal conditions after a heater
failure.

One of the effects not accounted for in the calibrations was the effect of depointing.
Inaccurate satellite pointing caused the instantaneous field of view not to be positioned
exactly on the target star. This would cause a small attenuation in the intensity of the
star. A study was carried out on the consequence of not carrying out a correction for
this effect and it was shown that it would only add an additional 0.0006 mag scatter to
a field transit.

The calibrations were applied to each frame transit and these were then combined to
form a field transit. For stars of extreme colour (redder than V − I ' 2.0 mag) the
calibration had to be extrapolated due to the low number of calibrating standard stars
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Figure 14.3. The effect of the reinitializations on the modulation coefficient of the first harmonic in the preceding

field of view. The general zig-zag pattern is caused by the partial reinitializations carried out after each refocusing.

The jump occurring at day 1400 was due to a full reinitialization carried out after the loss of the gyros. This plot is for

a colour of V − I = 0.5 mag.

available at these colours. The errors caused by the instabilities inherent in this proce-
dure were later removed during the ageing corrections described in the next section.

The combination of the frame transits to form a field transit was carried out in intensity
space. By doing this, biases that might arise from the conversion from intensities to
magnitudes were minimized. Also at this stage, outlying frame transits within a field
transit were rejected at the 3σ level. If insufficient transits remained, the entire field
transit was rejected. Between 1 and 2 per cent of the data was rejected in this manner.
The average that was formed out of the remaining transits was a weighted mean since
the accuracy of a frame transit varied according to the observing time allocated to it.

14.5. Final Corrections

This section describes corrections applied to the reduced data. These corrections came
from three sources:

(1) zero-point shifts;

(2) passband definition, and ageing correction;

(3) final field distortion corrections.

These corrections, although different in detail, were applied to both the FAST and
NDAC reduced data after all reductions were completed. All three were derived using
the accumulated results from the reductions.
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Figure 14.4. Time variation of the response in the centre of the field for 8 mag stars of two different colour indices,

showing the effect of the ageing of the detector chain through the decrease in response over the mission and the difference

in this decrease for stars of different colour.

Zero-point Corrections

After the calibrations had been completed, various checks were carried out on the
validity of the photometry. It soon became apparent that the zero points (X1 and Y1)
were varying by around ±0.01 mag within an orbit. Further investigation showed that
these shifts were present in the data of both consortia and that they were not a function
of the field of view. Various explanations were considered and investigated, but all
were rejected. Neither solar activity nor attitude determination problems matched the
pattern of shifts. The temperature of the satellite did not correlate with this effect either.
Problems relating to the Milky Way or bright stars were thought unlikely since they
would have caused a recurring pattern which was not seen.

The overall effect of these shifts on the mission was equivalent to an additional scatter
of 0.003 mag to all transits. Even though the cause of these shifts was not known, it
was felt that they had to be corrected. These corrections were applied independently
by FAST and NDAC as small magnitude offsets. No investigation (nor correction) was
carried out on shifts in the ac component calibrations due to the noisier nature of the
data.

Ageing Corrections

The main detector chain contained a large number of optical elements which were
affected by radiation during the mission. The radiation resulted in chemical changes in
the optical elements, leading to loss of transmission. This transmission loss was most
noticeable on the blue wing of the transmission curve, as can be seen from Figure 14.4,
which shows the response at the centre of the field of view for stars of different colour
over the length of the mission.
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Figure 14.5. The pseudo-colour C as a function of (V − I )C.

Table 14.8. Definition of the pseudo-colour index C = a + b(V − I ) + c(V − I )2 + d(V − I )3 for different

intervals of V − I .

Interval a b c d

V − I ≤ 0.85 −0.48729 0.98554 −0.31968 0.592

0.85 < V − I ≤ 2.00 −1.03936 2.14720 −0.416 0.0

V − I > 2.0 0.5152 n 0.592 −0.0256 0.0

The changing passband response was provisionally accommodated through introducing
a (V − I )C dependence in the photometric reductions (as described in the preceding
section). However, the coverage in (V − I )C by the standard stars was insufficient to de-
scribe the colour relations for very red ((V − I )C > 2.0 mag) stars. In addition, most stars
with very red colours tend to be variable. The a posteriori calibration of the Hp passband
was described in Section 14.2. Using this calibration together with ground-based data
on large amplitude red stars (observations by the American Association of Variable Star
Observers and specific photoelectric measurements of primarily Mira stars), predicted
values for epoch photometry of these red stars were produced. These values were com-
pared with the observed epoch photometry produced by the two consortia, and the
observed differences were translated into a new colour correction, which was applied a
posteriori after removing the old colour correction. This colour correction reduced all
the photometric data to the reference passband defined for 1 January 1992.

As a result of the chromatic corrections, the use of a wrong colour for a star in the data
analysis shows up in the fully calibrated photometric data as an almost linear drift of
the magnitude, with dHp /dt < 0 if the true colour is redder than was assumed in the
reductions. The epoch photometry can be corrected for such errors. The procedure
is as follows. Take the (V − I )C value used in the data-reductions (Field H75), and
transform it into a pseudo-colour C(old) according to the rules described in Table 14.8
and shown in Figure 14.5. Do the same with the improved (V − I )C index (e.g. as
available in Field H40), to obtain C(new). The corrections for the Hp magnitudes are
then defined as:

δHp = Hp(old) − Hp(new) = −F (t)
�
C(old) − C(new)

�
[14.12]
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Table 14.9. Definitions of the colour correction factors F (t) expressed as a polynomial in t − t0, for dc and

ac magnitudes. t and t0 are measured in units of 1000 JD, t0 = 2448.6225 = 1 January 1992.

dc dc ac

approx preceding following preceding following

Stand.dev. 0.0031 0.0012 0.0012 0.0017 0.0017

const 0.0084 0.00303 0.00873 0.0416 0.0478

(t − t0) −0.0537 −0.04022 −0.04098 −0.0431 −0.0389

(t − t0)2 0.09000 0.07720 0.1317 0.0338

(t − t0)3 −0.18863 −0.13772 −0.2384 −0.8277

(t − t0)4 −0.6746 −0.6735 −1.9387 −2.9383

(t − t0)5 0.598 0.1322 −2.9443 −3.6662

(t − t0)6 2.018 2.052 −1.3327 −1.5601

(t − t0)7 0.340 1.989

(t − t0)8 −0.742 0.553

where F (t) is a function of time and of field of view. Table 14.9 gives approximations
to F (t) for dc and ac magnitudes, and the associated standard errors. These standard
errors are equivalent to the expected noise on the Hp corrections for a colour correction
of 1 mag. Also given is an approximate correction for the dc magnitudes, ignoring the
field of view differences, which can be used without the need to access the Hipparcos
Epoch Photometry Annex Extension files. As can be seen from Figure 14.5, a correction
in (V −I )C for a blue star will cause a larger correction in the pseudo-colour than a similar
correction for a very red star. Information on the field of view can be obtained from the
Extension files, where the ac magnitudes are also found. Figure 14.6 shows the observed
values of F (t) and the approximating curves. For data obtained beyond day 1300
(JD 2 448 800) it is advised not to use the ac magnitudes for detailed comparisons.
The ac magnitudes were sensitive to the focal setting of the telescope, which itself was
sensitive to temperature variations. Such variations were quite strong when the telescope
was moved to sun-pointing mode, which occurred 3 times after JD 2 448 800.

The data presented in Tables 14.8 and 14.9 also allow in principle for a redefinition of
the colour correction in case more accurate data becomes available, but such corrections,
if at all justifiable, are expected to be very small.

Field Distortion Corrections

After the calibrations had been carried out an investigation was made into the variations
of Hp as a function of the field coordinate H (the direction of the grid slits). A systematic
variation with a peak-to-peak variation around 0.008 mag was detected in the NDAC
data. Although this would only add an additional scatter of around 0.002 mag to the
field transits it was felt that this correction should be made since it was straightforward
and would not adversely delay the processing. The corrections made were a function of
H , (V − I )C , time and field of view. An example of the size of the correction is given
in Figure 14.7. No correction as a function of G, the perpendicular field coordinate,
was possible since a field transit consists of an average over a range of G values, i.e. the
frame transits. The need for the correction is a consequence of not using a detailed
mapping function in the early stages of the calibration. This was confirmed by analysing
a residual array that was accumulated as a part of the NDAC diagnostics. By summing
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Figure 14.6. The colour correction factor as derived for the dc (top) and ac magnitudes (bottom). The preceding

field of view is indicated with open squares, the following field of view with crosses.

this array over G a similar correction could be found. This is shown as the dotted line
in Figure 14.7. The diagnostic data could not be used directly since it was not detailed
enough. Corrections were also carried out to the FAST data, but since some form of
mapping function was applied by FAST, the corrections were smaller. No corrections
were applied to the ac component.

14.6. Parasitic Transit Detections

Due to the design of the satellite it was possible for a star from the other field of view
to be located by chance at almost the same position on the detector as the star being
observed. This had the effect of making the star being observed appear brighter. Since
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Figure 14.7. An example of the magnitude corrections applied to the NDAC data as a function of field coordinate,

H. This is at mid-mission for the preceding field of view and a star of V − I = 0.5 mag. The dotted line shows the

correction deduced from the mapping diagnostic for approximately the same parameters.

this would have had a harmful effect on the variability analysis carried out on the data,
it was important that these transits were identified. In order to do this, two methods
were employed.

The first method was to search the Tycho Input Catalogue for possible contaminants
given an accurate position for the other field of view calculated from the attitude deter-
mination. Using this information, along with the attenuation profile of the instantaneous
field of view (see Section 5.1), it was possible to determine whether a transit was con-
taminated. The limit chosen was a perturbation of 0.01 mag. About 100 000 transits
were flagged this way. The magnitude and colour (if available) of the contaminating
star was retained in the coincidence file of the Hipparcos Epoch Photometry Annex
Extension. The position of the other field of view for every field transit has also been
retained in the Extension so that future checks may be carried out using more complete
catalogues.

Since the accurate position of the other field of view was only available to the NDAC
photometric calibration process, the FAST-only transits have not had this analysis per-
formed on them. Because of this and the limiting magnitude of the Tycho Input
Catalogue being V = 10.5 mag, it was felt that some additional checks were required in
order to further identify parasitic transits. This was done by investigating the difference
between the ac and dc components for each transit. If a star appeared in the other field
of view, in addition to making the target star appear brighter, it also caused the star to
appear as a double. The limit chosen for this was 3σ. A limitation of this method was
that it could only be carried out on stars thought to be single. About 70 000 transits
were flagged this way. In the case of FAST, transits contaminated by the presence of
programme stars from the complementary field of view were removed at an early stage
of the processing.
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14.7. Merging

After the corrections described in the previous section had been applied to both the
FAST and NDAC photometric data, a final comparison was carried out in order to best
determine the merging strategy.

The main comparison was between the median photometric value of the two consortia
for each star. Care was taken that the median calculations were carried out on exactly
the same set of observations since the two consortia have slightly different coverage.
This is most important for the very red stars since they are variable.

As a function of magnitude (in these comparisons only the dc magnitudes were consid-
ered) the systematic differences were very small. Brighter than 10 mag the differences
were less than 0.001–0.002 mag. Fainter than this, a larger systematic difference was
seen, equivalent to a difference in background of under 2 Hz. This comparison is shown
in Figure 14.8.

Also shown are the differences as a function of V − I . The systematic differences are less
than 0.002 mag out to V − I = 3.0 mag. Redder than this the differences are probably
less than 0.02 mag out to V − I = 8.0 mag. There is not much data at this very red end,
and saying more about the level of difference would probably not be possible. The low
level of systematic differences was expected as a consequence of the way that the ageing
corrections had been carried out.

Investigations on the quoted errors of the field transits for both consortia were also
carried out. Most of these consisted of detailed Monte Carlo simulations to see if the
observed quoted error distribution could be reproduced. The unit weight residuals were
also investigated in this analysis. The two main points arising from this work were:

(1) the quoted error was inaccurate and biased due to only having a small number of
frame transits per field transit. This is expected to follow a Student’s t distribution.
A consequence of this is that if left uncorrected, the unit weight residuals will tend
to show a large number of spurious variables;

(2) an uncalibrated and unknown residual that affects a field transit’s quoted error is
present thus giving larger quoted errors than in the Monte Carlo simulations.

The final conclusion was that some form of empirical correction had to be made to
the quoted errors: it was known that the quoted errors were biased from (1) and that
no theoretical estimate could be made from (2). The correction that was made was a
function of magnitude, quoted error and consortium. It should be noted that when the
data were merged another error analysis and correction was carried out to accommodate
correlations between the FAST and NDAC data.

These error estimate corrections have implications for any micro-variability analysis
carried out on the data. After applying such corrections, all that could be stated is
that a star is more variable than stars of similar magnitude. For example, if all stars
were variable we could not detect them as such since the errors were scaled. It could be
argued that the unknown residual mentioned above (2) could be due to stellar variability.
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Figure 14.8. Comparison between FAST and NDAC for Hpdc magnitudes as a function of magnitude and V − I .

For the top two diagrams the solid line is the median of distribution and dashed line is the 1σ width. The bottom

diagram shows the individual data points rather than just the distribution.



294 Photometric Treatment

Figure 14.9. The correlations between FAST and NDAC.

The level of this would be a few per cent over 20 seconds. It is more likely that this was
caused by instrumental effects.

One of the most important things that had to be investigated for the merging process
was the level of correlation between the FAST and NDAC data. The results of this
investigation are shown in Figure 14.9. These contour plots show the density of the
scatterplots of FAST versus NDAC residuals. The residuals are calculated as the
differences between each field transit value and the median value for that star and
consortium. Only constant stars were used for these investigations.

As is evident from the diagrams, the correlations are very strong. The correlation
coefficients range from 0.6 to 0.8, with the highest values for intermediate magnitude
stars (7 mag < Hp < 9 mag). This shows that the calibrations agree very well for
mid-magnitude stars. Since the same photon counts were used it is expected that any
deviation from perfect correlation would occur when the calibrations differ. At the
faint end these differences were background related. At the bright end the situation
was slightly different and the broadness of the diagrams was caused by the increased
sensitivity of the data.

In order to determine how to merge the data an investigation was carried out to see what
effect altering the consortia ratio would have on the general scatter of the data. For this
investigation a merged magnitude was created using the formula:

Hpav = f HpNDAC + (1 − f )HpFAST [14.13]

The average scatter was then calculated for constant stars. This was then repeated for
different fractions ( f ). The results are shown in Figure 14.10. Since the data were
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Figure 14.10. The effect of varying the consortium fraction on the observed distribution widths of constant stars.

very strongly correlated not much of a decrease was expected in the width as a function
of fraction. These plots indicate that a ratio of 1:1, i.e. giving both consortia equal
weight, would yield a merged result close to optimal. This ratio would also be simpler
to implement than a fraction varying as a function of magnitude. It was also decided to
combine the errors using equal weights and combining them in quadrature. Due to the
correlations the quoted errors of the merged data had to be analysed again and rescaled.
Data originating from only one consortium did not have the errors rescaled a second
time. Figure 14.11 compares the observed distribution of unit weight residuals with the
probability expected for residuals with unit variance. Small discrepancies remain: there
are additional wings in the observed distribution, and the central part of the distribution
appears to have a slightly smaller width than expected.

A variance-weighted strategy was also considered, but rejected. The reason for this
being that systematic errors probably remained which were likely to be comparable in
size to the random ones, thus invalidating the premise of the weighting.

An important aspect of the merging process was the quality flagging of the transits. The
basic principle behind the design of the quality flag (Field HT4 in the Hipparcos Epoch
Photometry Annex) was that the lower the flag value the better the quality of the data.
Thus, the higher bit settings were reserved for the more significant problems with the
data. It was decided against rejecting any data at the merging stage due to the difficulty
in choosing the most appropriate rejection limits. The strategy that was chosen was to
flag suspected transits and keep them in the annex. Table 14.10 shows the percentage
of transits that were flagged for each bit setting.
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Figure 14.11. The observed distribution of unit weight residuals for standard stars, compared with the expected

probabilities for a unit variance Gaussian distribution.

Most of the flag bit settings had various limits associated with them. The following list
describes, in brief, the criteria involved in setting the bits (see Volume 1, Section 2.5):

(Bit 0) NDAC only data: no FAST data was passed to the merging process. This
implies that either the transit was rejected by FAST at an earlier stage or that
FAST did not process this transit;

(Bit 1) FAST only data: as above, but no NDAC transit was available to be merged;

(Bit 2) Not used;

(Bit 3) high background: the background for this transit was above 70 Hz. For faint
stars there is the possibility of additional errors being present for these transits
due to the uncertainty in the background estimate. The choice of the limit
value is arbitrary;

(Bit 4) field of view contamination: the transit is likely to be disturbed by a star in either
field of view. As described in detail in Section 14.6, the other field of view was
checked against the Tycho Input Catalogue for possible contaminating stars
and via the use of the difference between Hpdc and Hpac. Also, all transits for
an entry were flagged if the Hipparcos Input Catalogue indicated that the star
was a two-pointing double with a separation between 5 and 35 arcsec;

(Bit 5) FAST quality flag set: during the FAST processing if the attitude determina-
tion was classified as poor this flag was set. In NDAC such data were rejected
at an earlier stage in the processing;

(Bit 6) perturbed for other identified reason: transit occurred during a period of
numerous outliers. These periods were either associated with poor attitude,
not identified at an earlier stage, or were close to a shutter closing event (close
to Earth occultations);

(Bit 7) sun-pointing mode observation: the quality of observations taken during sun-
pointing mode were believed to be affected by the non-nominal thermal envi-
ronment of the satellite and were thus flagged;

(Bit 8) significant difference: if the FAST and NDAC Hpdc values differed by more
than 3σ the transit was flagged.
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Table 14.10. The percentage of transits that are flagged for each bit setting in Field HT4 of the Hipparcos

Epoch Photometry Annex.

Bit Setting Percentage Description

– 84.0 Unflagged

0 4.7 NDAC data only

1 6.3 FAST data only

2 — Not used

3 1.7 Very high background estimate

4 3.5 Possible interfering object in either field of view

5 0.6 FAST quality flag set

6 0.2 Perturbed for other identified reason

7 1.5 Observation during sun-pointing mode

8 0.4 Significant difference between FAST and NDAC data

14.8. Properties of the Photometric Data

Measurement Errors

The average standard error per field transit in Hpdc and Hpac for the merged data are
given in Table 14.11. As expected, the average standard errors on Hpdc are about half
the size of those on Hpac. Also given in this table are the average errors on the medians
for stars found to be constant (stars with Field HH12 set to C). The errors on the
medians are about a factor 10 smaller than the standard errors on the observations, as
was expected for an average of close to 100 accepted observations per star. For the
brightest stars the data are likely to be influenced by both small scale intrinsic variability
and by slight inaccuracies in instrument modelling by the reduction process. Hence
they do not reach the error levels one might have expected on the basis of the estimates
obtained for fainter stars. In addition, the amount of integration time spent on bright
stars was much shorter than on fainter stars.

The distribution of the measurement errors for individual field transit observations is
shown in Figure 14.12. The widths and the wings of the distributions are primarily due
to variations in the observing time (see Section 14.7). These distributions together with
the data presented in Figure 14.11 clearly show that discussions concerning variability
need to consider residuals weighted by their estimated error: individual observations
can be of significantly different quality. This can even be the case when comparing
stars of the same magnitude in different parts of the sky. The integration time spent
on a star was related to the number of nearby neighbours in the Input Catalogue and
photometric data for stars in more densely populated areas will be more noisy than for
stars in sparsely covered areas.
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Table 14.11. The average standard error per field transit and the average error on the median for stars found

to be constant (stars with Field HH12 set to C).

Hp Average transit error Average error on median

dc ac dc ac

2 0.0027 0.0043 0.0004 0.0008

3 0.0029 0.0049 0.0004 0.0006

4 0.0036 0.0063 0.0005 0.0008

5 0.0047 0.0091 0.0006 0.0010

6 0.0058 0.013 0.0007 0.0013

7 0.0080 0.019 0.0009 0.0019

8 0.011 0.026 0.0013 0.0027

9 0.015 0.037 0.0019 0.0039

10 0.022 0.051 0.0028 0.0055

11 0.033 0.072 0.0044 0.0079

12 0.049 0.100 0.0072 0.0107

The distribution of errors on the medians, as shown in Figure 14.13, summarizes the
precision of the photometry presented in the main catalogue. For almost all these stars
the precision of the median dc magnitude is of the order of 0.001 to 0.002 mag or better,
while the errors on the ac magnitudes are two times larger. Figure 14.13 also shows an
accumulation towards larger errors in the dc magnitudes due to variability, and in the
ac magnitudes due to variability and duplicity.

An examination of the unit weight standard errors shows to what degree the corrections
of the error estimates have been successful. Histograms of the observed unit weight
standard errors for all stars with at least 30 observations are shown in Figure 14.14. It is
clear that the situation is not ideal, and in particular for the brightest and faintest stars
the variances are much influenced by reduction noise. Also clear in these diagrams are
the cumulated peaks on the right-hand side of each diagram, representing the variable
stars, and in some cases the presence of a companion.

Number of Observations and Distribution over Time

As described above, original observations spanned an integration time of 32/15 s. These
frame transits occurred in groups of up to 9, representing together a field transit. Data
have only been preserved at this level of field transits, of which over the length of
the mission approximately 13 million were accumulated. These are presented in the
Hipparcos Epoch Photometry Annex plus Extension. The field transits are referred to
as observations.

The short-term distribution of observations was determined by the scanning speed and
the configuration of the two fields of view. A series of observations therefore contains
a regular pattern of: observation, 20 min gap, observation, 108 min gap, observation,
20 min gap and so on. The length of this sequence was determined by the position of
the star on the scanning circle, relative to the instantaneous rotation axis of the plane of
this scanning circle. Close to the rotation axis, the sequence could continue for more
than a day, while perpendicular to it, the sequence would last for no more than 1 to 2
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cycles. Sequences were further interrupted by perigee passages, when no observations
could be made. Due to the geometry of the scanning law, the rotation axis of the plane
of the scanning circle was always situated between ecliptic latitudes ±47�. Observations
of stars near the ecliptic poles therefore always consist of short stretches of data, except
during sun-pointing periods.

The total number of observations over the mission was also very much a function of
ecliptic latitude, again resulting from the scanning law. The relations are shown in
Figure 14.15. Total numbers of observations varied by a factor 10, from below 40 to
385, but the higher numbers of observations (> 200) were only found for stars close to
ecliptic latitude ±47�. In the study of periodic variable stars the occurrences of data
gaps are very important. Figures 14.16 and 14.17 show the distribution of the lengths
of gaps and the numbers of gaps as a function of ecliptic latitudes. This distribution of
data limited a reliable period search to the range 0.09 to 3 days approximately. Periods
in the range 5 to 100 days were generally very poorly covered.

F. Mignard, D. Evans, F. van Leeuwen
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Figure 14.12. Distribution of the measurement errors relative to the mean standard error per magnitude interval,

using all measurements with error flag equal to 0. The diagram at the bottom right is the accumulated distribution of

the other 11 diagrams.
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Figure 14.13. The distribution of errors on the medians in three magnitude intervals. The distribution for the dc

magnitudes is shown by the solid line, the ac magnitudes are shown by a dotted line. The accumulation on the right of

each histogram represents variable stars for both ac and dc magnitudes, and in addition double stars for ac magnitudes.
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Figure 14.14. Distribution of the unit weight standard errors. The diagram at the bottom right is the accumulated

distribution of the other 11 diagrams.
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Figure 14.15. The total number of field transits per star as function of ecliptic latitude, shown as a contour map. The

first contour represents 10 stars, every next contour adds 20 stars. The highest contours represent around 200 stars.

The effects of the scanning-law caused the ‘discontinuity’ in the distribution around 47�. The cell-size is 1 transit along

the horizontal and 5� along the vertical axis.

Figure 14.16. Distributions of the lengths of gaps as a function of ecliptic latitude. Gaps longer than 1.5 days were

counted for all stars observed. The feature between 50 and 60 days length was the result of gaps in the scanning due to

a variety of problems with the satellite. The features for low latitudes between 85 and 140 days result directly from the

scanning law. The lowest contour represents 200 gaps observed, increasing by 400 per contour until 1400, then by 600

until 2600, and then by 900 until 8900. The majority of gaps in the data are between 10 and 40 days. The cell-size

is 1 day along the horizontal and 5� along the vertical axis.
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Figure 14.17. Distributions of the number of gaps as a function of ecliptic latitude. Gaps longer than 1.5 days were

counted for all stars observed. The contours follow the relative distributions of gaps. The first contour represents 1 per

cent, the next 3 per cent, and every next contour a 2 per cent higher level. Thus, roughly 20 per cent of the data is

found near the central ridge of the diagram, indicating that at high ecliptic latitudes the data was interrupted around

30 to 35 times, while at low ecliptic latitudes there were from 15 to 17 interruptions. The cell-size is 1 gap along the

horizontal and 5� along the vertical axis.



15. MINOR PLANETS AND PLANETARY SATELLITES

Some 48 minor planets and three natural satellites were observed during the
Hipparcos main mission with the purpose of linking the dynamical and kine-
matical reference systems and for dynamical and physical studies of these solar
system bodies. This chapter describes specific aspects of the processing im-
plemented for the solar system objects in order to derive the astrometric and
photometric solutions. Several summary tables related to the minor planets
and their observability conditions are also included in this chapter.

15.1. Introduction

The observation of minor planets and natural satellites of giant planets with Hipparcos
was considered during the mission planning to be of high scientific relevance with
the goal of obtaining accurate astrometric positions and investigating the relationship
between the dynamical and kinematical reference systems. Some 60 minor planets were
included in the preliminary program, of which 48 were repeatedly observed during the
actual mission together with three planetary satellites (J II Europa, S VI Titan and
S VIII Iapetus) yielding astrometric and photometric data of excellent quality. The
corresponding star mapper observations are described in Volume 4, Chapter 15.

As a result of the rapid and non-linear motion of these objects over a time-span of only
a few hours, the basic data treatment had to be adapted for these objects to produces
one-dimensional astrometric positions on the reference great circles on which they were
observed. The solar system objects were observed in the same way as stellar objects.
However objects with an apparent diameter larger than 0.05 arcsec were resolved by the
Hipparcos telescope and the astrometric solution refers more or less to the photocentre
of the illuminated fraction of the disc, i.e. to a point varying with the phase angle. In the
first section of this chapter the main properties of the grid signal pertaining to the minor
planets are emphasised. Then the astrometric solution on the great circle is presented,
followed by the photometric aspects of the processing.

15.2. Hipparcos Observations of an Extended Source

The signal recorded behind the Hipparcos main grid during the transit of a light source
was modelled by the ‘five-parameter model’ introduced in Chapter 5. It was shown that
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the periodic signal for a point-like source could be accurately represented by a Fourier
series up to the second harmonic as:

S(t) = I0 [1 + M0 cos(ωt + φ0) + N0 cos 2(ωt + φ0)] [15.1]

where M0, N0 are the calibrated modulation coefficients, and φ0 is the modulation phase
of the signal, corresponding to the position of the source on the grid at the reference
time t = 0. ω is the time frequency of the signal. For an object of significant angular
size, typically with a diameter ρ >~ 0.05 arcsec, the modulated signal results from the
integration of the point-like signal over the surface of the source. This gives a signal of
the same form (Morando 1986, Lindegren 1986, Morando & Lindegren 1989):

S(t) = I [1 + M cos(ωt + φ) + N cos 2(ωt + ψ )] [15.2]

but now with reduced modulation coefficients M , N and (in general) shifted modulation
phases φ, ψ depending on the brightness distribution of the apparent disc. Let x = πρ /s
be a dimensionless variable relating the angular diameter of the planet to the grid period,
s = 1.2074 arcsec. Introduce the complex function:

U (x) =
ZZ

Iσ exp(−ιxw0n)µ dσ

where Iσ is the specific brightness of the surface element dσ , ι =
p

−1, w the unit vector
in the scanning direction (Figure 15.6), n the unit vector normal to the surface element,
and µ the cosine of the angle of reflection. The total intensity and the degradation of
the modulation coefficients can then be written:

I = U (0),
M
M0

=
���� U (x)

U (0)

���� ,
N
N0

=
���� U (2x)

U (0)

���� [15.3]

and the phase shifts are:

φ − φ0 = arg [U (x)] , ψ − ψ0 = 1
2 arg [U (2x)] [15.4]

In interferometric terminology, U (nx) /U (0) is the complex visibility of the object, in
the direction of w, at n times the spatial frequency of the grid.

The abscissa was derived from the phase φ of the first harmonic in NDAC, and by
means of a weighted average of the two phases, 0.75φ + 0.25ψ , in FAST. The major
consequences for an extended object are that (i) the observed position does not strictly
correspond to the definition of the photocentre, and (ii) the FAST and NDAC observed
positions do not strictly correspond to the same point. Introducing the functions:

j1(x, α) = J1(x) + J1(x cos α)

h1(x, α) = H1(x) − H1(x cos α)
[15.5]

where α is the solar phase angle, and J1, H1 are the Bessel and Struve functions
respectively, then for a uniformly bright sphere and a scan along the intensity equator:

U (x) = j1(x, α) + ιh1(x, α) [15.6]

which yields the phase offset relative to the centre of figure. The difference between
the photocentre and the position assigned from the phases, using the FAST and NDAC
procedures, is shown in Figure 15.1 as a function of the apparent diameter of the planet.
For a phase angle of α = 20�, typical for the Hipparcos observations of minor planets
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Figure 15.1. Theoretical difference between the observed position and the photocentre versus apparent diameter. The

curves are for a spherical object of uniform brightness viewed with a solar phase angle α = 20�. Solid curve: positions

derived from the first harmonic only (NDAC). Dashed curve: positions derived from a weighted mean of the harmonics

(FAST) — this method is practically limited to objects smaller than 0.7 arcsec.

(Figure 15.10), the differences remain well below one milliarcsec except for (1) Ceres
as observed by FAST at its maximum diameter, ρ ~ 0.7 arcsec.

The Hipparcos magnitude of the minor planets was estimated in the same way as for the
stars and is described in Chapter 14. The magnitude Hpdc was directly derived from
the mean intensity I of the signal (corrected for sky background), while Hpac was based
on the amplitudes IM and IN of the modulated components of the signal. Then from
Chapter 14:

∆Hp ≡ Hpac − Hpdc ' −2.5 log10
MM0 + NN0

M2
0 + N 2

0

[15.7]

Hpac is a biased estimator for the larger planets, depending on the apparent diameter at
the time of observation, through the attenuation of the modulation measured by M /M0

and N /N0.

In the approximation of a spherical object of uniform brightness at zero solar phase
angle, the imaginary part of U (x) vanishes because of the azimuthal symmetry of the
problem. Therefore U (x) is simply given by the Hankel transform of order zero:

H0[1; x] =
Z 1

0
J0(xr)r dr [15.8]

and the attenuation in the modulation coefficients can be expressed as a function of the
apparent size of the source:

M
M0

= 2
jJ1(x)j

x
,

N
N0

=
jJ1(2x)j

x
[15.9]
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Figure 15.2. Attenuation of the modulation coefficients for the first (dashed line) and second harmonics (solid line)

for a spherical object of uniform brightness and of apparent diameter ρ.

These functions are plotted in Figure 15.2. There is no significant attenuation in the
signal modulation up to an apparent diameter of about 0.1 arcsec for the first harmonic
and 0.05 arcsec for the second harmonic.

15.3. Astrometry on the Circle

Transformation to Astrometric Directions

In the great-circle reduction a one-dimensional position was obtained, about twice per
day, for the Hipparcos stars observed in that interval. This great-circle abscissa was
calculated by fitting all the grid coordinates of a star collected during the great-circle
interval of several hours. The main principles of this process, outlined in Chapter 9,
apply also to the observations of the solar system objects. However, because of the rapid
and non-linear motion of the planets, a different sampling time was adopted for these
objects, leading to one great-circle abscissa for every observational frame of 32/15 s.
For the final catalogue, normal positions were derived at a rate of one astrometric
one-dimensional position per field–transit of the object across the instrument main grid.

The instantaneous Hipparcos observations referred to the proper direction of the planet;
thus the first step of the processing consisted of transforming this direction into the
coordinate direction by computing the stellar component of the aberration and the
parallax introduced by the satellite’s motion around the Earth. These corrections were
evaluated to an accuracy better than one milliarcsec, which required the modelling of
the aberration to the second order in jVjc−1, where V is the barycentric velocity of
Hipparcos. Likewise, the light bending by the spherical potential of the Sun was taken
into account to first order in GS /ac2 ' 2 mas where a, the heliocentric distance of the
satellite, is close to A ' 1 AU (see Table 12.1). The deflection by the giant planets was
neglected.

Most minor planets have a sizeable apparent diameter (> 0.05 arcsec) compared to the
Hipparcos astrometric accuracy, and the solar phase angle effect shifts the photocentre
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Figure 15.3. Coordinate direction of a minor planet. The observed satellitocentric proper direction ua is first corrected

for stellar aberration and light deflection into us. It is then transformed into the (geocentric) coordinate direction ug.

The epoch of observation at the satellite is also corrected by ∆τ into an epoch at the geocentre.

with respect to the centre of figure. As this cannot be evaluated within the required
accuracy without a rather sophisticated and uncertain modelling of the light diffusion on
the surface, no phase correction was applied and the direction provided by Hipparcos
corresponds in the first approximation to the position on the sky of the instantaneous
photocentre (see Section 15.2).

Let ua be the apparent (or ‘proper’) satellitocentric direction of a solar system object,
and ug its geocentric astrometric (or ‘coordinate’) direction, with juaj = jugj = 1 (see
Figure 15.3 and Chapter 12). These vectors are referred to a coordinate frame as-
sociated with a given reference great circle, the so-called reference great-circle frame
(Section 11.2). The one observed quantity was the apparent abscissa (v) on the ref-
erence great circle, while the perpendicular coordinate (r) was computed from the
ephemerides. The initial conditions for the ephemerides of minor planets were taken
from the ‘ Ephemerides of minor planets for the year 1992’ and were numerically in-
tegrated with a Bulirsch-Stoer integrator including the perturbations of all the major
planets from Mercury to Neptune. The planetary positions were taken from the JPL
solar system ephemerides DE200.

The direction ua was first transformed into a satellitocentric astrometric direction, us,
by correcting for the aberration and gravitational light bending. This was actually
done as part of the same processing as applied to the stars, namely in the great-circle
reductions (Chapter 9). The satellitocentric astrometric direction was then transformed
into the geocentric astrometric direction, ug, by applying the parallactic correction.
The relationship between the apparent direction and the direction corrected for stellar
aberration (the ‘natural’ direction) is given by inverting Equation 12.7 to the second
order in V /c:

ûs =
�

ua −
�
1 −

V0ua

2c

�
V
c

�
+ O

�
jVj
c

�3

[15.10]

where V is the barycentric velocity of the Hipparcos satellite. The barycentric velocity
of the Earth was provided by a compact representation of the ephemeris BDL 82 (see
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Figure 15.4. Notations for the correction of gravitational light deflection.

Chapter 12 and Chapront et al. 1984), while the geocentric velocity of the spacecraft was
provided by the mission operations centre, ESOC. The velocity vector V was computed
as the sum of these two velocities after transformation to the same reference system.

The application of the gravitational light deflection for a source at finite distance from
the Sun leads to the following expression for the astrometric direction (us) in terms of
the natural direction (ûs):

us =
�

ua − d
2GS
a c2

tan
Ψ
2

�
+ O

�
GS
a c2

�2

[15.11]

with d = hus × (r0 × us)i the unit vector along the impact radius, GS the heliocentric
gravitational constant and c the speed of light (see Table 12.1); a is the heliocentric
distance of the satellite (i.e. a ' A), and Ψ the heliocentric angle between the object
and the satellite (see also Figure 15.4 for notations).

After these two steps us must be transformed into the geocentric direction ug, which
gives:

ug = hus∆ + rsati [15.12]

where the geocentric position of Hipparcos, rsat, was provided with an accuracy of
' 2 km by the satellite orbit determination performed at ESOC. ∆ is the distance
between Hipparcos and the minor planet, which for this correction had to be known to
' 15 000 km, a requirement easily satisfied by the available ephemerides. The epoch
of observation was also corrected for the first order light-time difference due to the
geocentric orbit, ∆τ = (g − ∆) /c, yielding the time at the geocentre, where g = jus∆ + rsatj
is the geocentric distance to the planet (see Figure 15.3).
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Construction of a Normal Place in NDAC

A normal place was derived for every field–transit from the ' 8 consecutive abscissae
measured at the frame level. In NDAC, the normal place was constructed from a fit
of the observed abscissae to the linear motion of a planet in the time interval of a field
crossing, about 19 s. In the first stage of the great-circle reduction, all the data were
stored and a temporary file was created for every object observed on the circle. This
file contained a reference time tR, a reference abscissa vR, the rate q = dv /dt, and a
mean ordinate rR for each object. For a solar system object, the ephemeris was used to
compute a predicted abscissa and ordinate for the first and last frame of the transit (v1, r1

and vn , rn) corresponding to the mid-frame times (t1, tn). With the reference abscissa
vR = (v1+vn) /2, the reference time tR = (t1+tn) /2, the abscissa rate q = (vn − v1) /(tn − t1),
and the mean ordinate rR = (r1 + rn) /2, the residual of the abscissa in the kth frame, at
time tk, was:

δvk = vk − G
�
vR + (tk − tR)q, rR

�
[15.13]

where G(v, r) is the transformation to grid coordinate, including attitude and instrument
modelling. The result of the great-circle reduction was a weighted mean correction δv
to the reference abscissa, so that the output for each transit consisted of tR, vR + δv and
rR. Transits were discarded when the signal was too faint to be useful, or in the case of
a pointing offset exceeding 10 arcsec, making the reliability of the data questionable.

The results thus obtained in the final NDAC great-circle reductions were further cor-
rected for the abscissa zero point errors determined in the corresponding sphere solu-
tion (N37.5; see Chapter 16). They were then transformed from the reference frame of
N37.5 to the provisional system H37C realised by the merging of the final FAST and
NDAC sphere solutions (see Chapter 17). This transformation was slightly different
from, but practically equivalent to, the subsequent transformation to ICRS described
in Section 15.4. It was applied as a correction to the abscissa:

vH37C = vN37.5 − "0R [15.14]

where R denotes the (positive) pole of the reference great circle, and " is the time-
dependent rotation detailed in Table 15.1.

Construction of a Normal Place in FAST

Unlike NDAC the normal place in FAST was based on the median of the abscissae.
A typical situation of the abscissae at the frame level used to construct the normal
place is shown in Figure 15.5. After the reduction on the sphere, a dedicated file was
constructed for all the solar system objects to store the abscissae at each mid-frame time.
The corrections to the origins δv0 (Chapter 16) were available separately and used to
obtain the abscissae in a consistent reference frame.

Let vR be the reference abscissa at mid-transit time and q = dv /dt based on the planet
ephemeris. The observation equation for the reference abscissa was then: vR = vk −
(tk − tR)q. The resulting reference abscissa was eventually estimated as the median v̄ of
the n ' 8 values vk − (tk − tR)q in a transit. The output for each transit consisted of tR,
v̄ + δv0, rR and the standard error of the reference abscissa, given by:

σ2
v =

π
2n

1
n − 1

X
k

�σ0

σk
ηk

�2
=

π
2n

σ̃2
0 [15.15]
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Figure 15.5. Reduction of the minor planets abscissae at the transit level. A normal place for each transit was

constructed by fitting the location parameter of a linear motion whose speed was taken from the ephemeris (solid line).

The normal position (circle) corresponds to an average position of the frame level positions (mean in NDAC, median

in FAST). The great-circle abscissa origin on the plot is arbitrary.

where ηk = vk − vR − (tk − tR)q are the residuals, and σ0ηk /σk the weighted residuals.
σ̃2

0 is an estimator of the variance of a single observation. Usually there were n = 8
observations per transit.

Dubious abscissae vk with an uncertainty greater than 150 mas were systematically
discarded. In order to identify transits possibly corrupted by the presence of a parasitic
star in the complementary field of view, observations with σ∆Hp > 0.3 mag were rejected,
where ∆Hp is the difference between the ac- and dc-magnitudes (see Equation 15.7).
Two other tests were constructed to filter out unreliable transits. Transits with estimated
σ̃0 > 2σ0, or containing only one frame, were rejected. Likewise, a transit was rejected
if it led to a magnitude difference between the ac- and dc-scales such that:

j∆Hp − ∆Hpcalcj > 5σ∆Hp [15.16]

with ∆Hpcalc ' 1.214ρ2 + 0.03ρ4 derived from Equations 15.7 and 15.9 for an object of
uniform brightness of apparent diameter ρ. The reference time was taken as the mean
of the first and last used frame of a transit. The resulting positions were in the reference
frame of the final FAST sphere solution, F37.3.

15.4. Astrometry Final Output

Transformation to the Tangent Plane

Each observation of a solar system object is uniquely defined by the time, the abscissa
and the orientation of the circle on which the planet position was projected. It was,
however, considered that a different presentation of the results would be more con-
venient for the users, although it was not possible to provide strictly two-dimensional
positions. The Hipparcos observations of solar system objects are supplied as an obser-
vation equation relating the abscissa to a perfectly defined reference point (α0, δ0) (see
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Figure 15.6. Transformation to the tangent plane. See text for details.

Figure 15.6). More precisely, the published data determine the equation of the straight
line v = constant in the tangent plane centred at the reference point.

To minimise the errors due to the projection on the tangent plane, the reference point
was chosen in the immediate vicinity of the true, but unknown, position. The reference
point has the same abscissa as the observed abscissa of the planet, vobs, and a calculated
ordinate rcalc based on the ephemeris at the reference time. The astrometric position
expressed in the reference great-circle frame (RGC) and in the provisional reference
frame of the Hipparcos reductions (P, representing either H37C or F37.3) are related
by the transformation:

uP = R3(Ω)R1(i)uRGC [15.17]

where i and Ω are the inclination and the longitude of the node of the reference great
circle, Rk represents a rotation about the kth axis, and:

uRGC =

 cos rcalc cos vobs

cos rcalc sin vobs

sin rcalc

!
, uP =

 cos δ0 cos α0

cos δ0 sin α0

sin δ0

!
[15.18]

The direction defined in the reference great-circle frame by v = vobs (= constant) is given
on the tangent plane, in an indirect manner, by θ 2 [0, 2π[, the position angle of the
reference great circle at the reference point. This angle, reckoned counter-clockwise on
the sky from +δ , was computed as the direction of the reference great circle at the point
(v, r) = (vobs, 0) and is given by:

cos θ =
sin i cos v�

1 − sin2 i sin2 v
�1/2 , sin θ =

cos i�
1 − sin2 i sin2 v

�1/2 [15.19]

The standard error refers to the uncertainty of the abscissa in the direction w parallel to
the reference great circle and passing through the reference point:

σv� = σv cos rcalc [15.20]

Transformation to International Celestial Reference System

The positions obtained so far are still referred to arbitrary intermediate frames resulting
from the Hipparcos sphere solutions (i.e. F37.3 for FAST and H37C for NDAC; see
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Table 15.1. Values of the rotation and spin components for the reference frames transformations. The

components of the orientation refer to the epoch T0 = J1991.25.

Orientation (mas) Spin (mas/yr)z }| { z }| {
ε0x ε0y ε0z ωx ω y ωz

N37.5!H37C −20.648 −33.151 +46.719 −0.584 +0.657 +0.508

H37C!ICRS −19.1 −8.5 +20.9 −0.73 +0.05 +0.47

F37.3!ICRS −24.218 −27.532 +56.190 −0.590 −0.453 +3.661

Chapter 16). The published solar system data must, however, use the same reference
system as the stars, namely the International Celestial Reference System, ICRS (Chap-
ter 18). The orientation of P (F37.3 or H37C) with respect to ICRS is given by a time
dependent, small rotation "(t) = "0 + (t − T0)!, where T0 = J1991.25 is the epoch of
the Hipparcos Catalogue. Thus, the final coordinates uICRS, referred to the ICRS, were
obtained by:

uICRS =

 1 εz −ε y

−εz 1 εx

ε y −εx 1

!
uP [15.21]

where εx, ε y, εz are the equatorial components of "(t) for the epoch of the observation. In
principle, the transformation entails also a change of the position angle θ, but this change
would always be less than 0.1 arcsec and was therefore not implemented. The values
of the rotation parameters for the transformations H37C!ICRS and F37.3!ICRS are
listed in Table 15.1.

Comparison of FAST and NDAC Abscissae

The methods applied by FAST and NDAC to process the observations of the solar
system objects were generally very similar. However they differed sufficiently in their
details to prohibit a merging of the two sets of abscissae.

The positions on the grid were not derived in the same way from the signal phases which
implies that the observed positions do not correspond to exactly the same physical point.
This discrepancy depends mainly on the object’s size, and to a lesser extent on its shape,
on its brightness distribution, and on the geometry of the scanning direction relative to
the visible surface. The theoretical differences between the Hipparcos position and the
photocentre were shown in Figure 15.1 for a spherical object of uniform brightness, and
although they are not large, they are not identical for FAST and NDAC.

The systematic phase effect was shown by Söderhjelm & Lindegren (1982) to have
a non-negligible influence on the realisation of the dynamical reference frame from
the Hipparcos observations of solar system objects. As noted previously, these effects
cannot be predicted with sufficient accuracy to be accounted for and could have different
consequences in the FAST and NDAC treatments.

For all these reasons, and in order to avoid introducing additional noise in the data, it
was thought preferable to publish separately the FAST and NDAC results for all the
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Figure 15.7. Comparison of FAST and NDAC abscissae from the reference points in the ICRS. The histogram

represents the normalised difference with a correlation factor of 0.85 (determined from faint stars) and weighted

standard deviations. The solid curve is the corresponding Gaussian of unit variance ∆v /σ∆v 2 N (0.13, 1), the

non-normalised mean offset is h∆vi ' 1.2 mas.

solar system objects. However, from the calibration of the FAST and NDAC procedures
with respect to the stars, it is expected that:

lim
ρ!0

vNDAC ' lim
ρ!0

vFAST ' vphotocentre

which means that the FAST and NDAC abscissae should be very similar for the smallest
planets (ρ << s). Figure 15.7 shows an histogram of the normalised differences between
the FAST and NDAC abscissae. The average of the normalised differences is slightly
positive, corresponding to a systematic difference between the FAST and NDAC ab-
scissae of about 1.2 mas. However, the abscissae are not strictly referred to the same
circles since they have been defined independently by each group. The projections of
the planets may thus be marginally different.

Finally, for objects as large as ' 0.7 arcsec, depending on their actual brightness dis-
tribution, the second harmonic vanishes (see Equation 15.9 and Figure 15.2) and the
corresponding phase ψ of Equation 15.2 becomes meaningless. A consequence of this
was that only NDAC positions could be derived for the planetary satellites J2 Europa
and S6 Titan.

15.5. Photometry of the Solar System Objects

FAST Reduction

The photometric reduction of the solar system objects was done only by the FAST
Consortium, in parallel with that of the stars. The apparent magnitudes in the Hp scale
are provided at a rate of one value for every field transit in exactly the same way as for
the stars and in the same photometric system, using the colour B − V = 0.5 mag for all
the planets (see Chapter 14).
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Figure 15.8. Attenuation profile of the instantaneous field of view. Left: average profile from on ground calibration

(1 µm ' 0.147 arcsec). The actual in-flight profile is unknown between 100 and 500 arcsec. Right: magnitude
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Figure 15.9. Position of the solar system barycentre during the mission (solid line). Rectangular coordinates of the

barycentre in the ecliptic plane.

However, for the three planetary satellites on the programme, diffusion of the light
of their respective planets considerably perturbed the observations and no satisfactory
solution could be reached. The average instantaneous field of view profile is given for
large offsets in Figure 15.8. With a planet 7 or 8 mag brighter than the satellite and
located only a few hundreds of seconds off the centre of the field of view, there is still
some planetary light perturbing the signal of the satellite. The effect is hard to assess
because the exact attenuation profile is not known in the periphery of the instantaneous
field of view. Figure 15.8 (right) shows the difference between the two magnitudes scales
Hpac and Hpdc after the expected effect due to the apparent size of a satellite has been
removed. The remaining differences, which should be zero, were sampled as a function
of the separation between the satellite and the planet at the time of observation. This
unmodelled difference reflects essentially the residual disturbing light originating from
the planet. The consequence on the photometric measurement is fairly large for any
satellite whatever the separation to such an extent that no reliable magnitude could be
provided.
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Figure 15.10. Distribution of the solar phase angle of the minor planets during the Hipparcos mission. The scanning

law imposed that the observations could only occur in the vicinity of the quadratures, in contrast with the prevailing

situation for ground-based observations.
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Figure 15.11. Folded light curves for (471) Papagena obtained at different epochs. The magnitudes are corrected for

the distance to the Earth (∆) and the Sun (r), and for solar phase angle (α). (a) epoch t ' 530, the circled points

correspond to observations made about 10 days later; (b) epoch t ' 1140, the circled points correspond to observations

made about 3 days later.
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Figure 15.12. Magnitude-phase (top) and magnitude-aspect (bottom) relations for minor planet (4) Vesta. The

solid curves in the magnitude-aspect plot correspond to a triaxial ellipsoid model (a : b : c = 1.15 : 1.2 : 1), the dotted

curve corresponds to the synthesis model of ratio (a : b : c = 1.1 : 1.2 : 1) from Magnusson et al. (1994).
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To help interpret the apparent magnitudes of the minor planets, the geometric parame-
ters at the time of observations are also provided with the solutions. This includes the
distance to the solar system barycentre, the distance to the Earth, the phase angle (the
angle between the satellite and the Sun as seen from the minor planet’s centre of mass)
and the apparent diameter, based on the IRAS Catalogue (Tedesco 1989).

The observed apparent magnitudes of minor planets being accurate to a few hundredths
of a magnitude, the geocentric distance of the Hipparcos satellite can be neglected. As
for the Sun, over the observation period, the solar system barycentre was always within
1.6 solar radii of the centre of the Sun, so that the offset distance barycentre-centre of
the Sun may also be disregarded (see Figure 15.9).

The estimator Hpac is also provided for the sake of completeness, although it is not very
useful for planets of large diameter. Transits rejected during the astrometric reduction
are also discarded for the photometric output. All magnitudes are given in the Hp
system and can be transformed to standard V magnitudes with the expressions given in
Tables 14.1 and 14.2.

Minor Planet Brightness Variations

Due to the scanning law of the satellite, the observations of minor planets took place
when the planets were close to their quadratures and were not uniformly distributed
over the rotational phases of the planets. The distribution of the phase angles is shown
in Figure 15.10 for all the observations of the minor planets. The mean value of the
order of 20� is a consequence of the observations having been made near quadrature.

Table 15.2, based on the Asteroids II data base (Magnusson 1989) and its updated
version (Magnusson et al. 1994), indicates what is known about the shapes and poles of
the minor planets, information relevant for the interpretation of the Hipparcos epoch
photometry of the minor planets. Summary statistics related to the conditions of obser-
vations of the 48 minor planets are listed in Table 15.3.

An example of a photometric analysis is shown in Figure 15.11 with the folded light
curves of (471) Papagena. The curves were computed with a rotation period of 7.11 hr
and the magnitudes are absolute, i.e. corrected for the varying distances from the Sun
and the Earth. A correction was also applied for the phase angle to show the variation
with aspect. The variation with the solar phase angle and the aspect angle is illustrated
for (4) Vesta in Figure 15.12. The amplitude of the magnitude-aspect relation is smaller
for objects observed at opposition.

D. Hestroffer, F. Mignard
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Table 15.2. Tholen’s taxonomic classification (Tholen 1989) for Hipparcos minor planets. Poles and shapes

(as by-products of pole determinations) solution, from Asteroids II (Magnusson 1989) and updated version

(Magnusson et al. 1994).

IAU Number Tholen Asteroids II Solution Updated Solution
and Name class data base pole shape version pole shape

(1) Ceres G
p p p p p p

(2) Pallas B
p p p p p p

(3) Juno S
p p p p p p

(4) Vesta V
p p p p p p

(5) Astraea S
p p p p p p

(6) Hebe S
p p p p p p

(7) Iris S
p p p p p p

(8) Flora S
p p

–
p p p

(9) Metis S
p p p p p p

(10) Hygiea C
p

– –
p p p

(11) Parthenope S – – – – – –
(12) Victoria S

p p
–

p p p

(13) Egeria G – – – – – –
(14) Irene S – – – – – –
(15) Eunomia S

p p p p p p

(16) Psyche M
p p p p p p

(18) Melpomene S – – –
p p

–
(19) Fortuna G

p p p p p p

(20) Massalia S
p p p p p p

(22) Kalliope M
p p p p p p

(23) Thalia S – – –
p p p

(27) Euterpe S – – – – – –
(28) Bellona S

p p p p p p

(29) Amphitrite S
p p p p p p

(30) Urania S – – – – – –
(31) Euphrosyne C

p p p p p p

(37) Fides S
p p p p p p

(39) Laetitia S
p p p p p p

(40) Harmonia S – – –
p p p

(42) Isis S – – – – – –
(44) Nysa E

p p p p p p

(51) Nemausa CU – – –
p p p

(63) Ausonia S
p p p p p p

(88) Thisbe CF
p p p p p p

(115) Thyra S – – –
p p p

(129) Antigone M
p p p p p p

(192) Nausikaa S
p p

–
p p p

(196) Philomela S – – –
p p p

(216) Kleopatra M
p p p p p p

(230) Athamantis S – – – – – –
(324) Bamberga CP – – – – – –
(349) Dembowska R

p p p p p p

(354) Eleonora S
p p p p p p

(451) Patientia CU
p p p p p p

(471) Papagena S – – – – – –
(511) Davida C

p p p p p p

(532) Herculina S
p p p p p p

(704) Interamnia F
p p

–
p p p
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Table 15.3. Hipparcos minor planets general statistics on aspect data. Minimum (min), maximum (max)

and median (med) value for the observation epoch, and the apparent magnitude Hpdc.

Num Obs Epoch Magnitude Standard deviation
(IAU) (JD-2440000.0 [day]) (Hpdc) (σHpdc

)

min med max min med max min med max

1 65 7920.570 8522.710 8977.859 7.84 9.20 9.49 0.004 0.009 0.024
2 63 8154.100 8728.980 8934.850 8.51 9.57 10.78 0.003 0.014 0.053
3 60 7909.230 8391.870 9038.870 8.42 10.60 11.55 0.003 0.018 0.036
4 58 8084.980 8351.210 8817.159 7.15 8.26 8.69 0.002 0.006 0.019
5 81 8094.660 8393.780 8832.319 10.23 11.50 12.36 0.005 0.029 0.077
6 91 7870.420 8082.890 8967.080 8.67 10.55 11.67 0.001 0.016 0.048
7 69 7911.560 8560.680 9024.380 8.24 9.83 11.31 0.001 0.013 0.040
8 56 7917.310 8503.030 9035.370 9.94 10.95 11.93 0.006 0.022 0.051
9 40 8142.720 8327.859 8826.890 9.75 10.84 11.90 0.005 0.019 0.033

10 51 8023.670 8479.570 9059.700 10.97 11.57 12.21 0.006 0.026 0.077
11 68 8144.420 8315.500 8823.000 10.71 11.14 12.47 0.006 0.023 0.082
12 24 7880.400 8771.590 8820.340 10.68 11.42 12.33 0.006 0.022 0.055

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13 34 8053.010 8506.390 8739.971 11.03 11.95 12.38 0.011 0.032 0.074
14 45 7885.640 8540.890 8795.330 10.08 11.47 12.53 0.006 0.023 0.074
15 83 7882.620 8694.800 9044.960 9.51 10.58 11.60 0.004 0.022 0.067
16 49 7894.530 8559.819 9033.670 10.22 11.59 12.56 0.004 0.034 0.076
18 100 7900.880 8354.020 9059.710 10.08 11.36 12.26 0.006 0.028 0.069
19 30 8087.990 8331.940 8787.159 11.15 12.05 12.78 0.014 0.038 0.092
20 61 7984.580 8538.230 8809.290 8.37 11.32 12.29 0.007 0.026 0.058
22 63 8022.960 8675.730 9009.119 10.76 11.92 12.73 0.009 0.034 0.115
23 66 7876.620 8402.000 9022.460 11.02 12.34 12.83 0.009 0.039 0.098
27 35 7884.310 8240.649 8830.990 10.04 11.41 12.20 0.009 0.022 0.064
28 33 8513.319 8961.450 9009.640 11.81 12.14 12.63 0.011 0.043 0.082
29 74 7986.090 8535.090 9006.689 9.86 10.71 11.44 0.003 0.019 0.069

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

30 48 7860.230 8289.060 8752.380 10.49 12.03 12.84 0.011 0.039 0.179
31 14 7919.690 7966.870 8298.210 11.06 11.82 12.27 0.021 0.030 0.042
37 32 7883.730 7984.820 8935.730 11.25 11.66 13.01 0.009 0.030 0.079
39 112 7858.510 8396.220 8824.830 10.49 11.29 12.57 0.007 0.021 0.059
40 103 7969.470 8708.609 8805.640 10.68 12.20 12.63 0.009 0.039 0.111
42 51 7973.480 8120.000 8278.280 10.26 11.00 12.48 0.007 0.022 0.067
44 53 8021.540 8586.140 8808.840 9.97 11.52 12.35 0.007 0.029 0.052
51 14 8050.070 8067.220 9033.500 11.64 11.79 12.24 0.010 0.032 0.050
63 12 8279.390 8422.020 8945.390 11.51 11.95 12.50 0.010 0.026 0.057
88 36 7960.780 8169.350 8618.330 11.26 12.06 12.51 0.021 0.041 0.063

115 33 7915.230 8758.230 8973.250 10.98 12.38 12.65 0.011 0.042 0.102
129 40 7899.460 8325.319 8563.950 11.51 12.05 12.55 0.015 0.032 0.062

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

192 32 7916.310 8739.649 8833.640 10.90 11.12 12.15 0.013 0.034 0.074
196 14 7992.570 8139.310 8594.159 11.58 11.93 12.55 0.019 0.037 0.051
216 21 7895.420 8311.500 8359.040 11.37 11.87 12.80 0.008 0.037 0.061
230 35 7908.390 8287.020 8935.980 11.34 11.72 12.44 0.006 0.028 0.066
324 73 8320.710 8325.240 8682.310 9.35 12.11 12.39 0.006 0.028 0.068
349 92 7910.830 8176.370 8634.590 10.28 11.77 12.19 0.009 0.025 0.080
354 98 7899.520 8404.700 9053.119 10.76 11.59 12.55 0.012 0.030 0.088
451 29 8258.271 8632.050 8731.630 11.52 11.91 12.46 0.016 0.033 0.070
471 112 8020.210 8487.649 9024.800 10.84 11.38 12.85 0.005 0.032 0.090
511 64 8046.070 8588.790 9030.040 11.18 12.01 12.66 0.007 0.034 0.107
532 40 7937.440 8398.210 8829.300 10.16 10.91 12.29 0.003 0.021 0.064
704 82 8021.100 8534.090 8735.530 11.07 11.76 12.58 0.008 0.032 0.082
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Table 15.3. Hipparcos minor planets general statistics on aspect data (continued). The distances to the Sun

and to the Earth, the solar phase angle, and the apparent diameter.

Num Distances Solar phase angle Apparent diameter
(IAU) (Sun [AU]) (Earth [AU]) (α [deg]) (ρ [arcsec])

min max min max min med max min med max

1 2.582 2.979 1.864 3.554 14.19 16.09 22.41 0.35 0.40 0.67
2 2.123 3.382 1.733 3.842 13.53 17.43 27.37 0.19 0.29 0.41
3 2.013 3.356 1.309 3.693 14.20 16.65 26.21 0.09 0.12 0.26
4 2.205 2.576 1.712 3.052 17.96 21.77 26.06 0.23 0.28 0.40
5 2.080 2.842 1.369 3.008 15.80 18.02 28.73 0.06 0.08 0.13
6 1.940 2.911 1.207 3.370 14.94 18.99 30.65 0.08 0.13 0.22
7 1.844 2.932 1.131 3.133 16.56 23.29 31.67 0.09 0.12 0.25
8 1.901 2.539 1.447 3.042 17.22 22.72 29.92 0.06 0.08 0.13
9 2.096 2.674 1.371 2.819 19.56 21.35 28.10 0.08 0.12 0.17

10 3.068 3.516 2.564 3.947 13.54 16.08 19.05 0.15 0.18 0.23
11 2.383 2.695 1.815 3.156 15.78 17.78 24.92 0.07 0.11 0.12
12 2.076 2.843 1.421 2.282 16.29 25.16 29.24 0.07 0.09 0.11

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13 2.354 2.794 1.755 2.679 18.48 21.63 24.63 0.11 0.13 0.17
14 2.155 3.006 1.454 3.552 14.04 22.34 27.89 0.06 0.09 0.15
15 2.174 3.130 1.865 3.555 13.59 15.12 25.89 0.11 0.16 0.20
16 2.552 3.297 1.901 3.713 14.16 16.77 22.97 0.10 0.12 0.19
18 1.847 2.785 1.495 3.301 15.23 20.64 27.32 0.06 0.08 0.14
19 2.057 2.826 1.711 2.500 16.39 23.22 28.47 0.12 0.15 0.18
20 2.066 2.738 1.555 3.141 17.96 23.02 28.59 0.07 0.08 0.13
22 2.632 3.003 2.071 3.285 15.90 17.76 22.54 0.05 0.06 0.08
23 2.060 3.210 1.641 3.195 13.72 17.79 28.37 0.05 0.06 0.09
27 1.948 2.746 1.225 2.841 17.05 27.21 29.42 0.05 0.07 0.11
28 2.402 2.727 1.932 2.498 19.85 23.21 24.07 0.07 0.08 0.09
29 2.374 2.674 1.648 2.998 17.22 21.82 24.94 0.10 0.14 0.18

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

30 2.065 2.617 1.344 2.419 16.44 17.87 28.29 0.06 0.08 0.11
31 2.427 3.043 1.786 2.607 17.53 22.61 24.00 0.13 0.15 0.19
37 2.345 3.063 1.592 2.506 14.23 19.33 22.83 0.06 0.08 0.10
39 2.455 3.085 1.912 3.522 13.62 17.64 23.56 0.06 0.09 0.11
40 2.163 2.366 1.445 2.945 18.14 21.83 26.98 0.05 0.06 0.11
42 1.890 2.258 1.110 2.409 20.67 23.54 32.30 0.06 0.11 0.13
44 2.073 2.769 1.375 2.776 20.51 23.48 28.34 0.04 0.04 0.07
51 2.222 2.458 1.688 1.934 19.98 21.23 26.37 0.11 0.12 0.12
63 2.205 2.455 1.689 2.163 19.53 23.52 26.52 0.07 0.08 0.09
88 2.346 2.720 1.704 2.730 17.59 21.58 23.75 0.11 0.14 0.17

115 2.007 2.567 1.339 2.572 21.32 23.01 28.35 0.04 0.05 0.09
129 2.287 2.778 2.052 2.800 18.21 20.86 24.91 0.06 0.07 0.08

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

192 2.144 2.546 1.435 2.083 18.89 19.67 25.90 0.07 0.10 0.10
196 3.029 3.103 2.399 2.948 16.59 18.63 19.24 0.07 0.08 0.08
216 2.230 2.727 1.861 2.763 17.14 19.74 25.94 0.07 0.09 0.10
230 2.272 2.523 1.718 2.494 16.68 18.46 25.26 0.06 0.09 0.09
324 1.771 2.401 0.936 2.970 17.46 18.32 32.60 0.11 0.11 0.36
349 2.678 3.174 2.107 3.620 13.89 14.40 21.29 0.05 0.05 0.09
354 2.479 3.001 1.946 3.593 13.84 18.26 23.16 0.06 0.07 0.11
451 2.845 3.040 2.119 2.719 14.35 17.69 20.29 0.12 0.14 0.15
471 2.279 3.349 1.695 3.155 14.87 17.49 25.28 0.06 0.10 0.11
511 2.631 3.351 2.207 3.562 14.61 18.48 22.05 0.13 0.16 0.21
532 2.329 3.135 1.906 3.654 14.22 20.32 24.74 0.09 0.13 0.17
704 2.614 3.118 2.137 3.364 14.05 18.02 22.04 0.14 0.16 0.21
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16. SUCCESSIVE SPHERE SOLUTIONS

The final step in the main astrometric reductions was the combination of
the reference great-circle data sets accumulated throughout the mission into
a coherent set of astrometric parameters for stars on the whole sky. The
principles of this ‘sphere solution’ process were described in Chapter 11. In
the course of the Hipparcos mission several successive sphere solutions were
made independently by the FAST and NDAC consortia, involving successively
larger data sets or iterations of the main reduction chain. The completion of the
solutions using 12, 18, 30 and (finally) 37 months of data provided important
checkpoints for the validation of the reductions, and allowed the progress of
the astrometric analysis to be followed in terms of the improving statistics
of the FAST/NDAC differences. In this chapter the main features of the
successive sphere solutions are summarised, results of the main comparisons
are presented, and the various sphere solutions are compared with the final
Hipparcos Catalogue.

16.1. Introduction

The series of sphere solutions described and compared in this chapter resulted from the
incorporation of successively more observations, from iterations of the previous steps
of the reduction chain (attitude determination and great-circle reductions), and from
improvements of the weighting schemes and modelling of instrumental effects. The
evolution of the astrometric data in these solutions, and particularly of the FAST/NDAC
differences, strikingly illustrates the convergence of the two complex and rather different
reduction schemes into a single, final catalogue.

The principles of the sphere solution are summarised in Chapter 11. The term is used
here in a broad sense, including both the determination of the abscissa zero points of the
reference great circles (the sphere solution proper) and the subsequent determination
of astrometric parameters for individual stars. In the FAST reduction chain these two
processes were seen as separate tasks, while in NDAC they were combined in a single
task. In both cases the end result was a set of astrometric parameters, in which all
the positions and proper motions were given in one and the same reference frame—
albeit that frame was not the same in FAST and NDAC, and indeed changed slightly
for each new sphere solution. The indefiniteness of the reference frame is inherent
to the principle of Hipparcos observations, where a star was only measured relative to
other stars and never linked directly to any point with a priori known position or proper
motion. Ideally, however, the reference frames of any two sphere solutions should differ
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only by a rigid-body rotation, which is expressed by six numbers (Section 16.6). After
elimination of this rotation difference, the differences in position and proper motion
may be analysed in terms of random, regional and global differences. In this chapter the
successive sphere solutions obtained by FAST and NDAC have all been aligned with
the final Hipparcos Catalogue prior to the comparisons (see Table 16.8).

In contrast with the positions and proper motions, where no ‘origin’ is accessible to
observation by Hipparcos, the trigonometric parallaxes obtained in the reductions are
in principle absolute. The comparison of parallaxes is therefore quite straightforward.

Major milestones of the astrometric reductions were reached with the completion of the
FAST and NDAC sphere solutions using 12, 18, 30 and (finally) 37 months of data.
The main features of these solutions are described in Sections 16.3 to 16.5 and the main
results of their intercomparison are given in Section 16.6. For completeness the final
Hipparcos Catalogue (HIP) and the two preliminary merged catalogues H18 and H30
are included in the comparisons.

16.2. Principles of Iterations

The astrometric reductions for the Hipparcos mission were global in the sense that the
astrometric parameters—positions, parallaxes and proper motions—of a large number
of stars scattered over the whole celestial sphere had to be solved together. This was
necessary in order to achieve a globally consistent system of positions and proper mo-
tions, and for the determination of absolute parallaxes. It was not necessary, though,
that this solution included all the objects observed with the satellite: special objects like
double and multiple stars, stars showing non-linear photocentric motions, and solar
system objects could be linked into the same system at later stages of the reductions.
In principle this global solution should have used all the data collected throughout the
mission in order to obtain the optimum estimate of each parameter. The number of
essentially ‘non-problematic’ stars suitable for this process was about 100 000. Thus, a
rigorous implementation of such a solution would have involved the simultaneous ad-
justment of some 500 000 stellar parameters plus many more describing the instrument
and its scanning motion, using the observation frames as input for the adjustment.

At the time when the software for the Hipparcos data reductions was designed, the
rigorous adjustment of such a large problem was not considered feasible. An alternative,
less rigorous but practicable method was devised, usually referred to as the ‘three-step’
reduction procedure (Section 4.1). The main idea was to introduce an intermediate level
of adjustment, where instantaneous, one-dimensional stellar coordinates along selected
reference great circles were estimated; these coordinates are known as the star abscissae.
The need to iterate the main astrometric reductions was a direct consequence of this
simplified approach adopted by both the FAST and NDAC consortia. Its principle can
be understood as follows.

The elementary Hipparcos observations were one-dimensional, measuring the location
of stars in the direction G perpendicular to the slits of the main grid (Figure 16.1).
In the great-circle reduction, these measurements were combined into estimates of the
star abscissae along the reference great circle. However, because the slits generally
made a small angle ϕ relative to the lines of constant abscissae, the observed quantity
G depended not only on the abscissa v but also, to a smaller extent, on the distance of
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Figure 16.1. Schematic illustration of the abscissa projection error in the great-circle reduction caused by catalogue

errors. RGC = reference great circle; t = true position of star; c = star position according to the current catalogue;

(v, r) = true abscissa and ordinate of the star; r0 = assumed ordinate (computed from the catalogue); ss = observed

location of the star (from measurement of the G coordinate); v0 = inferred abscissa. The error in the inferred abscissa

is given by v0 − v = −(r0 − r) sin ϕ.

the star from the reference great circle, i.e. on the ordinate r. Since r was not estimated
in the great-circle reduction, it had to be computed from the current knowledge of star
positions and instrument attitude. As illustrated in Figure 16.1 the error in the ordinate,
r 0 − r, was transferred into an error in the estimated abscissa through a multiplicative
factor of about sin ϕ. (More accurately, the effective factor was a mean value hsin ϕi
over all the scans across the star considered in the great-circle reduction. This averaging
greatly reduced the resulting error for many stars.)

The reference great circles were generally chosen such that jϕj <~ 1�. Consequently
the catalogue-induced abscissa errors were at most some 2 per cent of the positional
errors of the catalogue used in the great-circle reduction. The rms contribution to
the abscissa errors was typically about 0.7 per cent of the catalogue errors (van der
Marel 1988). Similar considerations can be made for the attitude errors, where the
error component normal to the scanning was propagated into the abscissae with a
corresponding attenuation factor. In the subsequent sphere solution the standard errors
of the astrometric parameters were normally a factor ' 0.2 smaller than the standard
errors in abscissae. Thus, the total attenuation factor for the positional errors, when
propagated from an initial catalogue through the attitude determination, great-circle
reductions and sphere solution, was typically of the order of 0.1 to 0.2 per cent. This
is to be regarded as a gross average; on specific stars the situation may have been much
less favourable.

Initially, the astrometric data in the Hipparcos Input Catalogue were used to determine
the satellite attitude and in the preliminary great-circle reductions. The positional
uncertainty of that catalogue, at the epoch 1990.0, was typically about 0.3 arcsec (Turon
et al. 1995), with zonal systematic errors reaching 0.2 arcsec and with individual errors
up to several arcsec. The corresponding errors after a first sphere solution should
therefore generally be of the order of 0.5 mas, but perhaps reaching several milliarcsec
on some stars. This is not negligible compared with the level of errors expected from
the photon noise, instrument modelling, etc., and the obvious remedy was iteration: the
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Table 16.1. Summary of successive NDAC and FAST sphere solutions, and of the three merged catalogues

H18, H30 and HIP. The initial letter in the solution designations indicates the origin: NDAC (N), FAST (F),

or merged (H). The following number is the approximate number of months of observations that were used

in the solution, with a decimal indicating an iterated or otherwise improved version. ‘R’ signifies restricted

solutions, solving only for positions and parallaxes (with proper motions taken from the Hipparcos Input

Catalogue). N0R is the solution based on the validation data. Subsequent columns give the approximate date

of the solution; the number of stars with accepted astrometric solutions; the total number of abscissae input

to the sphere solution, and the number of abscissae actually used for the accepted stars; the range and number

of orbits used; and the reference epoch for the resulting astrometric parameters. Concerning the range of

orbit numbers it can be noted that no data exist from orbits 2 to 47. The Julian Date for the apogee of orbit

number N is approximately given by 2 447 835.46 + 0.4441N − 1.3 × 10−7N2.

Solution Approx. date No. of No. of absc. No. of absc. Range of No. of Ref.

of creation stars (input) (used) orbits orbits epoch

N0R 27 May 1991 15 564 269 769 81 704 1–1032 171 1990.00

N12 28 Apr 1992 47 061 1 312 713 667 447 1–915 812 1990.00

N12R 12 May 1992 82 309 1 312 713 996 511 1–915 812 1990.00

N18 14 Oct 1992 102 411 1 979 988 1 792 839 1–1336 1215 1990.00

N30 22 Sep 1993 103 131 3 158 933 2 876 215 1–2118 1963 1990.00

N37.1 30 Sep 1994 109 698 3 632 162 3 463 106 1–2768 2328 1990.00

N37.5 25 Apr 1995 111 255 3 570 685 3 490 792 1–2768 2326 1991.25

F12 30 Apr 1992 31 921 1 226 986 424 227 48–925 758 1992.00

F12R 1 Jul 1992 46 716 1 226 986 505 885 48–925 758 1992.00

F18 25 Oct 1992 93 781 1 952 958 1 597 519 48–1336 1184 1990.75

F18.1 23 Jun 1993 93 612 1 952 958 1 573 013 48–1336 1177 1990.75

F30 27 Sep 1993 99 950 3 221 747 2 670 741 48–2129 1914 1991.25

F37.1 22 Oct 1994 117 246 3 724 992 3 592 389 48–2763 2269 1991.25

F37.3 13 Jun 1995 116 683 3 743 053 3 570 708 48–2763 2281 1991.25

H18 23 Sep 1993 105 371 1–1336 1990.75

H30 11 Jan 1994 107 504 1–2129 1991.25

HIP 8 Jun 1996 117 955 1–2768 1991.25

star positions resulting from the first sphere solution were used for an improved attitude
determination, improved great-circle reductions, and an improved sphere solution. In
principle a single such iteration might be sufficient to ensure that the resulting sphere
solution is completely limited by observational noise, and independent of the starting
values used for the astrometric parameters. However, as is generally the case in complex
iterations, some error components decay much slower than the overall variance, and at
least two complete iterations were considered necessary in the case of the Hipparcos
reductions. In reality these iterations were important also for many other aspects of the
reductions, in particular the instrument calibrations, which depended critically on the
accuracy of the star catalogue being used.

The sphere solutions discussed in this chapter are summarised in Table 16.1 and further
described in subsequent sections. Some entries in the Hipparcos Catalogue are clearly
unsuitable for comparison with the earlier sphere solutions, because they finally required
more complex modelling than the standard five-parameter astrometric model assumed
in the sphere solution. This applies in particular to well-resolved double stars, orbital
binaries, variability-induced movers (VIMs), and stochastic solutions (see Volume 1,
Section 2.3 for an explanation of these categories). The statistics and comparisons
given below are therefore restricted to the basic subset of 101 246 entries whose data
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were, in the final catalogue, adopted from the astrometric merging process using the
five-parameter model. The basic subset was extracted from the 117 955 entries in the
Hipparcos Catalogue with astrometric data, by requiring that either Field H59 is blank
(meaning that the entry is not part of the Double and Multiple Systems Annex), or
that Field H60 = ‘S’ (meaning that the star was resolved as a close binary, but that its
photocentre was solved with the standard five-parameter model). Statistics referring to
the whole Hipparcos Catalogue are found in Volume 1, Part 3.

16.3. NDAC Sphere Solutions

Overview of Iterations

The NDAC iteration scheme deviated somewhat from the principle described in the
previous section. In parallel with the star mapper data processing and attitude de-
termination performed at the Royal Greenwich Observatory, a working star catalogue
was maintained and successively updated by means of the star mapper transit residuals
obtained in the attitude fit (Section 6.9; see also van Leeuwen et al. 1992). During
the first 18 months of the mission this catalogue provided far better positions than the
Input Catalogue for many stars, and these were used in the NDAC great-circle reduc-
tions until superseded by the first full-scale sphere solution (N18). Compared with the
FAST scheme this gave a rapid initial improvement of the data, but relatively smaller
improvements by the later sphere solutions.

Subsequent processing in NDAC was based on the N18 catalogue (actually on a slightly
later version including about six weeks of additional data), including a re-run of the great-
circle reductions for the first part of the mission. This resulted first in the 30-months
solution N30, and, after all the mission data had been been included (approximately 37
months in all), the solution N37.1. That catalogue was then used for a third and final
re-run of the attitude determination and great-circle reductions. The resulting abscissae
were used in a series of sphere solutions leading up to the final NDAC solution N37.5.
Versions N37.2 to N37.5 used the same abscissa data as input and differed mainly in
the treatment of colour terms and in the internal weighting of data, as outlined below.

Main Characteristics of the Solutions

N0R: This was the partial sphere solution based on the so-called validation data given
to the reduction consortia prior to the full-scale data distribution. The purpose of the
validation data was to test the interfaces between ESOC and the reduction consortia, to
enable the consortia to test their software for the first time on ‘real’ data, and to make
cross-comparisons of the intermediate results in order to validate the satellite data.
The analysis of the validation data was in NDAC carried all the way through the main
reduction chain, up to the sphere solution, in spite of the very scant sky coverage. This
provided a very important first check of the overall consistency of the data, as discussed
by Lindegren et al. (1992).

N12 and N12R: Both these solutions were based on the same set of abscissae from about
12 months of data collected up to 16 December 1990. In N12 all five astrometric param-
eters were solved whenever possible; in N12R the proper motions were constrained to
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their values in the Input Catalogue and only the positions and parallaxes were updated,
which allowed many more stars to be treated. The criteria for accepting the astrometric
solution on a specific star included an upper limit on the standard error in parallax,
σπ ≤ 4 mas in N12 and σπ ≤ 3 mas in N12R, and on the goodness-of-fit statistic, F2 ≤ 5
(for a definition of F2, see the description of Field H30 in Volume 1). Some stars were
also rejected because of unreasonably large updates in position or proper motion.

Previous sphere solutions had shown that the abscissa variances estimated in the great-
circle reductions (for the ‘smoothed’ solutions) were systematically too small, and that
an extra variance of (2.7 mas)2 had to be added to obtain a reasonable agreement with
the distribution of residuals. This weight correction was used in N12 and subsequent
NDAC sphere solutions, until an improved weighting scheme was introduced with
N37.1 (see below).

N18: This solution was based on about 18 months of data, including observations made
up to 21 June 1991. All five astrometric parameters were estimated. The acceptance
criteria included limits on the standard errors in parallax (σπ ≤ 4 mas) and proper
motion (σµα� , σµδ ≤ 15 mas/yr), and on the correlations between parallax and proper
motion (jρµα�

π j, jρµδ
π j ≤ 0.6).

N30: Observations collected up to 2 June 1992 were included in this sphere solution,
which was the first complete NDAC iteration in the sense that the attitude determination
and great-circle reductions had been re-computed with a star catalogue based on a full-
scale sphere solution (' N18).

N37.1: The NDAC 37-months solutions include data collected up to the actual end of
the scientific operations on 17 March 1993. Starting with N37.1, several improvements
were made in order to obtain valid solutions for as many stars as possible, and to further
reduce modelling errors. The improvements included in particular: relabelling and
merging of data for some stars which for historical reasons had been observed under two
different identifiers; resolution of grid-step errors remaining from previous solutions;
inclusion of the sixth harmonic terms estimated for individual reference great circles;
introduction of non-zero assumed radial velocity for 22 stars (see Volume 1, Table 1.2.3);
and the use of V − I colours (instead of BT −VT ) as the basis for chromaticity calibrations.
The previous upper limits on acceptable astrometric standard errors and correlations
were also removed and replaced by a flagging of weak solutions.

N37.5: The solution N37.1 was used for a complete iteration of the attitude determina-
tion and great-circle reductions. The resulting abscissae were used as input for N37.2
to N37.5, a series of sphere solutions in which the final treatment of chromatic effects,
the sixth harmonic, and the weighting of the abscissae were fixed after considerable
experimentation. Starting with N37.2, the adjustment of the astrometric parameters
were directly made with respect to the epoch J1991.25(TT), thus eliminating the need
for epoch transformations on the resulting catalogue. Each solution produced summary
statistics of the ' 3.5 million abscissa residuals binned according to colour (V − I ),
magnitude (Hp), and orbit number; they were also analysed by linear regression versus
cos 6v and sin 6v for each great-circle reduction. The trends in terms of biases and devi-
ations from the expected unit weight residual were carefully studied and, when relevant,
incorporated as systematic corrections to the abscissae and their standard errors in a
subsequent solution. What was finally obtained (in N37.5) was therefore an internally
consistent solution with an overall unit weight error of 1.000 and with no significant
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trends with magnitude and colour. The re-calibration of abscissa standard errors be-
tween N37.1 and N37.5 resulted in a general decrease by about 14 per cent of the
formal standard errors of the astrometric parameters, although the actual improvement
of the astrometric parameters was probably very marginal (see Section 16.5).

The solution N37.5 also produced output, in the form of adjusted parameters and
residuals, that was used for the final merging of the FAST and NDAC astrometry
(Chapter 17) and for the production of the Hipparcos Intermediate Astrometric Data
(Volume 1, Section 2.8).

Treatment of Chromaticity

Both N12 and N12R included, as the only global parameters, the unknowns Γ23 and
Γ24 which model an abscissa bias varying linearly with colour index and time:

vobs = vcalc + Γ23C + Γ24(t − 1990.5)C + η [16.1]

Here vobs is the observed abscissa, vcalc the abscissa calculated from all parameters
except the global ones, C = (BT − VT ) − 0.5, t is the time of the observation, and η is the
abscissa noise. Colour indices BT − VT were generally taken from the Extended Input
Catalogue (Perryman et al. 1989 Volume II, Section 18.2), with some updates resulting
from the star mapper photometric processing. The results for the chromaticity were
rather similar in the two solutions:

Γ23 = −1.355 ± 0.015 mas mag−1

Γ24 = +0.339 ± 0.100 mas mag−1 yr−1

�
N12 [16.2]

Γ23 = −1.425 ± 0.009 mas mag−1

Γ24 = +0.313 ± 0.038 mas mag−1 yr−1

�
N12R [16.3]

Solution N18 contained the same chromatic terms (along with additional parameters
discussed below), and the result agrees well with the earlier determinations:

Γ23 = −1.404 ± 0.007 mas mag−1

Γ24 = +0.330 ± 0.020 mas mag−1 yr−1

�
N18 [16.4]

From N30 onwards, the reference epoch for Γ23 was taken to be J1991.25 instead of
J1990.5. The result for N30 was:

Γ23 = −1.110 ± 0.004 mas mag−1

Γ24 = +0.366 ± 0.007 mas mag−1 yr−1

�
N30 [16.5]

corresponding to the value −1.385 ± 0.007 mas/mag at J1990.5. In N37.1 the colour
index V − I was used instead of BT − VT , resulting in a slight change in the numerical
values:

Γ23 = −1.166 ± 0.006 mas mag−1

Γ24 = +0.332 ± 0.007 mas mag−1 yr−1

�
N37.1 [16.6]

Using the same abscissa input as for the 30-month solution, a special solution was made
in order to investigate the dependence of the chromatic displacement on the colour
index. In this solution a sixth parameter (a6) was added for each star, while no global
chromatic terms were used. With vcalc denoting the abscissa calculated without any
chromatic term, using the normal five astrometric parameters (a1 to a5), the observation
equation for the additional parameter was written:

vobs = vcalc + [−1.110 + 0.366(t − 1991.25)]a6 [16.7]
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According to Equation 16.5 the coefficient in brackets equals the mean chromatic
displacement per magnitude in BT − VT , assuming that the effect depends linearly on
that colour index. The standard errors of the individual estimates of a6 were typically
around 0.8 mas, or 0.8 mag if the parameter is interpreted as a colour index. Mean
relations between a6 and the colour indices BT −VT and V − I are shown in Figures 16.2–
16.3. It appears that the relation to V − I is the more linear one, at least for the very
red stars, which motivated the switch from BT − VT to V − I from N37.1. However,
both relations show some significant curvature and kinks in the well-determined colour
interval.

It was suggested by M. Grenon that the effective wavelength might be a better inde-
pendent variable for modelling the chromatic abscissa displacement, and formulae for
calculating λeff as function of V − I and t were provided. A simple transformation of
the V − I scale in Figure 16.3 into the effective wavelength at mid-mission indicated
that λeff probably gives the best overall linear representation of the effect (Figure 16.4).
In N37.5 the independent variable for the chromatic displacement was taken to be the
dimensionless quantity [λeff (V − I , t) − 550 nm]/(50 nm), replacing the (V − I ) − 0.5
used in N37.1.

Preliminary runs with all 37 months of data indicated that the chromatic behaviour
of the instrument changed towards the end of the mission, and that a simple linear
variation of the chromaticity with time would no longer be sufficient. Figure 16.5
shows the chromaticity obtained for the individual great-circle reductions by regression
of the abscissa residuals against λeff . The roughly linear variation up to day 1170 (mid-
March 1992) agrees well with the previously determined Γ23 and Γ24, but this trend is
then replaced by a rather erratic behaviour. Much of the scatter seen in this figure is
actually physically significant and anomalous variations can be discerned also earlier in
the mission, especially around day 490 (April–May 1990). The chromatic modelling
was therefore modified to include an a priori correction for the individual orbits, on top
of which the global parameters Γ23 and Γ24 were determined. The relevant terms in the
observation equations were therefore written:

vobs = vcalc +
�
QN + Γ23 + Γ24(t − 1991.25)

�λeff − 550 nm
50 nm

+ η [16.8]

where QN is the a priori chromaticity in orbit N shown in Figure 16.5. The chromatic
parameters were found to be:

Γ23 = +0.049 ± 0.004 mas
Γ24 = +0.010 ± 0.005 mas yr−1

�
N37.5 [16.9]

In principle these parameters should vanish in view of the a priori correction of chro-
maticity through QN . The above values, being below the 0.1 mas level, were however
considered acceptable.

Harmonic Terms

The harmonic terms are systematic displacements of the abscissae which are periodic
functions of the abscissa difference between the star and the Sun, v − v�. Consideration
of possible thermally induced variations of the basic angle, related to the satellite/Sun
geometry, led to the introduction of the global parameters Γ2 to Γ12, which express such
a variation up to the sixth harmonic, assuming phase coherence over the whole mission
(Lindegren et al. 1992). These parameters were included in solution N0R and N18. In
N18 all eleven parameters were smaller than 0.1 mas in absolute value, although some
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of them were formally significant. Special tests were also carried out: the 18 months of
data were split into odd- and even-numbered reference great circles, and independent
sphere solutions were calculated for the two data sets. The global harmonic parameters
were found to be rather different in the two solutions, supporting the conclusion that
none of them were really significant. In subsequent solutions no global harmonic term
was therefore included.

While systematic variations related to the satellite/Sun geometry thus appeared to be
negligible, the abscissa residuals for individual great-circle reductions often showed a
pronounced pattern with a dominant period of 60� (the ‘sixth harmonic’). This can be
understood as an effect of the relative difficulty in estimating this particular harmonic
component of the abscissae, which in turn is related to the particular value of the basic
angle, ' 58�. In different great-circle reductions the sine and cosine components of
the sixth harmonic are excited by unpredictable causes and therefore result in a quasi-
random distribution of phases. This explains why the global parameters Γ11 and Γ12

were small, even if the effect was large on individual great circles. The amplitude of the
sixth harmonic was typically about 2 mas, but may reach 10 to 20 mas in some great-
circle reductions. In the 37-month solutions the coefficients of the sixth harmonic were
determined independently for each great-circle reduction by analysis of the residuals.
The corresponding harmonics were then removed in the subsequent solution. This
process had essentially converged before the calculation of the final solution N37.5.

Gravitational Deflection

Solutions N30, N37.1 and N37.5 included the global parameter Γ13, which is a cor-
rection to the general-relativistic light deflection (Perryman et al. 1989 Volume III,
Section 9.3). It is related to the PPN parameter γ by:

γ = 1 +
Ac2

2GS
Γ13 [16.10]

where 2GS /Ac2 = 4.0719 . . . mas is the deflection at right angles to the solar direction
for an observer at one astronomical unit (A) from the Sun (see also Equation 11.19).
The following values were obtained:

γ = 0.971 ± 0.006 (N30)

γ = 0.993 ± 0.007 (N37.1)

γ = 0.992 ± 0.005 (N37.5)

[16.11]

The reason for the rather low value of γ in N30 is not known; possibly it is related to
the modelling of the sixth harmonic, which was introduced with N37.1. The other two
values are not significantly different from unity, as predicted by General Relativity.
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Figure 16.2. The chromatic effect studied by solving the abscissa displacement for each star (as a sixth ‘astrometric’

parameter, a6) and calculating a mean value for each bin in the colour index BT − VT . The data were derived by

NDAC in a special 30-month solution.
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Figure 16.3. The same as Figure 16.2, but with a6 binned according to colour index V − I .
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Figure 16.4. The same as Figure 16.2, but with a6 binned according to the effective wavelength at epoch J1991.25.
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Figure 16.5. Evolution of chromaticity (QN ) determined independently for each great-circle reduction, i.e. as a

function of the orbit number, N. The data were derived by NDAC in a preliminary 37-month solution.
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16.4. FAST Sphere Solutions

Overall Organisation

Unlike NDAC, the sphere solution and the determination of the astrometric parameters
were considered as two different tasks in the data reduction scheme adopted by FAST
(see Chapter 11).

In the first step a sphere solution was computed from the reduction on the circles to
bring all the abscissae of the subset of stars referred to as the primary reference stars
into the same reference system. Up to this point the abscissae had been constructed
with a set of inconsistent origins on the circles. The main result of the FAST sphere
solution was then a file containing the correction to be applied to each origin, one per
circle, so that the resulting network of circles determined a consistent reference frame
on the sphere. At the same time several global parameters were computed, such as those
connected to the chromaticity and the thermal effects.

The criteria used to select the primary reference stars included the number of abscissae
available and the fact that the observations were clean, i.e. the star was not detected
to be, or suspected of being, double. Also, a primary reference star had to be photo-
metrically constant, as far as this could be ascertained with the Hipparcos observations.
In addition, the distribution of the stars was chosen to achieve a uniform density on
the sky with at least one star per square degree. Finally after a first run, all the stars
with large correlation coefficients between the astrometric parameters were excluded
from the selection, on the ground that this indicated a poor time distribution of the
observations.

In the second step, the abscissae of the primary reference stars and of the other pro-
gramme stars were referred to the new origins and corrected for the global parameters.
Then, on a star by star basis, a least-squares fit of the abscissae was made for the five
astrometric parameters ∆λ�, ∆β, ∆π, ∆µλ�, ∆µβ . The remaining grid-step errors were
searched for in this step and removed accordingly. For the double and multiple stars
a similar procedure was applied for the photocentre or the primary, according to the
separation, by correcting the abscissae as explained in Chapter 13.

Iterations

After every run, corresponding to a sphere solution and an astrometric solution for all the
stars, an improved astrometric catalogue was made available, at least for the stars with
an accepted solution. This new version of the catalogue was virtually free of grid-step
errors and much closer to the true position on the sky than the Input Catalogue. In the
iterative mode, advantage was taken of the good knowledge of the along-scan attitude to
improve, with the star-mapper data, the two transverse attitude angles (see Chapter 7).
Then, from the improved attitude and the new reference catalogue, an update was
made of the residual between the observed and computed abscissae of the reference
great circles already processed before the iteration. The same reference catalogue was
used also for the processing of subsequent observations not yet considered.
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This procedure led to the computation of several solutions as more data were made
available. The main characteristics of these solutions regarding the duration, number
of stars and observations are given in Table 16.1. The various iterations over the 37
months are listed in Table 16.2.

Main Features of the Iterated Solutions

The first sphere solution was computed in November 1990 on the 300 reference great
circles derived from the first six months of data. This run was used to test the two
methods developed within the FAST consortium, to solve the equations of the sphere,
on real data. Improved positions were obtained for about 10 000 stars.

F12 and F12R: These two solutions were constructed from a full year of data. They
yielded the estimates of the origins of 758 reference great circles. The instrumental
effects were represented by seven global parameters for the thermal variations and a
single global term for the chromaticity. Thus, with Γk denoting the kth global parameter,
the abscissa correction of the ith star on the j th circle was written:

vobs
j i − vcalc

j i =
8X

k=1

∂v ji

∂Γk
Γk [16.12]

with the partial derivatives:

∂v ji

∂Γk
= cos n(vji − v j�), with n = 1, 2, 3, 6 for k = 1, 2, 4, 6 [16.13]

∂v ji

∂Γk
= sin n(vji − v j�), with n = 2, 3, 6 for k = 3, 5, 7 [16.14]

for the thermal variations, and:

∂v ji

∂Γ8
= (B − V )i − 0.5 [16.15]

for the chromatic term. In these equations v ji is the abscissa of the ith star and vj� that
of the Sun. The values of the coefficients Γk found in the different iterations are given
in Table 16.3. The meaning of the coefficients evolved somewhat during the processing
as the instrument modelling was refined.

The version F12 of the solutions included the five astrometric parameters for 30 411
stars. However the time base of 12 months was too short an interval to expect an
accurate determination of the proper motions. The run served primarily as a test of
all the interfaces. A restricted solution, F12R, was computed by adjusting only the
two positional parameters and the parallax, constraining the proper motions to their
reference catalogue values. The median formal errors in ecliptic longitude and latitude
reached respectively 2.0 and 1.7 mas, and 2.5 mas in the parallax.

F18 and F18.1: These runs were based on about 18 months of data covering the
observations from the beginning of the mission until 21 June 1991. The instrument
modelling was the same as for the 12 months solution. The amplitudes of the thermal
terms were all less than one milliarcsec. Only the chromatic term brought a significant
contribution to the abscissae with an amplitude larger than 1 mas/mag. The abscissa
origins could be determined with a precision better than 0.2 mas and ranged within
5–10 mas from the arbitrary origins set by the great-circle solutions. F18.1 was the
first iterated solution using both a new reference catalogue and the attitude software in
iterated mode. The gain in precision for the astrometric parameters was between 6 and
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9 per cent as shown in Figure 16.6, where the dashed lines refer to the solution before
iteration. The activation of the attitude in iterated mode was the only significant change
between F18 and F18.1.

F30: All observations up to 6 June 1992 were used to build the 30-month solution
leading to 1914 reference great circles. For the first 18 months the attitude and abscissae
were not recomputed but were taken from F18.1. For the remaining data a non-iterated
mode was used for the attitude and F18 was the reference catalogue. A new model for
the chromaticity was introduced which changed the meaning of the parameters Γ6, Γ7

and Γ8 (Table 16.3), which were now defined as:

∂v ji

∂Γ6
= (V − I )i − 0.5 [16.16]

∂v ji

∂Γ7
= [(V − I )i − 0.5]2 [16.17]

∂v ji

∂Γ8
= [(V − I )i − 0.5](Tj − T0) [16.18]

where T0 = J1990.75 was the reference epoch for these solutions. Note that the colour
index used was V − I instead of B − V . In Figure 16.8, which shows the corrections to
the abscissa origins as a function of time, the difference in quality between the circles in
iterated mode and those in nominal mode (from day 902) is evident. The astrometric
precision improved, as expected, more or less as t−1/2 for the positions and parallax and
as t−3/2 for the components of the proper motion.

F37, F37.1, F37.3: The nominal processing of the observations acquired later than 20
April 1991 was done with the F18 reference catalogue. The 18-month abscissae and
attitude were kept and a new catalogue F37 was produced at the end of this processing,
with the same instrument modelling as in F30.

An iterated solution was computed with all the available data, including the observations
carried out in sun-pointing mode. This resulted in 2269 reference great circles and an
astrometric solution (F37.1) for all the stars, single as well as double.

The very last iteration in FAST led to the catalogue F37.3 which was used as the FAST
solution for the merging (Chapter 17). The instrument modelling with the global
parameters was kept unchanged. However, in addition to the origin of each great circle,
a function Cj cos 6(v − v�) + Sj sin 6(v − v�) was determined to account for a possible
systematic resonance between the basic angle and 360�. The amplitudes found in the
FAST solutions were very similar to NDAC’s with Cj , Sj ' 2 mas, although for a few
great circles the amplitude was as large as 10 mas. The mean and rms abscissa residuals
over each reference great circle are shown in Figures 16.9–16.10. The marked change
in the dispersion of the residuals at about day 600 followed a modification in the time
allocation strategy at the grid level.

The final precision is shown in Figure 16.7 as a function of the ecliptic longitude. For
the sake of comparison, the F30 solutions are shown in dashed lines. As expected the
improvement was particularly noticeable in proper motion because of the longer time
base. This solution included the astrometric parameters for 16 180 double stars of which
10 220 were computed for the brighter component while for the 5960 close binaries with
separation % < 0.35 arcsec the astrometric solution referred to the photocentre. The
typical precisions of the solutions, for single and double stars are given in Table 16.4.
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Gravitational Deflection

The FAST sphere solutions described above did not include a global parameter cor-
responding to a correction to the general-relativistic light deflection. The observation
equations were instead corrected in accordance with General Relativity, i.e. assuming
the nominal value for the PPN parameter, γ = 1. However, several special runs of the
37-month solution were made in which this parameter was treated as a global parameter
(see Equation 11.19). The runs differed in the modelling of other global parameters and
the selection of stars and reference great circles, but they all produced results consistent
with the General Relativistic value of γ = 1 to within the standard errors of the solutions.
The net result of these experiments can be summarised as:

γ = 1.000 ± 0.004 [16.19]

but with non-negligible correlations with the parallaxes and several other global param-
eters.

16.5. Evolution of Standard Errors

The standard errors in position were generally different in right ascension and decli-
nation: in fact, the error ellipses tended to be oriented along the ecliptic axes due to
the symmetry of the scanning law with respect to the ecliptic plane. The situation was
similar for the standard errors in the proper motion components. When considering
the global precision of the solutions, it is convenient to neglect the anisotropy of the
uncertainty and adopt the rms values

σpos =

r
σ2

α� + σ2
δ

2
and σµ =

s
σ2

µα�
+ σ2

µδ

2
[16.20]

as representative of the standard errors in position and proper motion for any given star.
These quantities are invariant with respect to the coordinate system used. σµ should
not be confused with the standard error of the modulus of the proper motion.

The evolution of the standard errors of the NDAC, FAST and merged solutions are
illustrated in subsequent figures and tables. Only stars in common with the ‘basic subset’
defined in Section 16.2 are included in the statistics.

NDAC and FAST Solutions

The distributions of the formal standard errors of the astrometric parameters are shown
in Figures 16.11–16.13 for NDAC, and in Figures 16.15–16.17 for FAST. In each
diagram the distributions are compared with that of the final Hipparcos Catalogue. The
10th, 50th and 90th percentiles of the distributions are given in Tables 16.5 and 16.6.
The positions refer to the mean effective catalogue epochs hTeffi also given in the tables;
these were obtained as the median values of the individual effective epochs calculated
by Equation 1.2.10 of Volume 1.
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Table 16.2. History of the FAST processing with attitude in the initial mode (label 0) or with the iterated

mode according to the iteration level (labels 1, 2, 3). For example the solution over 30 months was constructed

with the F18 catalogue as reference data, and resulted in the catalogue F30. The first 18 months included

the improved attitude using the F18 positions and the along-scan angle derived with the F18 abscissae, while

the observations between 18 and 30 months were processed in the initial mode directly from the star mapper

attitude. HIC = Hipparcos Input Catalogue.

Reference Output Months

catalogue catalogue 6 12 18 30 37

HIC F12 0 0

HIC F18 0 0 0

F18 F18.1 1 1 1

F18 F30 1 1 1 0

F18 F37 1 1 1 0 0

F37 F37.1 2 2 2 1 1

F37.1 F37.3 3 3 3 2 2

Table 16.3. Values of the global parameters in the FAST solutions. The instrument model changed between

the 18-month and 30-month solutions.

Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 Γ7 Γ8

mas mas mas mas mas mas mas mas/mag

F12R −0.0082 +0.0146 −0.0838 +0.2833 +0.4379 +0.4877 −0.4260 −2.1491

F18.1 +0.0270 −0.0104 −0.0293 −0.0221 −0.0363 +0.0506 −0.0286 −1.5971

mas mas mas mas mas mas/mag mas/mag2 mas/mag/yr

F30 +0.0075 +0.0004 +0.0034 −0.0031 −0.0065 −0.3906 +0.0843 +0.3764

F37.3 +0.0080 −0.0050 +0.0098 −0.0038 −0.0031 −0.3221 +0.1226 −0.0622

Table 16.4. Mean precision of the astrometric parameters for a star of magnitude Hp = 8. For double

stars separate statistics are given for close systems (separation % < 0.35 arcsec), for which the astrometric

parameters of the photocentre were derived, and wider systems where the solution referred to the primary

component.

Parameter Single stars Double stars Unit

photocentre primary

λ� (= λ cos β) 0.8 1.0 1.8 mas

β 0.7 0.8 1.5 mas

π 1.0 1.4 2.2 mas

µλ� 1.0 1.3 2.2 mas/yr

µβ 0.8 1.1 1.8 mas/yr
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Figure 16.6. Mean precision of the FAST 18-month solutions as function of ecliptic latitude. Dashed line: non-

iterated solution (F18); continuous line: iterated solution (F18.1).
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Figure 16.7. Mean precision of the FAST 30- and 37-month solutions as function of ecliptic latitude. Dashed line:

30-month solution (F30); continuous line: the final, iterated 37-month solution (F37.3).
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Figure 16.8. Correction to the a priori origins of the circles obtained in the solution F30. The attitude of the first

18 months (up to day 902) was determined with the iterated mode while the rest used standard processing.
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Figure 16.9. Mean residual of the abscissae of the final FAST solution (F37.3) as a function of time. Each data

point corresponds to a single circle.
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Figure 16.10. Root mean square residual of the abscissae of the final FAST solution (F37.3) as a function of time.

Each data point corresponds to a single circle.
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Table 16.5. Summary of formal standard errors in the successive NDAC sphere solutions, for stars in

common with the ‘basic subset’ of the final catalogue (' single or at least unproblematic stars). The number

of stars included in the statistics is given in the second column. The typical range of standard errors is given

in the form of the 10th and 90th percentiles, i.e. the values below which 10 and 90 per cent of the standard

errors fall. The typical standard error is given by the median value, or 50th percentile. σπ is the standard error

in parallax; σpos and σµ are the standard errors in position and proper motion, defined by Equation 16.20.

The standard errors in position refer to the epoch in the first column, which is close to the mean epoch of

observation for the data considered.

Solution No. of Standard Percentiles Unit

Epoch stars error 10% 50% 90%

N0R 13 887 σπ 1.64 3.67 14.94 mas

1990.40 σpos 1.31 3.00 11.35 mas

N12 43 053 σπ 1.51 2.10 3.03 mas

1990.40 σpos 1.20 1.56 2.30 mas

σµ 3.96 5.24 7.60 mas/yr

N12R 75 919 σπ 1.52 2.18 2.76 mas

1990.40 σpos 1.20 1.61 2.13 mas

N18 94 210 σπ 1.34 1.98 2.79 mas

1990.70 σpos 1.05 1.47 2.15 mas

σµ 2.37 3.35 5.06 mas/yr

N30 96 881 σπ 1.05 1.54 2.12 mas

1991.15 σpos 0.82 1.13 1.59 mas

σµ 1.13 1.60 2.34 mas/yr

N37.1 100 717 σπ 1.00 1.49 2.09 mas

1991.25 σpos 0.78 1.08 1.56 mas

σµ 0.90 1.29 1.99 mas/yr

N37.5 101 071 σπ 0.85 1.27 1.92 mas

1991.25 σpos 0.64 0.93 1.42 mas

σµ 0.74 1.11 1.81 mas/yr

The standard errors shown in these figures and tables depend on the a priori weights
assigned to the input data. For instance, a re-evaluation of the weights between solutions
N37.1 and N37.5 accounts for most of the apparent improvement between these two
solutions. The actual improvement of the successive solutions may however be appre-
ciated from the distributions of the parallax values, and in particular the tail of negative
values, which resembles the distribution of true errors. These distributions are shown
in Figures 16.14 and 16.18, again with the final catalogue included for comparison.

The temporal evolution of the median standard errors and fraction of negative paral-
laxes is summarised in Figures 16.19–16.22. The positions and parallaxes improve,
as expected, roughly as t−1/2, if t is the total duration of the observations, and the
proper motions slightly slower than t−3/2. Empirically, the fraction of negative parallaxes
improves roughly as t−1.0.
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Table 16.6. Summary of formal standard errors in the successive FAST sphere solutions, for stars in common

with the ‘basic subset’ of the final catalogue. See Table 16.5 for further explanation.

Solution No. of Standard Percentiles Unit

Epoch stars error 10% 50% 90%

F12 30 411 σπ 3.66 6.24 10.91 mas

1990.40 σpos 2.81 5.10 9.50 mas

σµ 2.93 4.96 8.20 mas/yr

F12R 44 756 σπ 1.38 2.33 3.44 mas

1990.40 σpos 1.07 1.72 2.56 mas

F18 88 922 σπ 1.08 1.79 2.90 mas

1990.70 σpos 0.84 1.34 2.21 mas

σµ 1.91 3.07 5.20 mas/yr

F18.1 89 040 σπ 1.23 1.71 2.55 mas

1990.70 σpos 0.88 1.27 1.96 mas

σµ 2.03 2.95 4.65 mas/yr

F30 95 025 σπ 0.89 1.34 1.93 mas

1991.15 σpos 0.69 0.98 1.43 mas

σµ 0.98 1.42 2.16 mas/yr

F37.1 101 222 σπ 0.87 1.32 1.95 mas

1991.25 σpos 0.67 0.96 1.45 mas

σµ 0.79 1.16 1.85 mas/yr

F37.3 101 189 σπ 0.85 1.30 2.02 mas

1991.25 σpos 0.65 0.95 1.50 mas

σµ 0.76 1.15 1.92 mas/yr

Table 16.7. Summary of formal standard errors in the merged solutions H18, H30 and HIP (the final

Hipparcos Catalogue), for stars in common with the ‘basic subset’ of the final catalogue. See Table 16.5 for

further explanation. Detailed statistics for the whole Hipparcos Catalogue are found in Volume 1, Part 3.

Solution No. of Standard Percentiles Unit

Epoch stars error 10% 50% 90%

H18 96 692 σπ 1.24 1.87 2.71 mas

1990.70 σpos 0.97 1.39 2.09 mas

σµ 2.23 3.20 4.99 mas/yr

H30 100 293 σπ 0.97 1.44 2.03 mas

1991.15 σpos 0.76 1.06 1.51 mas

σµ 1.06 1.51 2.26 mas/yr

HIP 101 246 σπ 0.71 1.06 1.62 mas

1991.25 σpos 0.53 0.77 1.19 mas

σµ 0.61 0.91 1.49 mas/yr

Merged Solutions

Table 16.7 summarises the standard errors in the catalogues obtained by merging (com-
bining) the FAST and NDAC sphere solutions. H18 and H30 are provisional cata-
logues constructed from the 18 and 30-month solutions, while HIP designates the final
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Hipparcos Catalogue. The merging technique used for the final catalogue is described
in detail in Chapter 17; briefly, it combines the intermediate abscissa results from the
two consortia into new solutions for the astrometric parameters, taking into account
the estimated correlations between the two data sets. The resulting standard errors
reflect the improvement expected from the combination of data which are only partially
correlated.

In contrast to the elaborate merging of the final data, H18 and H30 were constructed by
simple averaging of the astrometric parameters and covariance matrices. Equal weight
was given to the contributing solutions: N18 and F18.1 for H18, and N30 and F30 for
H30. Data for stars found in only one of the contributing solutions were directly copied
to the merged catalogues, which therefore contain the union of the entries solved by
NDAC and FAST. The following transformations were made before the merging:

• the FAST results, including the covariance matrices of the astrometric parameters,
were transformed from ecliptic to equatorial coordinates (Volume 1, Section 1.5);

• the NDAC results, including the covariance matrices, were transformed to the epochs
adopted for the merged catalogues (J1990.75 for H18, J1991.25 for H30—the FAST
solutions already referred to these epochs);

• each contributing solution was transformed to a common reference frame by appli-
cation of suitable corrections to the orientation and spin of their coordinate systems.
Since the final, extragalactic reference frame (Chapter 18) was not yet available,
the common reference frame was chosen to be approximately aligned with the FK5
catalogue.

No mean result was computed when the two contributing solutions differed by more
than 60 mas in position. This happened for 22 stars in N18/F18.1, and for only one
star in N30/F30. After removal of these stars, no gross inconsistencies were found in
parallax or proper motion.

16.6. Intercomparisons

The comparison of successive sphere solutions in terms of random and systematic differ-
ences has been one of the most important means of checking the reduction procedures
and ascertaining the quality of the final catalogue. This section gives an overview of the
rather extensive investigations of the various sphere solutions carried out in the course
of the reductions. For uniformity, however, the computation of differences and all
their analysis have been made afresh after the completion of the Hipparcos Catalogue,
using a single and well-defined set of analysis tools. All comparisons are restricted to
intersections with the basic subset introduced in Section 16.2.

Rotation Differences

Before comparison, all solutions were aligned with the Hipparcos Catalogue by applying
the orientation and spin differences in Table 16.8. The components of the orientation
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Figure 16.11. Distribution of formal standard errors in position (σpos in Equation 16.20) for the NDAC sphere

solutions (N0R to N37.5) and for the Hipparcos Catalogue (HIP). The data refer to the approximate mean epoch of

each solution as given in Table 16.5.
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Figure 16.12. Same as Figure 16.11, but for the standard errors in proper motion (σµ in Equation 16.20).
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Figure 16.13. Same as Figure 16.11, but for the standard errors in parallax (σπ ).
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Figure 16.14. Distribution of parallaxes in the NDAC sphere solutions and the Hipparcos Catalogue. The improve-
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Figure 16.16. Same as Figure 16.15, but for the standard errors in proper motion (σµ in Equation 16.20).
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Figure 16.17. Same as Figure 16.15, but for the standard errors in parallax (σπ ).
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Figure 16.21. Same as Figure 16.19 but for the standard errors in parallax.

Months of data included

P
er

ce
nt

ag
e 

ne
ga

tiv
e 

pa
ra

lla
xe

s

10 20 30 40
3

4

5

10

20

30

7 8 9

6

7
8
9

FAST
NDAC
merged

R

R

Iter

R

Figure 16.22. This diagram shows the percentage of negative parallaxes in the various solutions as a function of

the length of the data set. Note that the points for the merged catalogues H18, H30 and HIP (filled squares) are

significantly below the corresponding points for the FAST and NDAC solutions.



350 Successive Sphere Solutions

Table 16.8. Orientation and spin differences between the various sphere solutions and preliminary catalogues,

compared with the final Hipparcos Catalogue. See Equation 16.21 for the definition of the orientation

differences ("0, referred to epoch J1991.25) and spin differences (!). The last two columns give the mean

standard errors of the orientation and spin angles. H37C is the final merged catalogue before it was rotated

to the extragalactic reference frame; the orientation and spin parameters in the final row are thus precisely the

values adopted for rotating H37C to HIP.

Orientation (Sol−HIP) Spin (Sol−HIP) Standard errors

Solution ε0x ε0y ε0z ωx ω y ωz σε σω

(Sol) mas mas mas mas/yr mas/yr mas/yr mas mas/yr

N0R +17.123 −30.384 +72.228 −0.754 +0.563 +1.362 0.095 0.079

N12 −40.411 −41.606 +67.784 −1.201 +0.974 +1.239 0.026 0.030

N12R −39.827 −42.139 +67.815 −0.549 +0.253 +1.302 0.027 0.032

N18 −39.937 −41.468 +67.559 −1.235 +0.952 +1.080 0.008 0.012

N30 −39.823 −41.541 +67.565 −1.425 +1.013 +0.968 0.003 0.005

N37.1 −39.904 −41.593 +67.659 −1.335 +0.803 +1.035 0.003 0.003

N37.5 −39.748 −41.651 +67.619 −1.314 +0.707 +0.978 0.002 0.003

F12 −24.615 −30.000 +78.124 −0.012 +1.683 +1.910 0.062 0.079

F12R −23.949 −22.528 +69.379 −0.516 +0.531 +1.312 0.027 0.034

F18 −24.174 −27.995 +56.402 −0.462 −0.886 +4.109 0.009 0.013

F18.1 −24.029 −29.734 +58.680 −0.567 −3.251 +6.132 0.007 0.011

F30 −24.192 −27.965 +56.493 −0.524 −0.809 +4.013 0.003 0.004

F37.1 −24.201 −27.554 +56.230 −0.582 −0.468 +3.665 0.003 0.003

F37.3 −24.218 −27.532 +56.190 −0.590 −0.453 +3.661 0.002 0.002

H18 −19.351 −9.315 +22.123 −0.704 +0.035 +0.471 0.033 0.010

H30 −19.108 −8.510 +20.914 −0.707 +0.042 +0.473 0.002 0.003

H37C −19.1 −8.5 +20.9 −0.73 +0.05 +0.47

and spin differences (ε0x, ε0y, ε0z, ωx, ω y, ωz) were determined by a robust least-squares
method, using the following four observation equations for each star in the basic subset:

(αS − αH) cos δ = −ε0x sin δ cos α − ε0y sin δ sin α + ε0z cos δ

δS − δH = +ε0x sin α − ε0y cos α

(µα�)S − (µα�)H = −ωx sin δ cos α − ω y sin δ sin α + ωz cos δ

(µδ )S − (µδ )H = +ωx sin α − ω y cos α

[16.21]

Here, subscripts S and H respectively signify the astrometric parameters in the sphere
solution and the Hipparcos Catalogue, always referred to the epoch J1991.25.

Remaining differences in the astrometric parameters were analysed by a variety of meth-
ods, with an aim to characterise both the random and the systematic differences between
the solutions. The most significant results of this analysis are described hereafter.

Random Differences

For each of the five astrometric parameters, the distributions of the differences between
the NDAC and FAST solutions are shown in Figures 16.23–16.27. As a measure of the
width of each distribution, a robust ‘standard deviation’ was computed for each curve;
these values are given in Table 16.9. The standard deviations were computed from the
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quantiles x∆a( f ) of the differences, i.e. the values below which a given fraction f of the
differences ∆a fall. Specifically, the first and fifth sextiles of the distributions were used:

σ∆a = 0.5168

�
x∆a

�
5
6

�
− x∆a

�
1
6

��
[16.22]

For a normal distribution this gives the approximate standard deviation. Here, ∆a
represents the difference in any of the parameters: ∆α�, ∆δ , ∆π, ∆µα�, ∆µδ , with the
asterisk signifying an implicit cos δ factor, and with all differences taken in the sense
NDAC minus FAST.

Table 16.10 similarly gives the standard deviations of the differences of each solution
with respect to the Hipparcos Catalogue. The overall convergence of the FAST and
NDAC solutions towards each other, and towards the final catalogue, is readily seen in
these diagrams and tables. Apart from the obvious improvements resulting from the
addition of more observations, it is remarkable how the FAST solutions improved by
iteration (from F18 to F18.1, and from F37.1 to F37.3; also the NDAC solutions N37.1
to N37.5).

The robust method of Equation 16.22 was introduced because the distributions in
Figures 16.23–16.27 are not quite Gaussian: empirically, the far wings tend to decay
exponentially, i.e. much slower than for a normal curve. However, even if the errors
of each consortium were normal random variables, the distributions in these diagrams
could not be expected to be Gaussian, simply because they contain a mixture of popula-
tions with different standard deviations. In order to test whether the differences behave
normally, they should be scaled by their respective standard errors. Unfortunately the
standard errors of the individual differences cannot easily be estimated. As a simple
substitute, normalised differences were computed as:

∆a =
aN − aFq
σ2

a,N + σ2
a,F

[16.23]

where a stands for any of the five astrometric parameters and σa for its standard error
from the sphere solution. If the standard errors are correctly estimated and not too
unequal, then ∆a should be approximately normal with standard deviation

p
1 − ρ,

where ρ is the correlation between the NDAC and FAST errors.

The distributions of the normalised differences in parallax are shown in Figure 16.28.
The standard deviation of ∆π decreases from about 0.78 in the early solutions to 0.63
in the final ones, possibly indicating an increased correlation between the consortia
solutions. More significant is perhaps the fact that the curves in Figure 16.28 are much
more Gaussian-like than in Figure 16.27. Probability plots of ∆π (Figure 16.29) show
the deviations from normality much more clearly: for the 30-month solutions and for
the final solutions these deviations are remarkably small.

Large-Scale Differences

The Hipparcos mission was designed to make global measurements, directly linking
widely separated parts of the sky by means of the basic angle of 58�. It is therefore of
great interest to see how well different regions of the sky are connected to the mean
reference frame defined by all the regions taken together. Some of the extragalactic link
data (in particular the VLBI, MERLIN and HST observations; see Chapter 18) provide
an external check on possible large-scale distortions of the Hipparcos reference frame,
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Table 16.9. Standard deviations of the differences in astrometric parameters between the FAST and NDAC

sphere solutions, after each solution had been aligned with the Hipparcos Catalogue by application of the

orientation and spin differences in Table 16.8. The second and third columns give the number of stars used

in each comparison, and the epoch for the comparison of positions. The standard deviations were computed

by the robust method of Equation 16.22.

Solutions No. of Epoch Standard deviations (mas, mas/yr)

compared stars ∆α� ∆δ ∆π ∆µα� ∆µδ

N12–F12 39 199 1990.40 3.59 3.19 4.28 11.48 10.30

N12R–F12R 39 199 1990.40 2.09 1.80 2.42 — —

N18–F18 86 450 1990.70 1.71 1.48 2.09 3.85 3.35

N18–F18.1 86 536 1990.70 1.44 1.26 1.77 3.29 2.86

N30–F30 91 616 1991.15 1.14 0.97 1.35 1.59 1.33

N37.1–F37.1 100 702 1991.25 1.00 0.83 1.19 1.27 1.05

N37.5–F37.3 100 894 1991.25 0.97 0.81 1.17 1.19 0.98

Table 16.10. Standard deviations of the differences in astrometric parameters between the successive sphere

solutions and the Hipparcos Catalogue (HIP), after each solution had been aligned with the Hipparcos

Catalogue by application of the orientation and spin differences in Table 16.8. The second and third columns

give the number of stars used in each comparison, and the epoch for the comparison of positions. The

standard deviations were computed by the robust method of Equation 16.22.

Solutions No. of Epoch Standard deviations (mas, mas/yr)

compared stars ∆α� ∆δ ∆π ∆µα� ∆µδ

N0R–HIP 13 887 1990.40 7.57 7.70 9.38 — —

N12–HIP 43 053 1990.40 1.32 1.27 1.95 5.57 5.28

N12R–HIP 75 919 1990.40 1.62 1.44 2.43 — —

N18–HIP 94 210 1990.70 1.26 1.08 1.69 3.58 3.06

N30–HIP 96 881 1991.15 0.89 0.74 1.09 1.43 1.17

N37.1–HIP 100 717 1991.25 0.70 0.59 0.86 0.94 0.79

N37.5–HIP 101 071 1991.25 0.59 0.49 0.73 0.72 0.60

F12–HIP 30 411 1990.40 3.55 3.15 4.33 10.25 10.24

F12R–HIP 44 756 1990.40 2.13 1.80 2.77 — —

F18–HIP 88 922 1990.70 1.50 1.29 1.93 3.87 3.40

F18.1–HIP 89 040 1990.70 1.14 0.99 1.54 3.31 2.86

F30–HIP 95 025 1991.15 0.86 0.73 1.01 1.36 1.14

F37.1–HIP 101 222 1991.25 0.57 0.48 0.68 0.70 0.56

F37.3–HIP 101 189 1991.25 0.51 0.43 0.62 0.64 0.51

H18–HIP 96 692 1990.70 1.34 1.25 1.39 3.11 2.66

H30–HIP 100 293 1991.15 0.68 0.57 0.84 1.18 0.97
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Table 16.11. North-south asymmetry of the parallax zero points, when comparing the successive FAST and

NDAC sphere solutions. The asymmetry ∆π0 is defined by Equation 16.24.

Solutions ∆π0 Solutions ∆π0

compared mas compared mas

N12–F12 +0.461 N30–F30 +0.019

N12R–F12R +0.142

N18–F18 −0.005 N37.1–F37.1 +0.015

N18–F18.1 −0.025 N37.5–F37.3 +0.007

but only in very few points. Again, a comparison of successive sphere solutions could
however give an idea of the consistency of the data on a large scale.

When comparing the 12-month solutions, a significant difference was noted in the
FAST and NDAC parallaxes, depending on ecliptic latitude. The difference could be
described as a north-south asymmetry: north of the ecliptic the NDAC parallaxes were
systematically larger (by about 0.4–0.5 mas) than the FAST ones, while the opposite
was true in the southern sky. This could be understood as an effect of the relative
scarcity and weakness of data in the ecliptic region, aggravated by the elliptic satellite
orbit causing many more Earth occultations than would have been the case in the
nominal orbit. When calculating the parallaxes of stars at high ecliptic latitudes, stars
in the ecliptic region served as a reference for the parallax zero point (by having a much
smaller parallax factor projected on the reference great circles); if they were absent
from the sphere solution, the abscissa zero points may have been shifted to produce
systematically different parallaxes in the two hemispheres. The problem was predicted
to disappear as more observations accumulated, permitting good solutions also of the
stars in the ecliptic region. This was indeed the case (Table 16.11). Defining the
parallax asymmetry as:

∆π0 =
1
2

�

πN − πF

�
δ>0

−



πN − πF
�

δ<0

�
[16.24]

where the angular brackets denote the median value, it was found that the asymmetry
decreased to below 0.01 mas in the final solutions.

One rather powerful method of looking for inconsistencies in the system of positions and
proper motions is to determine the orientation and spin parameters "0 and ! from only
part of the sky, e.g. separately for different hemispheres. Table 16.12 gives the results
for the final sphere solutions (N37.5–F37.3), with the sky divided in eight equal parts
according to the given intervals in α and δ . (This analysis was made after both solutions
had been globally aligned with the Hipparcos Catalogue, so the mean orientation and
spin differences over the whole sky are equal to zero.) The largest deviations amount to
0.08 mas in orientation and 0.13 mas/yr in the spin.

Small-Scale Differences

Figures 16.30–16.34 show the differences in the five astrometric parameters, calculated
in the sense N37.5–F37.3 and plotted versus position on the sky in colour coding. The
spatial resolution of the maps is 2�. At this resolution the differences are typically about
±1.5 mas, but as can be seen from the maps, variations are more pronounced in the
ecliptic region where the mean number of observations per star is much smaller than at
higher positive or negative ecliptic latitudes (Figure 16.35).
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Table 16.12. Orientation and spin differences between the final NDAC and FAST solutions as determined

from octants of the sky defined by the given limits in α and δ . The all-sky orientation and spin differences

have been removed before the regional differences were calculated. See Equation 16.21 for the definition of

the orientation differences ("0, referred to epoch J1991.25) and spin differences (!). The standard errors

are typically about 0.012 mas in the orientation components and 0.015 mas/yr in the spin components.

Octant Orientation (N37.5–F37.3) Spin (N37.5–F37.3)

considered ε0x ε0y ε0z ωx ω y ωz

α δ mas mas mas mas/yr mas/yr mas/yr

0–90� < 0 −0.003 −0.034 −0.046 −0.003 −0.004 −0.029

90–180� < 0 −0.006 +0.004 +0.002 −0.010 +0.001 +0.004

180–270� < 0 −0.011 +0.002 +0.078 −0.031 +0.016 +0.125

270–360� < 0 +0.020 −0.027 −0.049 −0.015 −0.007 +0.003

0–90� > 0 −0.017 +0.012 −0.024 +0.062 +0.012 +0.070

90–180� > 0 +0.017 −0.003 −0.011 +0.039 −0.014 −0.025

180–270� > 0 +0.009 +0.001 +0.016 −0.012 +0.003 +0.004

270–360� > 0 +0.019 +0.020 +0.006 +0.001 +0.060 −0.097

The angular scale of the differences can be studied more quantitatively by means of the
sample correlation function. For any astrometric parameter a, the correlation function
is defined in terms of the normalised differences ∆a as:

R(θ) =
h∆ai ∆a j iq
h∆a

2
i i h∆a

2
j i

[16.25]

where the averages are calculated over all pairs of stars (i , j) whose angular separations
are in the range θ ± ∆θ /2.

Figure 16.36 shows the sample correlation function for the parallax differences, calcu-
lated with a resolution of ∆θ = 0.�1 by considering all ' 5.09 × 109 pairs of 100 890 stars
common to F37.3, N37.5 and the basic subset. The first few degrees are also shown in
Figure 16.37. At angular separations less than a few degrees the correlation is strongly
positive, but decreases to almost negligible values for separations greater than ' 4�. An
empirical fit to the first part of the correlation function is given by the function:

R(θ) = R(0) exp(−0.14θ − 1.04θ2 + 0.41θ3 − 0.06θ4) [16.26]

where θ is measured in degrees and R(0) = 0.59; this function is shown by the solid
curve in Figure 16.37. At greater separations (> 4�) the sample correlations are remark-
ably small, generally on the ±(0.001 to 0.002) level, while there are more significant
negative correlations for θ ' 180�. Several features of R(θ) can probably be related
to fundamental properties of the great-circle reductions and in particular to the value
of the basic angle (58�) and the size of the field of view (0.�9). Note for instance the
presence of (small but statistically significant) peaks near θ = 58�, 174� = 3 × 58�, and
12� = 360� − 6 × 58�.

It is likely that the actual parallax errors in the merged catalogue exhibit a similar spatial
correlation, but perhaps with a different scale on the vertical axis. For instance, pre-
launch simulations of the astrometric errors resulting from the great-circle reductions
and sphere solution gave a mean spatial correlation function with a similar initial decrease
as in Figure 16.37, but with R(0) = 0.16 (Lindegren 1988). Given an assumed shape of
the correlation function, e.g. according to the above formula, the normalising factor R(0)
may in principle be estimated from the dispersion of parallax values in open clusters.
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Table 16.13. Colour dependence of the orientation and spin differences between the NDAC and FAST

solutions (see Equation 16.27).

Solutions Colour dependent orientation Colour dependent spin

compared ε00x ε00y ε00z ω0x ω0y ω0z
mas mag−1 mas yr−1 mag−1

N12–F12 +0.098 −0.400 +0.230 +2.720 +0.834 −0.705

N12R–F12R +0.130 −0.045 +0.225 — — —

N18–F18 −0.006 +0.008 +0.027 −0.670 +0.166 +0.116

N18–F18.1 −0.722 +0.259 −0.009 +0.945 −0.291 +0.141

N30–F30 −0.395 +0.089 −0.008 +0.709 −0.216 −0.048

N37.1–F37.1 +0.045 −0.022 −0.038 −0.064 −0.014 −0.008

N37.5–F37.3 +0.011 −0.016 −0.020 −0.094 +0.020 +0.014

However, for a detailed examination of astrometric correlations in a small area of the sky
it is necessary to consider the elementary observations at abscissa level. This is possible
by means of the Hipparcos Intermediate Astrometric Data (Volume 1, Section 2.8) and
the empirical abscissa correlation functions discussed in Section 17.8.

Colour and Magnitude Effects

In the early sphere solutions it was found that the orientation and spin differences were
colour dependent (and perhaps, to a much smaller degree, magnitude dependent).
The effect is most clearly seen if the stars are divided in two equal parts according to
their colour index or magnitude, and the rotation parameters "0 and ! are determined
separately for the two halves. Dividing at V − I = 0.7 gives a mean colour index of
' 0.42 for the bluer half and ' 1.06 for the redder half. The differences in the rotation
parameters divided by the difference in mean colour index (0.64 mag) give the chromatic
rotation parameters in Table 16.13:

"
0

0 =
∆"0

∆(V − I )
, !

0 =
∆!

∆(V − I )
[16.27]

There were very significant colour effects up to and including the 30-month solutions;
in the 37-month solutions they are suddenly reduced by an order of magnitude. This
drastic improvement is almost entirely due to some change in the FAST solutions
between F30 and F37.1, as can be shown by a direct comparison of these two solutions.
The explanation appears to be related to the FAST modelling of the chromaticity
(Section 16.4), but the actual mechanism is not understood.

A similar division according to magnitude reveals much smaller differences. For the final
solutions (N37.5–F37.3) the effect is only marginally significant at ~ 0.007 mas mag−1

in orientation and ~ 0.009 mas yr−1 mag−1 in the spin. The effect could in fact be merely
a reflection of the change in mean colour with magnitude.
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Figure 16.23. Distributions of the differences in right ascension (∆α� = ∆α cos δ) between the NDAC and FAST

solutions. In this and subsequent figures, the curves may be identified by means of the labels printed at the level of each

peak.
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Figure 16.24. Distributions of the differences in declination between the NDAC and FAST solutions.
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Figure 16.25. Distributions of the proper motion differences in right ascension (∆µα� = ∆µα cos δ) between the

NDAC and FAST solutions.
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Figure 16.26. Distributions of the proper motion differences in declination between the NDAC and FAST solutions.
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Figure 16.27. Distributions of the differences in parallax between the NDAC and FAST solutions.
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Figure 16.28. Distributions of the normalised differences in parallax between the NDAC and FAST solutions

(Equation 16.23).
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Figure 16.29. Distributions of the normalised differences in parallax between the NDAC and FAST solutions (same

as in Figure 16.28) shown as normal probability plots. A Gaussian distribution would give a straight line in this plot.

The top and bottom curves are plotted against the scales shown on the left axis; other curves are vertically displaced

by 2, 4, . . . units for improved visibility. The distributions of N37.5–F37.3 and N30–F30 are very nearly Gaussian,

while the other distributions have more extended wings.
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Figure 16.30. Map of differences in right ascension between the final NDAC and FAST sphere solutions,

∆α� = N37.5–F37.3. Mean differences were computed in cells of 2� × 2�.
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Figure 16.31. Map of differences in declination between the final NDAC and FAST sphere solutions, ∆δ = N37.5–

F37.3. Mean differences were computed in cells of 2� × 2�.
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Figure 16.32. Map of differences of proper motions in right ascension between the final NDAC and FAST sphere

solutions, ∆µα� = N37.5–F37.3. Mean differences were computed in cells of 2� × 2�.
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Figure 16.33. Map of differences of proper motions in declination between the final NDAC and FAST sphere

solutions, ∆µδ = N37.5–F37.3. Mean differences were computed in cells of 2� × 2�.
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Figure 16.34. Map of differences in parallax between the final NDAC and FAST sphere solutions, ∆π = N37.5–

F37.3. Mean differences were computed in cells of 2� × 2�.
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Figure 16.35. Map of the mean number of abscissae per star used in the final solutions N37.5 and F37.3. Mean

values were computed between the NDAC and FAST numbers; these were then averaged in cells of 2� × 2�.
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Figure 16.36. Mean sample correlation coefficient of the normalised parallax difference (∆π) as a function of angular

separation. The first part of the curve is shown in more detail in the next figure.
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Figure 16.37. The points with error bars give the sample correlation coefficients as in the previous figure, but only for

small angular separations. The solid curve is the fitted analytical function in Equation 16.26.
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Intercomparison by the Method of Infinitely Overlapping Circles

An independent investigation into possible systematic errors remaining in the Hipparcos
astrometric results after the final sphere iteration was conducted by B. Bucciarelli and
M. Lattanzi, following the prescriptions of a similar study performed on the FAST and
NDAC 30-month solutions (Kovalevsky et al. 1995). The catalogues compared were
the final FAST and NDAC catalogues (F37.3 and N37.5) and the merged catalogue
before rotation to the extragalactic system (H37C).

The method of infinitely overlapping circles was used; see Bucciarelli et al. (1994), and
references therein. Briefly, the method consists of a generalised moving mean algorithm
used to find an optimum weighting of the stars in order to evaluate the local systematic
differences between two catalogues. For each star (the ‘central star’), the catalogue
differences are averaged over all stars within a certain radius R of the central star, using
the weights:

w(r) =
2
π

h
arccos(r /R) − (r /R)

p
1 − (r /R)2

i
, 0 ≤ r ≤ R [16.28]

depending on the angular distances r of the contributing stars from the central star.
The central star enters with full weight, since w(0) = 1. By using such a definition of
statistical weight one naturally generates continuous systematic differences, while still
treating the random part of the individual residuals in a statistically correct way, i.e. the
formal expectation of the random part is still zero.

For the present investigation the radius of the small circle was set to R = 2�, giving
an average of about 30 stars per circle. This choice was driven by the requirement
to minimise the influence of random errors, while still probing small-scale systematics.
This instance is crucial insofar as the random errors of the astrometric parameters are
of the same order of magnitude, and even larger, than the systematic effects that are
investigated. The method was applied to all five astrometric parameters as a function of
position on the celestial sphere. As a representative example of the results, Figure 16.38
shows the average parallax differences as a function of ecliptic latitude and longitude.
As expected, the values are small and, when interpreted as residual systematics of one
of the two catalogues, they are typically of the order of, or less than, 0.1 mas.

Another powerful way of internally checking the statistical properties of the Hipparcos
Catalogue is to compare the empirical distributions of the normalised differences be-
tween the NDAC and FAST catalogues with the theoretical distribution. In each
astrometric parameter (a, e.g. ecliptic longitude) the test statistic is:

�a =
jaN − (aF + ∆aNF)jq
σ2

N + σ2
F − 2ρNFσNσF

[16.29]

where σ2
N and σ2

F are the variances of the parameter a in the two catalogues and ∆aNF

is the catalogue-to-catalogue systematic difference (in the sense NDAC–FAST) derived
with the averaging technique of the infinitely overlapping circles; ρNF is the assumed
correlation between the catalogues. The predicted distribution for the test statistic
�a is a folded Gaussian with a mean of

p
2/π = 0.798 and a standard deviation ofp

1 − 2/π = 0.603. The actual values of the first two moments of the distributions are
in good agreement with the theoretical expectations.
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Figure 16.38. Residual systematic differences in parallax between the final FAST and NDAC sphere solutions,

plotted as a function of ecliptic longitude (top panel) and latitude (bottom panel). The data were binned in intervals

of 4� and 2�, respectively.

Note that the distribution of �a is degenerate for the case of complete overlap between
the two catalogues. However, to obtain the results shown in Figure 16.39 and discussed
below, a correlation coefficient ρNF = 0.79 was assumed, i.e. some 15 per cent lower
than could be expected from theoretical considerations. Part of the foundation for such
a diminishment of the catalogue-wise correlation coefficient is the different processing
paths adopted by the two consortia, which differentiate the catalogues more than would
be expected from the number of common observations, thereby lifting (in practice) the
apparent degeneracy of the problem.

Figure 16.39 shows the empirical distribution functions �λ, �β , �µλ� , �µβ , and �π and
their theoretical counterparts. Mean and standard deviation values of the empirical
distributions are reported in Table 16.14. The bottom right diagram in Figure 16.39 was
obtained by comparing the FAST catalogue with the merged one—the corresponding
comparison for NDAC yields similar results. In this case the correlation coefficient
which gave the best estimation of h�πi and σ

�π (0.759 and 0.576 respectively) was
ρFH = 0.96, instead of 0.79 found for the NDAC–FAST comparison. This increase in
the empirical correlation was expected as the merged catalogue is basically a weighted
combination of the consortia catalogues.

In all cases a relatively small number of outliers were found (<~ 3 per cent), which were
not taken into account in the calculation of the mean values. The presence of such
outliers is usually explained as a discrepancy between the actual differences and the
formal errors given in the catalogues.
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Figure 16.39. The first three panels (from top left) show the distributions of the test statistic �a comparing the

NDAC and FAST results in each of the five astrometric parameters. The fourth panel (bottom right) shows the

statistic �π for the comparison between the FAST and merged catalogues. Dashed curves—theoretical distributions;

solid curves—observed distribution in longitude (top) or parallax (bottom); dotted curves—observed distribution in

latitude.

In conclusion, this analysis shows that the level of (internal) residual systematics is at the
level of, or smaller than, what was expected from pre-launch estimates. Also, the formal
errors, as tested by the �a distributions, appear to have a high degree of consistency with
statistical theory.

16.7. Conclusions

The comparison of successive sphere solutions shows very clearly the progress of the
data reductions as more and more observations are included, and also the significant
improvements obtained by iterating the whole reduction chain (e.g. F18.1 versus F18).
The FAST/NDAC comparisons revealed important systematic differences in the early
sphere solutions, which were gradually eliminated as calibrations and instrument mod-
elling improved. For the final sphere solutions F37.3 and N37.5, all comparisons
indicate that the results behave extremely well, especially in view of the known limita-
tions of the actual mission, such as the sub-optimally sampled ecliptic region. Other
tests, for instance of the parallax zero point (Chapter 20), confirm this conclusion. That
Hipparcos recovered the total gravitational light deflection (proportional to (1+ γ ) /2) to
within 0.4 per cent (NDAC) or 0.2 per cent (FAST) of the value according to General
Relativity, corresponding to 0.016 mas or 0.008 mas for the mean observation at right
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Table 16.14. Sample mean values and standard deviations of the test statistics computed according to

Equation 16.29, assuming ρ = 0.79.

Statistic Mean value Standard Deviation

h�i σ�

�λ 0.769 0.565

�β 0.762 0.561

�π 0.759 0.560

�µλ� 0.808 0.588

�µβ 0.798 0.581

theory 0.798 0.603

angles to the solar direction, is also an impressive testimony of its ability to perform
accurate global astrometry.

It must be emphasized that the comparison of the consortia solutions cannot prove
anything about the quality of the Hipparcos Catalogue. It does however provide consid-
erable insight into the properties and possible shortcomings of the solutions, and hence
of the Hipparcos Catalogue. In the end, the quality of the catalogue must be judged
from the results of its many applications in astronomy and astrophysics, and from future
confrontations with even more accurate measurements.

L. Lindegren, M. Frœschlé, F. Mignard
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17. ASTROMETRIC CATALOGUE MERGING

Once the FAST and NDAC final sphere solutions were obtained, the results for
each star had to be merged in order to provide the final astrometric parameters
together with their associated covariance matrix. Instead of a simple weighted
average of the astrometric parameters, this merging was done at the great-circle
level. The astrometric parameters of each consortium were first transformed to
a common reference frame. Then the FAST and NDAC abscissa residuals with
respect to a reference astrometric solution were studied in order to calibrate
empirically their correlation coefficient. Finally, for each star, the abscissae and
the calibrated covariance matrix between them were used to obtain a merged
solution. This merging was applied to the standard solutions of apparently
single stars, using five astrometric parameters, but also to accelerated solutions,
orbital astrometric binaries and stochastic solutions.

17.1. Introduction

The series of successive sphere solutions described in Chapter 16 ended with two
catalogues, F37.3 and N37.5, obtained respectively by the FAST and NDAC Consortia.
These catalogues were final in the sense that little improvement was expected from
further iterations.

Figures 16.23–16.28 illustrate how the correlation between the FAST and NDAC results
increased with the amount of satellite data (from 12 to 37 months of data) and the
number of iterations. This can be understood with the following rough model: the
random errors on the obtained astrometric parameters consisted of one component
attributable mainly to the photon noise of the raw data, and which was therefore common
to FAST and NDAC, and another component including the ‘modelling errors’ proper
to each reduction procedure. The second component decreased with the improvement
brought by each iteration; it did not vanish however, so that the final correlation between
the consortia results was less than one, or about 0.7 on the average.

For this reason, a statistical improvement of the astrometric parameters could be ex-
pected from a merging of FAST and NDAC results. This was indeed the case with the
merged H18 and H30 Catalogues (Figure 16.22); however these preliminary catalogues
were obtained with a simple average of the FAST and NDAC astrometric parameters,
with an equal weight for both. Clearly, better results were foreseen using a more ad-
equate weighting, depending both on the standard errors of the FAST and NDAC
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parameters and on the correlation between them. The optimal weight would be differ-
ent for each star, and possibly also different for each of the five parameters. Assuming
that it were possible to compute these weights optimally, there would however still re-
main another problem, namely how to compute the complete covariance matrix of the
averaged parameters.

A better scheme was proposed by C.A. Murray. Going back one step in the data
reductions, the astrometric parameters of a given star were estimated in each consortium
by a least-squares solution in which the abscissae determined by that consortium were
regarded as independent ‘observations’ of the star. If now the FAST and NDAC
abscissae were taken together, and considered as correlated observations in a new least-
squares solution for the astrometric parameters, this would give not only the optimally
combined parameters, but also the correct covariance matrix for these data.

From this general principle, successive merged catalogues were created, with various im-
provements brought at each step: in order to combine the FAST and NDAC abscissae,
the weights of the abscissae had to be revised, and the correlation between the abscissae
was empirically calibrated using an unbiased estimator; finally the least-squares proce-
dure which combined the abscissae was adapted for robustness and in order to produce
the different types of solutions required (the standard five-parameter solution and the
G, O and X type solutions described in Volume 1, Section 2.3). The last catalogue
created by this process was called H37C and was used for the link to the extragalactic
system (Chapter 18); after rotation to the final Hipparcos reference frame this became
the main body of the Hipparcos Catalogue.

17.2. Astrometric Parameters and Abscissa Residuals

The data provided by FAST and NDAC for the catalogue merging consisted of a
superset of the final sphere solutions F37.3 and N37.5 described in Chapter 16. This
superset contained values of the astrometric parameters a = (a1 . . . a5)0 for every star,
even when no accepted solution had been found. In addition, the complete set of
abscissa residuals ∆v j with respect to the given parameters was provided, together with
the partial derivatives ∂v j /∂ai of the computed abscissae with respect to the astrometric
parameters. (Recall that the star abscissa v is the angle, as seen from the reference
great-circle pole, from the ascending node of the reference great circle on the equator
to the satellitocentric coordinate direction of the star at the epoch of the reference great
circle; see Figure 11.1.) The standard errors on the abscissae had been computed, as
described in Chapter 9, from the formal propagation of the errors through the great-
circle reduction procedure, but with empirical corrections derived in connection with
the sphere solutions (Chapter 11).

In the following, subscripts F and N will be used to designate data referring to the indi-
vidual consortia, and subscript H will be used for the corresponding merged quantities.

Table 17.1 shows the number of stars, observations (abscissae), and reference great
circles among the initial data given by the consortia, and among the data used for the
astrometric merging. For NDAC, the data collected during one orbit defined a single
reference great circle. In FAST, this was also generally the case, but a few orbits were
split into two great circles. For the merging procedure, a one-to-one correspondence
between FAST and NDAC data was needed. Consequently, in the case of split orbits,
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Table 17.1 Statistics of the data used for the astrometric merging.

Data Stars Abscissae Great circles

FAST 118 160 3 668 140 2 262

NDAC 111 708 3 570 643 2 326

Merge 118 300 7 227 401 2 341

a single FAST abscissa residual was computed from the weighted average of the two
great-circle abscissa residuals, and the partial derivatives were simply averaged. Thus,
for the merging, each star had at most one FAST and one NDAC residual on each orbit
or reference great circle.

The discrepancy between the total number of stars from FAST and NDAC is due to
the fact that the known double stars were not reduced using the main NDAC reduction
chain. For this reason, the great-circle abscissae for some of the stars were not available
for the merging procedure. The number of great circles used differ because the consortia
applied different criteria for accepting a great-circle reduction.

In order to combine the FAST and NDAC results, F37.3 (after transformation to the
equatorial frame) and N37.5 had to be rotated first to a common, provisional reference
frame approximately aligned with the FK5 Catalogue. This frame was in practice
defined by the H30 catalogue, so the orientation and rotation differences F37.3–H30
and N37.5–H30 were used for this purpose. After these corrections of aF and aN, an
initial set of merged parameters was computed as the simple average:

aH = 1
2 (aF + aN) [17.1]

Successive merged solutions replaced the parameters aH by improved values.

The abscissa residual ∆v is the difference between the observed abscissa and the abscissa
calculated from a given set of astrometric parameters. The original abscissa residuals
provided by the consortia could thus be written:

∆vF(aF) = vobs
F − vcalc

F (aF)

∆vN(aN) = vobs
N − vcalc

N (aN)
[17.2]

A direct comparison or averaging of these residuals would not be meaningful, as the
reference parameter vectors aF and aN were always different. It was therefore necessary
to compute new abscissa residuals with respect to the parameters aH. Around each
estimate, a linear expansion was used:

vcalc(a + ∆a) = vcalc(a) +
5X

i=1

∂v
∂ai

∆ai [17.3]

resulting in the new abscissa residuals:

∆vF(aH) = ∆vF(aF) −
5X

i=1

∂vF

∂ai
(aHi − aFi )

∆vN(aH) = ∆vN(aN) −
5X

i=1

∂vN

∂ai
(aHi − aNi )

[17.4]
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For 21 nearby, high-velocity stars, the FAST residuals were also modified to take into
account the secular acceleration (Volume 1, Section 1.2.8) which was already included
in the NDAC residuals of these stars.

The end result of these transformations was a set of nF residuals ∆vF j , with associated
formal standard errors σF j , and a corresponding set of nN residuals ∆vN j with standard
errors σF j , both sets now referring to the same astrometric parameters aH.

As the residuals of a given star came from a previous five-parameter astrometric solution,
they had lost five degrees of freedom from the total number of observations, n = nF +
nN. When computing the unit-weight error, i.e. the sample standard deviation of
the normalised residuals ∆vF j /σF j , etc., the multiplicative factor

p
n /(n − 5) had to be

applied in order to obtain an unbiased estimate of the dispersion of the residuals. For
the same reason, a correction 5/n should be added to the sample correlation coefficient
between the normalised residuals.

In fact, the exact degree of freedom of statistics computed from the abscissae was not
known: other general parameters had been determined by each consortium, such as
the great-circle origins, and the reference parameters for the residuals were different
from the initial solution obtained by the consortia. For this reason, the statistics used
in the merging were, as far as possible, based on the differences of the residuals, which
were equal to the difference between observed abscissae, ∆vF j − ∆vN j = vobs

F − vobs
N . This

relation holds for all but the first merged solution, where it was only approximate.

17.3. Scaling Corrections of Consortia Formal Errors

Unbiased formal errors were needed both for the computation of the correlation coef-
ficients, described in the next section, and more generally for the weight matrix of the
astrometric least-squares solution. The residuals were systematically plotted as func-
tions of all available data: orbit number, position, proper motion, magnitude, colour.
For this purpose, only stars considered previously as single stars, with good solutions
obtained both by FAST and NDAC, were kept (about 96 000 stars); the observations
rejected during the astrometric solutions of the consortia were also rejected for this
calibration (but not necessarily in the final merging). Finally, great circles with less than
10 observations common to FAST and NDAC were not used for the calibration (2242
orbits remained).

No systematic trend of the mean residuals was found as a function of astrometric or
photometric data. However, the unit-weight errors of the abscissa residuals, uF =
[Var(∆vF /σF)]1/2, uN = [Var(∆vN /σN)]1/2, computed from the formal standard errors
supplied by the consortia, showed some significant variations around unity as functions
of time, as may be seen in Figure 17.1.

Small standard errors were also found to have been overestimated (Figure 17.2). For
this reason, a scaling of the standard errors had to be introduced. To take into account
the variations in Figure 17.2, uF and uN were approximated by polynomials of degree
four for formal errors below 10 mas, and by constants for the larger standard errors.
This calibration obviously induced a magnitude effect, and the unit-weight errors were
thereafter calibrated also against magnitude, where linear corrections were sufficient.
This procedure was iterated once. A slight colour correction was also applied for stars
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Figure 17.1. Evolution of the unit-weight errors (uF and uN) of the abscissa residuals, based on the formal abscissa

errors supplied by the reduction consortia. Each curve is a running median over 50 orbits (' 22 days).
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Figure 17.2. Unit-weight errors (uF and uN) of abscissa residuals as functions of the formal standard errors.
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redder than V − I = 2 mag, namely 1+ 0.035(V − I − 2) for FAST and 1+ 0.016(V − I − 2)
for NDAC.

Having fitted the calibration functions fF(σF, Hp, V − I ) and fN(σN, Hp, V − I ) to the
unit-weight errors, the standard errors could then be corrected through multiplication
by these functions. These corrections were smaller than 30 per cent for FAST data
(3 per cent on the average), and not more than 20 per cent for NDAC (1 per cent on
the average). The corrected unit-weight errors became approximately constant (except
for the very small formal errors), with no significant magnitude or colour effects. There
was however still a significant variation with time, from one orbit to the next, for which
an ad hoc correction factor was finally applied.

Astrometric solutions using only FAST or NDAC data were performed in order to verify
the usefulness of the corrections which had been done. As may be seen in Figure 17.7,
the standard errors on the FAST parallaxes decreased by about 4 per cent on the average.
That this was not just a reduction of the formal errors is demonstrated by the fact that
the number of negative parallaxes decreased by 2 per cent. For the NDAC data the
overall changes brought by the scaling corrections were much smaller.

17.4. Correlation Between Abscissae

The correlation coefficient between FAST and NDAC abscissae varied essentially with
magnitude, although there were also some variations with ecliptic longitude and orbit
number. It would then have been logical to calibrate the correlation against magnitude.
However, this would have created a practical problem for variable stars (where the
correlation should then take into account the magnitude at each observation), since
epoch photometry was not available at the time of the merging. For this reason it was
decided to calibrate the correlation primarily against the abscissa standard errors (which
are of course related to the epoch magnitude).

Let ρ be the statistical correlation between the residuals ∆vF and ∆vN, with standard
deviations σF and σN. The variance of the abscissa difference ∆vF − ∆vN is given by
σ2

F −2ρσFσN + σ2
N. Using the calibrated standard errors described in the previous section,

the sample correlation coefficient was computed with the following formula:

ρ =
σ2

F + σ2
N − Var(∆vF − ∆vN)

2σFσN
[17.5]

This was done in bins of (σF, σN). Assuming that ρ depends only on the standard errors,
the residuals in a given bin belonged to the same population and an unbiased estimate
of ρ could be obtained, provided that the standard errors were also unbiased. Results
are shown in Figure 17.3.

As can be expected from the rough model outlined in Section 17.1, the correlation
increases with the standard errors and a relation ρ ' 1 − const /(σFσN) was expected.
The correlation also decreases with the difference between the variances of the consortia
abscissae, producing a rather sharp ridge along the diagonal σN = kσF, where k ' 1.2.
It should be noted that the number of abscissa pairs on which the calculation of ρ
was based drops quickly when going away from the diagonal, causing large statistical
fluctuations in these areas of the diagram. The ‘ridge’ behaviour can also be understood
in terms of the model mentioned above, as being due to increased modelling errors
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on some abscissae in one or the other consortium. Based on these considerations, the
following empirical form was chosen for the calibration of ρ as a function of the standard
errors:

ρ0(σF, σN) = 1 −
a + 1

2 jb + k2σ2
F − σ2

Nj
σFσN

p1

�
1

σFσN

�
[17.6]

where a ' 9.978 mas2, b ' −0.160 mas2 and k ' 1.168 are constants, and p1 is the
polynomial:

p1(x) = 1 − 16.221x + 141.983x2 − 663.074x3

+ 1661.218x4 − 2099.526x5 + 1047.439x6 [17.7]

The fitted function is shown in Figure 17.4.

In order to verify this calibration, the statistic

δv =
∆vF − ∆vN

[σ2
F − 2ρ0(σF, σN)σFσN + σ2

N]1/2
[17.8]

was computed for each star and analysed as a function of astrometric or photometric
data. The random variable δv should have zero expectation and unit variance if the
correlation coefficient is correctly calibrated and if the standard errors σF and σN are
representative of the true variations of the random errors on the abscissae. A magnitude
effect was however found, due to the fact that, for bright stars, the abscissa standard
errors were only weakly correlated with magnitude. Developing Var(δv) − 1 to first
order in ρ allowed the required correction to ρ0 to be found. This was fit with a cubic
polynomial in magnitude.

Finally, there was another variation of the correlation coefficient with time, the correla-
tion being maximum around half-way through the mission and smaller at the beginning
and the end of the mission. This effect is probably related to the precision of the proper
motions. Using the same method as described above, an additional correction was
determined as a cubic polynomial of time.

In summary, the calibration of the correlation coefficient was finally expressed as a
function of the standard errors, magnitude and time:

ρ(σF, σN, Hp, t) = ρ0(σF, σN) − 0.1205

− 0.02770Hp + 0.010990Hp2 − 0.0006509Hp3

− 0.0038t − 0.0314t2 + 0.00415t3 [17.9]

where ρ0 is given by Equation 17.6 and t is the time in years from J1991.25; the
calibrated correlation was further constrained to the interval 0.2 ≤ ρ ≤ 0.99.

17.5. The Least-Squares Solutions

Together with the standard error of the FAST and NDAC abscissae, the calibrated
correlation coefficients provided the necessary information about the covariance matrix
V of the observations. The covariances between abscissae from different great circles
were neglected. Grouping the observations by pairs, corresponding to the FAST and
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Figure 17.3. Sample correlation coefficient ρ between the FAST and NDAC abscissae, calculated in bins of the

standard errors σF and σN.

Figure 17.4. Calibration function ρ0 (Equation 17.6) fitted to the sample correlation as a function of the standard

errors σF and σN.
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NDAC abscissae on each orbit, results in a block-diagonal structure of the covariance
matrix:

V =

0
BB@

V1 0 0 . . .
0 V2 0 . . .
0 0 V3 . . .
...

...
...

. . .

1
CCA [17.10]

where the submatrix for the j th pair is given by:

V j =
�

σ2
F j ρ j σF j σN j

ρ j σF j σN j σ2
N j

�
[17.11]

For orbits in which only one consortium provided an abscissa V j reduces to the 1 × 1
matrix containing σ2

F j or σ2
N j .

Given the partial derivatives of the abscissae with respect to the five astrometric pa-
rameters, ∂v j /∂ai , the corrections ∆ai to the reference parameters ai were found by
minimising:

χ2 = (∆v −
∂v
∂a0

∆a)0V−1(∆v −
∂v
∂a0

∆a) [17.12]

This differs from a standard weighted least-squares solution only in that the weight
matrix V−1 is not diagonal, which requires a trivial modification of the normal equations.

The algorithm was also modified for robustness. Initially all observations were kept, but
outliers were not unexpected, due for instance to veiling-glare effects. Robust methods
using a non-Euclidean metric were tried, but abandoned as the variance of the estimated
astrometric parameters increased too much for stars without outliers, which were in the
majority. A conventional 3σ rejection was used instead: when the absolute value of a
residual exceeded three times its formal error, the observation was excluded and a new
solution computed. This process was iterated until the set of outliers remained constant.
Pairs of observations were also rejected if their normalised difference (Equation 17.8)
was greater than 3

p
2.

For the single stars only, an average of 62 observations were used per star, with an
outlier rate of 0.5 per cent. The median unit-weight error of the astrometric solutions
was about 1.01, and this slight departure from unity explains why the median of the
goodness-of-fit statistic F2 (Field H30) is about 0.2. The unit-weight error exhibited
no significant variations with astrometric or photometric data.

17.6. Merged Solutions of Non-Single Stars

The standard five-parameter model did not always adequately represent the observa-
tions. More complex models were constructed (Volume 1, Section 2.3) and tested on
all stars. Seven- and nine-parameter solutions (type ‘G’) were obtained the same way
as in Equation 17.12, using the supplementary partial derivatives:

∂v
∂ai+5

= 1
2 (t2 − 0.81)

∂v
∂ai

[17.13]

∂v
∂ai+7

= 1
6 (t2 − 1.69)

∂v
∂ai+3

[17.14]

for i = 1, 2, where t is the time in years from J1991.25. The constants 0.81 yr2 and
1.69 yr2 were chosen to make the quadratic and cubic terms approximately orthogonal
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to the position and proper motion terms. Orbital solutions (type ‘O’) with up to
twelve parameters were similarly obtained, using a special routine to calculate the partial
derivatives of the tangential coordinates ξ and η (Volume 1, Section 2.3.4) with respect
to the seven orbital elements o, from which:

∂v
∂o0

=
∂v
∂a1

∂ξ
∂o0

+
∂v
∂a2

∂η
∂o0

[17.15]

Several trials were made before defining the criteria for selection of a model for a given
star. The adopted criteria are described in Volume 1, Section 2.3.1.

Although good results were obtained for almost all stars, there existed some stars where
none of the above-mentioned models was adequate, thus leading to a high outlier
rejection rate or a bad goodness-of-fit. This could be due for instance to unrecognised
duplicity or orbital motion. Following a suggestion by R. Wielen, a stochastic model
was assumed for these stars. Superposed on the uniform motion of the centre of
mass, unmodelled photocentric displacements were assumed to behave in a stochastic
manner, with a standard deviation given by the ‘cosmic error’ �. The cosmic error
was determined by adding a variance �

2 to each of the individual abscissa variances,
the constraint being that the unit-weight variance u2 = χ2 /(n − 5) of the five-parameter
astrometric solution must be equal to unity. A normal rate of possible outliers (≤ 2
per star) was however still allowed. The cosmic error was added quadratically to the
abscissa standard errors, and the modified standard errors (σ2

F + �
2)1/2, (σ2

N + �
2)1/2 were

used to compute the correlation coefficient between the FAST and NDAC abscissae
according to Equation 17.9. The calculated correlation coefficient therefore increased
in the presence of a cosmic error.

For each star, the adopted procedure was the following iteration:

1. a normal astrometric solution, as described above, was performed. If u2 ≠ 1, the
maximum allowed number of outliers (rejected abscissae) was set to 2;

2. if no cosmic error was indicated (u2 ≤ 1), the maximum number of outliers was
decreased to 1, then 0. Evidently, the standard five-parameter model was adequate
for the majority of the stars, in which case the cosmic error was set to � = 0;

3. otherwise, � was computed from the non-rejected observations. Assuming Gaussian
residuals, (n− 5)u2 follows a χ2

n−5 distribution, where n = nF + nN is the total number
of observations, and the standard error on � is then approximately given by:

σ
�

=
�

2
n − 5

�1/2 �
2�

∂(u2)
∂(�2)

�−1

[17.16]

In order to avoid unrealistically small standard errors on some stars, a lower limit
of � /

p
2(n − 5) was introduced on σ

�
;

4. the covariance matrix V was computed for a new iteration.

This procedure was applied to the whole catalogue. A sample of about 94 000 single
stars was first defined, i.e. stars not recognised as double or multiple, with a goodness-
of-fit statistic F2 < 3, and with at most two rejected abscissae. From these stars, it was
empirically found that the criterion � > 5σ

�
corresponded to a significance level similar
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to the usual 3σ two-sided test on a Gaussian distribution. This criterion was therefore
used to decide whether a stochastic solution was significant.

One of the possible causes for the presence of a cosmic error is unrecognised duplicity.
Known double stars should therefore also produce significant cosmic error if given a
stochastic solution instead of the proper solution with two or more components. In
order to test this hypothesis, stochastic solutions were computed for all Hipparcos stars
resolved as double and thus contained in Part C of the Double and Multiple Systems
Annex. The cosmic errors were plotted against the effective magnitude difference D
(Equation 13.40) of the doubles. This quantity, equal to the real magnitude difference
∆Hp when the separation exceeds 0.32 arcsec but increasing for small separations, is
a measure of the difficulty by which the secondary may be detected in the Hipparcos
detector signal. A strong correlation was found between the cosmic error and the
effective magnitude difference (Figure 17.5).

Other stars which received a stochastic solution may be astrometric binaries with a
period of less than a few years, and the cosmic error could then be taken as an order-
of-magnitude estimate of the semi-major axis of the orbit of the photocentre (a0).
Significant stochastic solutions were obtained for some of the objects finally retained
as orbital astrometric binaries in the Hipparcos Catalogue. In Figure 17.6 the cosmic
errors for these objects are compared with the semi-major axes as given in Field DO4 of
the Double and Multiple Systems Annex. As expected, there is a rough proportionality
between the two quantities, with a0 ' 2.4� at least for small a0.

A grossly erroneous starting position for the astrometric adjustment usually resulted in
a number of grid-step errors in the abscissa residuals, which were then more or less
uniformly distributed between −s /2 and +s /2, where s = 1.2074 arcsec is the grid step.
These cases show up among the stochastic solutions with a cosmic error of the order of
s /
p

12 ' 300 mas (Figure 17.5 contains a number of such solutions). A similar effect
tends to occur for non-detections (very weak signal, e.g. due to erroneous pointing
of the instantaneous field of view). After elimination of all systems solved by other
models, a number of stars with large cosmic errors (� > 100 mas) still remained and
had to be examined more closely. Some of them were indeed found to be affected by
grid-step errors, and good five-parameter solutions could be obtained by changing the
reference positions and the abscissae by multiples of the grid step. Remaining cases
with a cosmic error exceeding 100 mas were however rejected as being most probably
invalid astrometric solutions.

17.7. Comparison with a Weighted Mean

An alternative to the adopted merging procedure described above would be to use, for
each astrometric parameter a of a given star, a weighted mean of the FAST and NDAC
parameters:

aW = waF + (1 − w)aN [17.17]

This method (with a constant w = 0.5) was used for the construction of the provisional
catalogues H18 and H30, but a slightly better result would be obtained by optimising
the weight w for each star, or even for each parameter. It is of interest to compare the
precision of this simple method to the more elaborate merging adopted for the final
catalogue.
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Figure 17.5. Cosmic error � (mas) versus the effective magnitude difference D (Equation 13.40) for systems retained

as resolved double stars in the final catalogue (Part C of the Double and Multiple Systems Annex). Stochastic solutions

with cosmic errors above some 200 mas are generally due to grid-step errors, which were not eliminated in this sample.
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systems shown in this diagram were retained as orbital astrometric binaries in the final catalogue (Part O of the Double

and Multiple Systems Annex), but stochastic solutions were also computed for this comparison.
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Figure 17.7. Median precision of parallaxes of single stars versus magnitude Hp for various astrometric solutions:

(a) initial FAST solution; (b) initial NDAC solution; (c) FAST solution with re-weighted abscissa standard errors;

(d) NDAC solution with re-weighted abscissa standard errors; (e) merged solution adopted for the final Hipparcos

Catalogue; (f) a weighted mean of the FAST and NDAC parallaxes.

The value w which minimises the variance σ2
W of aW is:

w =
1 − ρq

1 − 2ρq + q2
[17.18]

where q = σF /σN is the known ratio of the standard errors and ρ the (initially) unknown
correlation coefficient between aF and aN. The variance of the weighted mean parameter
is given by:

σ2
W =

1 − ρ2

1 − 2ρq + q2
σ2

F [17.19]

The correlation coefficient may be estimated the same way as in Equation 17.8 under
the assumption that ρ and q are constant for a given magnitude; the result is:

ρ '
�

1 + q2

2q

�
[1 − Var(∆a)] [17.20]

where ∆a = (aF − aN)/(σ2
F + σ2

N)1/2 are the normalised differences introduced in Equa-
tion 16.23. This procedure allowed ρ to be computed in bins of magnitude. Each of the
two factors of the product in Equation 17.20 was then calibrated as a polynomial in the
Hp magnitude. Introducing this ρ(Hp) into Equations 17.17–17.19 gives the weighted
astrometric parameter and associated standard error for a star of magnitude Hp.

Applying the above method to the parallaxes of single stars gives the median value of
σW as drawn in Figure 17.7. In terms of the astrometric standard errors, the adopted
merging procedure appears roughly equivalent to the present method using a simple
weighted mean of the astrometric parameters. However, the more elaborate merging of
the abscissa data allows the covariances of the merged astrometric parameters also to be
computed in a rigorous manner; this is not possible in the simpler method.
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Figure 17.8. The auto and cross-correlation functions ρFF(θ), ρFN(θ) and ρNN(θ) of the abscissa residuals in orbit

number 1001, plotted against the angular separation of the stars (θ). A bin size of 0.�35 in θ was used to compute the

correlations, which were then smoothed with a Gaussian kernel of standard deviation ' 0.�43.
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Figure 17.9. Same as Figure 17.8 but for orbit 2000, illustrating the typical variation of the correlation functions

from one orbit to another.
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Figure 17.10. The first bin of the auto and cross-correlation functions ρFF(θ), ρFN(θ) and ρNN(θ), i.e. for

separations θ < 0.�35, plotted against the orbit number. Each curve is a running median over 50 orbits (' 22 days).

17.8. Correlations Between Different Stars on the Same Great Circle

Already in the early stages of the preparations of the Hipparcos data reductions it
was recognised that the observation mode, and especially the great-circle reductions,
would generate cyclic correlation patterns among the stars observed on the same great
circle (Høyer et al. 1981). More detailed predictions were included in the pre-launch
documentation (Perryman et al. 1989 Volume III, Chapter 23). A significant positive
correlation (of a few tenths) was expected between the abscissae vi and vj of stars for
which jvi − v j j was less than a few degrees or close to a small multiple of the basic angle,
modulo 2π.

The abscissa residuals from the merging allowed the sample correlation coefficients to
be computed among pairs of the normalised residuals on the same great circle (∆vFi /σFi ,
∆vF j /σF j , ∆vNi /σNi and ∆vN j /σN j for i ≠ j). This was done as functions of the angu-
lar separation θ between the stars (see Equation 16.25). Note that the actual angular
separation of the stars was used, rather than the abscissa difference. Two autocorre-
lation functions [ρFF(θ) and ρNN(θ)] and one cross-correlation function [ρFN(θ)] were
calculated, using a bin size of 180� /512 ' 0.�35. The results for two fairly typical great
circles are shown in Figures 17.8–17.9.

Although most correlation functions show the expected peaks at multiples of the basic
angle (0�, 58�, 116�, 174�, 128�, . . .), the amplitude of the peaks varies considerably
between different great circles, and also between the consortia results on the same
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Figure 17.11. The average auto and cross-correlation functions ρFF(θ), ρFN(θ) and ρNN(θ) obtained by considering

all 2341 available great circles.
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Figure 17.12. Same as Figure 17.11 but on an enlarged scale showing the correlations for small angular separations.
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great circle. The variation of the correlations for small separations (the first bin, i.e.
θ < 0.�35) is shown in Figure 17.10. The mean correlation functions for the whole
mission are shown in Figures 17.11–17.12. The auto-correlations for the FAST data
are slightly smaller than the NDAC ones, and the cross-correlation is much smaller than
the autocorrelations.

It is interesting to see the influence of the abscissa correlations on the final astrometric
parameters. As seen in Figures 16.36–16.37, the small-scale correlations (θ <~ 2�) remain
whereas the other correlation peaks at multiples of 58� are very strongly damped. The
reason for this is that any given pair, separated by 58� on the sky, was very rarely observed
on the same reference great circle. The peak at 174� is relatively less damped because
stars at diametrically opposite points on the sphere were more likely to be observed on
the same great circle.

The auto- and cross-correlation functions can be used, together with the Hipparcos
Intermediate Astrometric Data (Volume 1, Section 2.8), to estimate the full covariance
matrix of the abscissae for any group of stars, such as in a cluster. This may be useful
for evaluating the correlations between the astrometric parameters of the different stars
in a more rigorous manner than using the average correlation discussed in Section 16.6.

17.9. Conclusions

By using the FAST and NDAC star abscissae as a basis for the merging, rather than the
astrometric solutions of each consortium, it was possible to find an optimum solution
for all five (or more) astrometric parameters, including estimates of the standard errors
and correlations of the merged astrometric parameters. The method required however
very careful calibration of the standard errors of the abscissae and the correlation of
abscissa errors between the consortia, for which special techniques were developed.
The overall correlation was about 0.7, allowing a significant improvement in precision
by the merging, as can be seen in Figure 17.7. The merging of the abscissae also made
it relatively simple to choose between the several different models of star motion, from
the standard five-parameter model to the twelve-parameter model for orbital binaries.

The final merging resulted in a catalogue called H37C, in which the positions and
proper motions were still expressed in the provisional ad hoc reference frame defined
by earlier mergings. The main part of the Hipparcos Catalogue was created from
H37C by applying the rigid-body rotation derived from comparing H37C with the
extragalactic reference frame, as described in Chapter 18. Detailed statistics of the
Hipparcos Catalogue are given in Volume 1, Part 3.

An important by-product of the merging process was the generation of the complete set
of FAST and NDAC abscissa residuals, expressed on the same reference frame as the
Hipparcos Catalogue and including the calibrated standard errors and correlations; for
future investigations this data set is made available on ASCII CD-ROM, in the form of
the Hipparcos Intermediate Astrometric Data described in Volume 1, Section 2.8.

F. Arenou
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18. THE LINK TO AN EXTRAGALACTIC SYSTEM

The positions and proper motions in the Hipparcos and Tycho Catalogues refer
to the International Celestial Reference System, ICRS. This means that the
coordinate axes of the catalogues have been aligned with the reference frame
determined through VLBI radio observations of extragalactic sources, and
remain fixed with respect to that reference frame. Since extragalactic sources
(with the exception of 3C273) were not directly accessible for observation by
Hipparcos, it was necessary to use other observational techniques to link the
Hipparcos reference frame to the extragalactic frame. Since the Hipparcos and
Tycho Catalogues are the first large-scale realisations of the ICRS in the optical
domain, great importance was attached to the task of achieving this link to the
best possible accuracy. This chapter describes the different techniques that
were employed, the work done by the several groups contributing to the link,
and how their results were combined in order to derive the reference frame
finally adopted for the catalogues.

18.1. Motivation for the Link

Hipparcos was able to measure the angles between objects on its observing list very
accurately. From these angles, and their variation in time, the positions and proper
motions of the stars could be calculated in a single coordinate system covering the
whole sky, and their absolute trigonometric parallaxes were obtained at the same time.
However, because the angles between stars are invariant with respect to a rigid rotation
of the coordinate axes, there was a basic indeterminacy in the instantaneous orientation
of the axes that could not be removed from an analysis of the angular measurements
alone. Given the kinematical constraint that stars in general have uniform space motions
(as incorporated in the modelling of the observations; see Volume 1, Section 1.2.8),
it can be shown that the intrinsic indeterminacy of the Hipparcos reference system
has six degrees of freedom (Betti & Sansò 1983), corresponding to the inertial spin
of the system and its orientation at a given epoch. More precisely, there is a six-
dimensional manifold of solutions for the positions and proper motions, each solution
being equally consistent with the observations and differing from the others by a uniform
rotation. From this manifold of possible reference frames a single one had to be selected
for the published catalogues. The selected reference frame should correspond to the
International Celestial Reference System (ICRS), as discussed in Section 18.2.

The merging of the final FAST and NDAC sphere solutions, described in Chapter 17,
resulted in a catalogue called H37C, the precise axes of which were in an unknown state
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of uniform rotation with respect to the desired extragalactic frame. It was the purpose
of the link observations to determine this state by all available means, and then apply
the corresponding corrections to the positions and proper motions in H37C in order to
produce the Hipparcos Catalogue.

A direct determination of the relation between H37C and the extragalactic system would
have been possible if the Hipparcos observing programme had included a sufficient
number of extragalactic sources, some of which with accurately known radio positions.
However, due to the rather bright limiting magnitude of Hipparcos, no such objects
were included. (The programme did include the brightest quasar, 3C273 (HIP 60936),
and some 45 stars in the Magellanic Clouds; however, the quasar was still too faint
to contribute significantly to the link, and the Magellanic Clouds are expected to have
proper motions of a few milliarcsec per year, and therefore cannot be used as reference
directions. See Section 18.8 for a discussion of the observations of these objects.)
Consequently, indirect methods had to be used to bridge the gap between the optically
bright objects on the observing list and the extragalactic sources observed either at radio
wavelengths or at much fainter optical magnitudes. These methods and their results are
described in subsequent sections. Since the actual orientation and spin of H37C found
by these methods are only of historical interest (they are given in Table 16.8), while
the deviations of the various methods from the adopted mean result are of considerable
interest for judging the quality of the link, all results in this chapter are given relative the
adopted mean result. Thus, the results of the individual link methods are presented as
if the Hipparcos Catalogue (and not H37C) had been compared with the extragalactic
frame.

18.2. Reference System for the Hipparcos Catalogue

The choice of a reference system for the Hipparcos Catalogue was initially not an
obvious one. The traditional definition of the fundamental celestial directions in terms
of the mean equator and equinox was based on dynamical principles and its practical
implementation required observations both of solar system objects (to determine the
ecliptic) and of the Earth’s rotation axis (to determine the equator), as well as a dynamical
theory for the inertial variations of these directions. However, it was clear from the outset
that a kinematical definition of a non-rotating frame (i.e. with respect to distant galaxies)
was much preferred for Hipparcos, because it would be both easier to implement and
more accurate than a dynamical (inertial) system. This choice eliminated three degrees
of freedom, but still left the orientation of the system unspecified. The situation was
clarified in 1991, when the IAU adopted a resolution (Bergeron 1992) stating that the
next celestial reference system should be based upon positions of extragalactic radio
sources, but that it will come into effect only when there is a realisation of the system in
the optical domain. It was then understood that this realisation should be the Hipparcos
Catalogue, given its expected high precision and extension to more than a hundred
thousand stars.

Since 1988, the International Earth Rotation Service (IERS) has implemented and
maintained an extragalactic reference frame containing an increasing number of extra-
galactic radio sources observed by several VLBI networks throughout the world (Arias et
al. 1995). At the request of the IAU working group on reference frames, IERS finalised
this iterative process and provided a definitive list of objects and coordinates in October
1995 (Ma et al. 1997). This list is the International Celestial Reference Frame (ICRF)
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of 610 sources (IERS 1996). The axes of this catalogue are to remain fixed with respect
to the quasars, and constitute the International Celestial Reference System (ICRS). As
a result of the present link, all the coordinates published in the Hipparcos and Tycho
Catalogues refer to the ICRS. It is expected that in 1997 the IAU will approve ICRS
as the new reference system replacing the FK5 system. The Hipparcos and Tycho
Catalogues are its first realisation for optical astronomy.

18.3. Link Equations

The analytical tools for comparing two reference frames related by a uniform rigid-body
rotation were derived in Lindegren & Kovalevsky (1995) and are summarised here to
the extent that they are directly applicable to the various link observations.

The extragalactic reference frame (ICRF) is represented by the triad of unit vectors,
E = [ xE yE zE ]. Similarly the Hipparcos reference frame is represented by the triad
H = [ xH yH zH ]. Following the principle of coordinate transformations in Section 1.5.3
of Volume 1, the arbitrary direction u is written:

u = E

 cos δE cos αE

cos δE sin αE

sin δE

!
= H

 cos δH cos αH

cos δH sin αH

sin δH

!
[18.1]

where (αE, δE) and (αH, δH) are the celestial coordinates of u in the two frames. The
column matrices in Equation 18.1 containing the direction cosines can also be written
E 0u and H0u, respectively. They are related through the matrix equation:

E 0u = (E 0H)H0u [18.2]

where E 0H is an orthogonal 3 × 3 matrix whose elements consist of the scalar products
x0ExH, etc.

The relation between E and H can be represented by the time dependent vector "(T )
such that a triad initially aligned withHwill become aligned with E after rotation through
the angle ε = j"j about the unit vector e = "ε−1. In the small-angle approximation
(neglecting terms of order ε2) the frames are related by:

E ' H + " × H [18.3]

and the transformation matrix in Equation 18.2 becomes:

E 0H ' I + (" × H)0H =

 1 εz −ε y

−εz 1 εx

ε y −εx 1

!
[18.4]

Here, I is the 3 × 3 identity matrix and εx, ε y, εz are the components of " in either
reference frame. (The actual orientation errors occurring in the link equations were less
than 0.1 arcsec, so the small-angle approximation was always adequate. The rigorous
expressions for arbitrarily large rotations are given in Lindegren & Kovalevsky 1995.) It
can be noted that E 0" = H0" strictly holds, so that the components of the rotation vector
are the same in the two frames.

If H is rotating with constant angular velocity ! relative to E , then its time dependent
orientation error can be written (again in the small-angle approximation):

"(T ) = "0 + (T − T0)! [18.5]
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where "0 is the orientation error at the reference epoch T0 = J1991.25. The link
observations aim at the estimation of the six components of "0 and ! in the E or H
frame, and the link equations express the observations in terms of these six unknowns,
or a subset of them.

Positional Observations

Observations linking the positions of objects in the two frames provide information on
the orientation difference " at the (mean) epoch of observation, T = T0 + t. Three kinds
of positional link observations are considered here: (1) observation of the position of
a Hipparcos star in the extragalactic frame; (2) observation of the position of an extra-
galactic object in the Hipparcos frame; and (3) measurement of the angular separation
between two objects, one of which is known in the extragalactic frame, the other in the
Hipparcos frame. Observations undertaken for each of these cases can be summarized
as follows:

(1) Radio interferometric observations of a radio star allow its barycentric position
(αE, δE) in the extragalactic frame at the (mean) epoch T of the radio observations to be
determined. (It can be assumed that the observations are corrected to the barycentre,
using either the Hipparcos parallax or a parallax determined from the radio observations
themselves.) Let (αH, δH) be the barycentric position of this star at the same epoch T ,
as calculated from the position and proper motion data in the Hipparcos Catalogue.
The two sets of celestial coordinates are related through Equations 18.1, 18.2 and 18.4.
Neglecting terms of order (αH − αE)ε and (δH − δE)ε gives the following equations of
condition:�

− sin δ cos α − sin δ sin α cos δ
sin α − cos α 0

�
"(T ) =

�
(αH − αE) cos δ

δH − δE

�
[18.6]

The combination of several such observations spread over a number of years allows
determination of "0 and ! separately by substituting Equation 18.5 in the left-hand
side.

(2) Relative astrometric observations by means of photographic or CCD techniques,
using Hipparcos stars as reference points, allow the position of an extragalactic object
in the Hipparcos frame, (αH, δH) to be determined. If its position (αE, δE) in the
extragalactic frame is also known, the same equations of condition result as in the
previous case, Equation 18.6, where T = T0 + t is the epoch of the relative astrometric
observation.

(3) Observations with the Hubble Space Telescope Fine Guidance Sensors allow the
angular separation φ of two objects, e.g. between an extragalactic object (at u1) and a
Hipparcos star (at u2) to be measured. The coordinates of the extragalactic object are
known in the extragalactic frame (E 0u1), while those of the Hipparcos star are known
in the Hipparcos frame (H0u2). This type of observation differs from the previous two
in that none of the objects is accurately known in both frames. The following implicit
form of link equation is readily obtained by means of Equations 18.2 and 18.4:

2 sin
φ
2

= ju1 − u2j = jE 0u1 − E 0u2j = jE 0u1 − (E 0H)H0u2j

=

�����
 cos δE1 cos αE1

cos δE1 sin αE1

sin δE1

!
−

 1 εz −ε y

−εz 1 εx

ε y −εx 1

! cos δH2 cos αH2

cos δH2 sin αH2

sin δH2

!����� [18.7]
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An explicit form can be obtained by linearisation.

Proper Motions

Let (µα�H, µδH) and (µα�E, µδE) be the proper motion components of one and the same
object, expressed in the Hipparcos and extragalactic frames. Their differences give
directly an observation equation for the spin difference:�

− sin δ cos α − sin δ sin α cos δ
sin α − cos α 0

�
! =

�
µα�H − µα�E

µδH − µδE

�
[18.8]

Stellar proper motions in the Hipparcos frame are known from the space observations.
The proper motions of some of these stars were also known in the extragalactic frame,
either from VLBI observations (in the case of radio stars), or from photographic surveys
determining ‘absolute’ stellar proper motions with respect to background galaxies. A
third kind of observations leading to the same form of link equation is the measure-
ment of the apparent proper motions of sufficiently distant extragalactic objects in the
Hipparcos reference frame; in this case µα�E = µδE = 0 is assumed.

Use of Earth Orientation Parameters

The Earth Orientation Parameters (EOP) are a set of time dependent angles describing
the orientation of the Earth’s spin axis and the phase of the spin about the axis. The
spin axis orientation is given in the terrestrial system by the two components of the polar
motion (denoted x, y), and in the celestial system by the offsets in obliquity (∆�) and
longitude (∆ψ sin �) of the nutation angles from a conventional model of precession and
nutation. The instantaneous phase of the spin is given by universal time (UT1), and
the corresponding Earth orientation parameters set is taken to be its offset from the
international atomic time scale, UT1–TAI. Since 1980 these angles are derived with
sub-milliarcsec accuracy from VLBI observations relative to extragalactic radio sources
in the IERS reference system. The celestial orientation of the Earth, given by ∆�, ∆ψ sin �

and UT1–TAI, are thus accurately known in the extragalactic reference system.

But the Earth orientation parameters can also be derived from latitude and time obser-
vations obtained by optical instruments, typically zenith tubes and astrolabes. Indeed,
this was the standard method before the advent of radio interferometry. In this case
the celestial orientation of the Earth is determined with respect to the optical reference
system of the stars used in the observations. Clearly a comparison of the Earth orien-
tation parameters as derived by VLBI and by the traditional optical means provides an
indirect link between the two reference systems. In terms of the orientation vector " at
the epoch of observation, the link equations are:

εx = −(∆�H − ∆�E)

ε y = (∆ψH − ∆ψE) cos �

εz + ∆λ = 15 041(UT1H − UT1E)

[18.9]

where � ' 23.�44 is the obliquity of the ecliptic and ∆λ is the longitude difference
between the two realisations of the terrestrial system. The numerical factor 15 041
converts seconds of Universal Time to mas. Unfortunately ∆λ is essentially unknown,
at the accuracy level of interest here, and the Earth orientation parameters method can
therefore only be used to determine the x and y components of the link. The time-
dependent part of Equation 18.9 gives the observation equations for !. Assuming that
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∆λ is constant, it should be possible to obtain all three components of ! from these
equations; however, the actual results indicate that there is also a drift in ∆λ, so that
only ωx and ω y can be determined.

18.4. Results of the Different Link Programmes

In the following subsections, the various programmes used for the determination of the
extragalactic link are described individually. The participants of each group are listed
in Section 18.9. The link programmes are presented in the following order:

1. radio and optical techniques providing high-precision positional links to a small
number of Hipparcos stars. These define the orientation parameters " very accu-
rately, but contribute less to the determination of the spin (!) due to the small
number of objects and the relatively short time span of the observations;

2. use of proper motion surveys where the motions of large numbers of stars are
measured relative to galaxies. These only contribute to the determination of !;

3. special photographic link programmes;

4. use of Earth orientation parameters.

The numerical results of the individual link solutions, expressed as residuals with respect
to the adopted global solutions, are given in Tables 18.3–18.4. Further details on the
individual solutions are found in Kovalevsky et al. (1997) and in separate papers prepared
by the different groups.

VLBI Observations

Multi-epoch VLBI observations were conducted between 1984 and 1994 to determine
the positions, proper motions and parallaxes of 12 radio-emitting stars. Their positions
on the sky are shown in Figure 18.1. The observations were conducted on the US VLBI
Network, NASA Deep Space Network, NRAO Very Large Baseline Array (VLBA) and
European VLBI Network. The data processing and analysis is described in Lestrade et
al. (1995). All the VLBI observations for each star were phase-referenced to an angularly
nearby extragalactic radio source on the ICRF list. The resulting uncertainties in the
astrometric parameters of the radio stars are presented in Table 18.1. The parallax
results are discussed in Section 20.3.

The six components of "0 and ! were simultaneously solved by a least-squares fit
as described in Lestrade et al. (1995), using weights based on the combined VLBI
and Hipparcos a priori measurement uncertainties. Two objects were however down-
weighted by increasing their positional uncertainties by a factor of three: for HIP 12469
(LSI 61�303) because of its jet structure on a 10 mas scale, and for HIP 19762 (HD
283447) because of its known duplicity on a scale ' 0.1 arcsec (Ghez et al. 1993)
which is difficult for Hipparcos. No modifications were made on the a priori proper
motion uncertainties. After this adjustment of the weights, the unit-weight residual of
the solution was close to unity.

Tests were done by splitting the 12 stars in various subsets and calculating independent
solutions for each subset. This showed that the fit is quite robust: for instance, the
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Figure 18.1. Sky distribution of radio stars used for the link by VLBI (crosses) and MERLIN (circles). Equatorial

projection with α increasing from −180� to +180� right-to-left.
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Figure 18.2. Sky distribution of Lick NPM1 fields (light grey) and Yale/San Juan SPM fields (dark grey) used in

the link solutions. Equatorial projection with α increasing from −180� to +180� right-to-left.
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Table 18.1. Uncertainties of the absolute positions (at epoch J1991.25), proper motions and trigonometric

parallaxes of the 12 link stars as determined by VLBI observations.

Hipparcos Standard errors

number Star name Pos. P.M. Par.

(HIP) (mas) (mas/yr) (mas)

12469 LSI 61�303 = V615 Cas 3.0 0.30 0.62

14576 Algol 0.61 0.18 0.59

16042 UX Ari 2.1 0.20 0.39

16846 HR 1099 0.48 0.31 0.47

19762 HD 283447 3.0 0.28 0.25

23106 HD 32918 1.5 1.00 0.80

66257 HR 5110 1.28 0.16 0.45

79607 σ2 CrB 0.29 0.05 0.10

98298 Cyg X1 = V1357 Cyg 1.50 0.14 0.30

103144 HD 199178 1.95 0.43 0.33

109303 AR Lac 0.94 0.19 0.37

112997 IM Peg 1.42 0.47 0.68

differences between the fits of two subsets of six stars each were within the combined
uncertainties, i.e. less than 1 mas for the orientation components and less than 0.6 mas/yr
for the spin components.

Observations with MERLIN

MERLIN is a real-time radio-linked radio interferometer array with a maximum baseline
of 217 km, giving a resolution of approximately 40 mas at 5 GHz. See Thomasson
(1986) for a general description of MERLIN. As in the VLBI observations described
above, the positions of weak radio stars were obtained by using ICRF sources as phase
calibrators. Typically, the star-calibrator separation was 5� and the cycle time was 5 to
10 min.

A total of 13 radio stars were observed between 1992 and 1995, four of which are
common with the VLBI set: HIP 12469 (LSI 61�303), HIP 14576 (Algol), HIP 16879
(HD 22403), HIP 19431 (HD 26337), HIP 53425 (DM UMa), HIP 65915 (FK Com),
HIP 66257 (HR 5110), HIP 79607 (σ2 CrB), HIP 85852 (29 Dra), HIP 91009
(BY Dra), HIP 108644 (FF Aqr), HIP 116584 (λ And), and HIP 117915 (II Peg).
The positions of individual stars, relative to the ICRF sources, are estimated to have
individual errors of approximately 4 mas. Two of the stars (HIP 85852 and HIP 79607)
were not included in the link solution because of problems related to the duplicity of
these objects. The distribution of the retained stars on the sky is shown in Figure 18.1.

The Hipparcos proper motions and parallaxes were used to reduce the MERLIN geo-
centric positions to the barycentre and mean epoch of Hipparcos, i.e. J1991.25. For the
triple star Algol, a further correction from the radio emitting close pair AB to the centre
of mass of the AB–C system was applied, using the orbital elements and mass ratios by
Pan et al. (1993). Compared with that reference, however, the position angle of the line
of nodes had to be rotated by 180� to obtain agreement with the MERLIN data.
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The solution for " (at the mean epoch J1994.0) gives standard errors of 2.2 to 2.6 mas
in the components. Compared with the VLBI solution which is virtually independent,
there is a close agreement which lends confidence to the stability of the link which could
have been distorted by significant offsets between the optical and radio emission of some
of the binary stars.

Observations with the VLA

As part of the link programme, observations were also carried out with the Very Large
Array (VLA) operated by the National Radio Astronomy Observatory. For this ob-
serving programme the procedures outlined in Florkowski et al. (1985) were followed.
Between March 1982 and August 1995, radio emitting stars were observed differentially
with respect to unresolved extragalactic radio sources. Cleaned maps of the sky near
the stellar radio emission were created using the Astronomical Image Processing System
(AIPS). The position of the star relative to the absolute phase centre of the map was
obtained by fitting a two-dimensional Gaussian function to the stellar emission. The
stellar positions (in the extragalactic reference frame) were moved to the epoch J1991.25
by means of the Hipparcos proper motions and parallaxes. The differences between the
radio and Hipparcos positions were then used to solve for the orientation vector " at the
mean epoch of observation (around 1986). The standard error in each component of
the vector was about 5 mas.

Optical Positions of Compact Sources

The Hamburg/USNO reference frame programme has been described in Johnston et
al. (1995), Ma et al. (1990), and Zacharias & de Vegt (1995), and the reader is referred to
these publications for details. The programme is aimed at the determination of precise
optical and radio positions of about 400 to 500 selected compact radio sources which
display optical counterparts, mostly QSOs and BL Lac’s, within a visual magnitude
range of 12 to 21 mag. Optical positions in the Hipparcos reference frame were obtained
via a system of secondary reference stars in the magnitude range 12 to 14 mag. The
procedure thus required two steps: first the establishment of the secondary reference
positions by means of astrograph plates, and then the observation of the radio sources
with respect to the secondary frame by means of larger telescopes.

The secondary frame was established using wide field (' 5�) astrographs on both
hemispheres. For each field, four plates centred on the source position were taken and
measured on the CCD-camera based Hamburg astrometric measuring machine. The
measurements included all Hipparcos stars in the whole plate field (typically 50 to 100
stars), and secondary reference stars selected from the Hubble Space Telescope Guide
Star Catalog in the central 1� field. Formally, the Hipparcos reference frame could be
transferred locally to each radio source field with a precision better than 10 mas.

Optical source positions were then obtained using plates from Schmidt telescopes and
the prime focus of large telescopes. Plate or CCD solutions were obtained using the
secondary reference star catalogue. The precision of the optical source positions based
on several plates and/or CCD frames is better than 30 mas in each case. The programme
therefore provides optical positions of the extragalactic reference frame sources in the
Hipparcos frame. The link solution used here was based on the CCD frames of 78
globally selected sources at mean epoch J1988.5 and gives a formal error of about 5 mas
in each component of the orientation vector at that epoch. The full programme will
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eventually determine the orientation parameters on the 1 mas accuracy level, based on
all 400 sources.

Observations with the Hubble Space Telescope

The Fine Guidance Sensors (FGSs) of the Hubble Space Telescope (HST) have been
used to measure the angular separation of Hipparcos stars from extragalactic objects.
Within the instrumental frame the FGSs measure relative positions of targets to a
precision of a few milliarcsec (Benedict et al. 1992). However, since the absolute
orientation of the FGS frames is not accurately known, the relative positions in the FGS
field of view cannot be transformed to differences in α and δ on the sky. The angular
separation of two objects, being independent of the FGS orientation, is therefore the
most accurate datum available for the link work.

78 separations of 46 Hipparcos stars next to 34 extragalactic objects were measured
from April 1993 through December 1995. GaussFit, a non-linear least-squares package
(Jefferys et al. 1988), was used to determine the orientation and spin parameters from
these data. The Hipparcos proper motion and parallax values were used to calculate
the topocentric directions of the stars at the times of observation. The analysis required
the application of a time-dependent field distortion calibration and the inclusion of a
time-dependent scale factor among the fitted parameters. The major sources of error
are the HST/FGS data (estimated at 3 to 4 mas for a single separation measurement)
and the propagation of the Hipparcos proper motion errors to the epochs of the HST
observations.

Use of the Lick Proper Motion Program

The published Part 1 of the Lick Observatory Northern Proper Motion Program
(NPM), also known as NPM1 (Klemola et al. 1987, 1993, 1994), contains 149 000
stars from 899 NPM fields north of δ = −23� for which the proper motions have been
determined relative to background galaxies. The mean number of galaxies per field is
80. The typical precision of the NPM1 absolute proper motions is 5 mas/yr.

In total 13 455 stars are common to the NPM1 catalogue and the Hipparcos Catalogue.
Preliminary comparisons of Hipparcos proper motions with the NPM1 indicated a
linear magnitude equation of about 1 mas yr−1 mag−1 in the NPM1 data essentially
down to the magnitude limit of the Hipparcos Catalogue. The magnitude equation
is coordinate-independent, although in declination it shows a different slope for stars
north and south of δ = −2.�5. It should be noted that due to the lack of measurable
multiple grating images in the same exposure, it is impossible to eliminate the magnitude
equation internally. Furthermore, there are no absolute proper motions available which
could readily be used to correct the magnitude equation externally. Since the rotation
parameters are correlated with the magnitude equation, the Hipparcos data cannot be
used to correct the magnitude equation as part of the link solution.

Two different groups have independently analysed the Hipparcos–NPM1 differences in
an attempt to contribute to the extragalactic link of the Hipparcos Catalogue. Their
conclusions are separately reported below.

The Yale Analysis: With regard to the magnitude equation described above, affecting
the bright NPM1 stars, various solutions to the problem were tried, including the



The Link to an Extragalactic System 397

Table 18.2. Results of the Heidelberg solutions for the components of the spin vector ! (in mas/yr) using

the Lick NPM1 proper motions. The first line gives the solution without magnitude limits for the selection

of stars; subsequent lines give the results for stars in certain intervals of the Lick (mB) or Hipparcos (Hp)

magnitude. The last line gives the formal standard errors for the solution with 1135 stars.

Magnitude Number Spin components

range of stars ωx ω y ωz

(no limit) 9236 −0.70 −0.27 −2.14

10.5 < mB < 11.5 2616 −0.76 +0.17 −0.85

10.9 < mB 2220 −0.72 +0.02 +0.10

11.9 < mB 510 −0.25 −0.12 +0.84

10.0 < Hp < 12.2 2535 −0.81 +0.11 −0.25

10.6 < Hp < 12.2 1135 −0.85 +0.16 +0.60

Formal errors: 1135 0.25 0.20 0.20

use of additional parameters in the link equations corresponding to linear magnitude
equations in each coordinate. Unambiguous disentangling of the magnitude effect from
the spin parameters turns out to be very difficult and perhaps impossible, due to the
strong correlations among these parameters. A careful inspection of how the magnitude
equation affects the spin components indicates the significance of the star distribution
over the sky. One possibility of minimising the effect of a coordinate-independent
magnitude equation is to seek a well-balanced distribution of the stars. In other words,
for the spin components ωx and ω y the stars must be distributed such that the sums
of the corresponding geometrical weighting factors in Equation 18.8 are close to zero.
In practice, the distribution of the NPM1 stars used in the solution was balanced by
introducing a fictitious 44�-width ‘zone of avoidance’ perpendicular to the galactic plane.
In addition, the stars with δ < −2.�5 (only in the declination solution) and mB < 10 mag
were deleted from the sample in order to reduce further the effect of the magnitude
equation. Four different solutions were computed from images of different colours
(blue, visual) and components (α, δ).

The Heidelberg Analysis: In order to investigate a possible magnitude equation in
the Lick data, spin solutions were computed for stellar samples of different brightness
(Table 18.2). It turned out that the dependence on magnitude is relatively unimportant
for ωx and ω y. (The case of mB > 11.9 mag was not considered representative, because
of the small number of stars in that sample.) ωz, on the other hand, shows a strong
dependence on magnitude. Moreover, there seems to be no asymptotic behaviour
when going to fainter stars. The conclusion is that ωz cannot be reliably determined
from the Lick proper motions. These findings are confirmed by Hanson (1996, private
communication) who reported on small systematic errors in the Lick proper motions in
right ascension.

Catalogue of Faint Stars (KSZ)

A general catalogue of absolute proper motions of stars with respect to galaxies was
compiled by Rybka & Yatsenko (1996), using data from 185 sky areas produced in Kiev,
Moscow, Pulkovo, Shanghai and Tashkent. The catalogue includes 977 Hipparcos stars
in the magnitude range 4 to 13 mag.
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Proper motion differences were analysed according to Equation 18.8. The residuals in
each coordinate were analysed as functions of magnitude, colour and position on the sky.
No significant dependency on these variables was found: the residuals represent random
errors only. However, different results for ! were obtained when the whole interval of
stellar magnitudes was used and when only bright (≤ 9.0 mag) or faint (> 9.0 mag) stars
were used. Since the stellar data in KSZ were obtained relative to faint galaxies it was
assumed that the solution using only the fainter stars is the more reliable one for the
link. For that solution, 415 stars were kept from 154 areas of the sky, yielding standard
errors of about 0.8 mas/yr for the spin components.

The Yale/San Juan Southern Proper Motion Program

The Yale/San Juan Southern Proper Motion program (SPM) is an extension of the
Lick Observatory Northern Proper Motion program to the sky south of δ = −17�. A
brief description of the observational material can be found in van Altena et al. (1990)
and Platais et al. (1995). In total 63 SPM fields, containing about 4100 Hipparcos
stars, were measured and reduced for the Hipparcos link (Figure 18.2). The mean
number of reference galaxies per field is 250 on blue plates and 190 on visual plates,
yielding a mean uncertainty in the correction to absolute proper motions of 1.0 mas/yr
for each field. Since the Hipparcos stars are represented by several images per star (ten
in the most favourable case), the single proper motion precision in each colour (blue
or visual) can be as good as 2 to 3 mas/yr. If this error were composed entirely by
the random measurement and modelling errors, the precision of each spin component
with the given number of the Hipparcos stars in hand could be in the range of 0.1 to
0.2 mas/yr. However, the link solutions indicate a somewhat larger scatter in the spin
components when compared to this precision estimate. This may very well be due to a
small systematic error remaining after the correction for the magnitude equation.

A preliminary study of the systematic errors in the SPM plates (Platais et al. 1995) clearly
showed the presence of a significant magnitude equation in the SPM coordinates. The
bulk of the magnitude equation in coordinates and, presumably, in proper motions was
removed using the grating-image offset technique formulated by Jefferys (1962) and
modified by the present group. This technique has inherent limitations set by the small
number of stars at the bright end, and by the fact that the magnitude equation may
have a complicated form, too difficult to model adequately. In addition, the magnitude
equation in the SPM plates is stronger and more complex in declination than in right
ascension. It was therefore believed that the link solution using only the proper motions
in right ascension was less affected by systematic errors related to the magnitude effect.

The Bonn Link Solution

The Bonn link solution uses series of photographic plates characterised by very large
epoch differences, typically 70 years and up to 100 years (Brosche et al. 1991). Each
series contains a compact extragalactic source and several Hipparcos stars, from which
the (apparent) proper motion of the extragalactic object in the Hipparcos frame can be
derived. The plates were predominantly taken with the f = 5 m double refractor of the
Sternwarte Bonn. For some fields the relative proper motions were calibrated using a
large number of stars and galaxies on Schmidt plates and Lick astrographic plates.
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The link solution used 88 Hipparcos stars in 13 fields distributed over the northern
celestial hemisphere. The median uncertainty for each field was 1.3 mas/yr. No signif-
icant correlations of the residuals from this solution with magnitude, colour, spherical
coordinates or relative position within a field were found.

The Potsdam Link Solution

The Potsdam programme (Dick et al. 1987) is based on measurements of plates (using
MAMA and APM) taken with the Tautenburg Schmidt telescope (134/200/400 cm).
Proper motions of 360 Hipparcos stars were derived in 24 fields (each of about 10 square
degrees) well distributed over the northern sky. From 200 to 2000 galaxies per field
were used to link the proper motions to the extragalactic reference system. With at least
two plate pairs per field and epoch differences of 20 to 40 years, an internal precision
of 3 to 5 mas/yr was achieved for the proper motions of Hipparcos stars (Kharchenko et
al. 1994). Due to the large number of galaxies in each field the formal zero point error
is less than 1 mas/yr.

Previous investigations showed that systematic, magnitude-dependent errors could af-
fect the proper motions of bright stars measured on Tautenburg plates (Scholz &
Kharchenko 1994, Kharchenko & Schilbach 1995). A significant magnitude equa-
tion was indeed found by comparison with the bright Hipparcos stars. To minimise
the effect, only 256 Hipparcos stars fainter than mB = 9.0 mag were used for the link,
yielding formal errors of 0.5 mas/yr on the components of !. The rms residual in the
proper motions of stars was 6.9 mas/yr.

Use of Earth Orientation Parameters

VLBI determines the five Earth orientation parameters ∆�, ∆ψ sin �, UT1–TAI, x and y,
in the extragalactic frame, at roughly 5-day intervals. The same parameters, referred to
the celestial optical system tied to the stars of the Galaxy, can be determined by optical
astrometry following the algorithms outlined in Vondrák (1991, 1996) and Vondrák et
al. (1992, 1995). Using the preliminary Hipparcos Catalogue, all the latitude and UT
observations made with 46 instruments at 29 different observatories all over the world
were recalculated into that reference frame. About 3.6 million observations were used
to derive Earth orientation parameters at 5-day intervals between 1899.7 and 1992.0.
However, only the last twelve years in common with the VLBI observations were actually
used for the link. Moreover, only the first two components of the orientation vector "
were determined, for the reasons explained in Section 18.3.

Summary of Numerical Results

The results of the individual link solutions are summarised in Tables 18.3–18.4 and
presented graphically in Figures 18.3–18.4. The galactic x and y components of the
solutions are also shown in Figures 18.5–18.6. As previously explained, the results given
in these tables and figures are the residuals of the individual solutions with respect to the
adopted solution found by the synthesis described in Section 18.7. For the orientation
components the residuals refer to the approximate mean epoch of observation of the
link observations in question given in the last column of Table 18.3.
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with respect to the adopted vector at the mean epoch of each solution). The components are expressed in mas. The

solutions are labelled as in Table 18.3. See also Figure 18.5 for the projections onto the galactic xy plane.
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Table 18.3. Results of the individual link solutions for the orientation vector ", expressed as residuals with

respect to the adopted solution. The second column contains the abbreviations used to identify the solutions

in Figure 18.3. The (formal) standard errors supplied with the individual solutions are given in parentheses.

The last column gives the approximate mean epoch of the link observations used to determine the orientation.

Method Label Orientation components (mas) Epoch

εx ε y εz 1900+

VLBI VI −0.10 (0.47) +0.08 (0.49) +0.16 (0.50) 91.3

MERLIN ME +1.41 (2.60) −0.64 (2.20) +0.51 (2.40) 94.0

VLA VA +4.27 (4.70) −3.75 (5.30) −5.76 (5.20) 86.3

Hamburg/USNO HP +3.38 (5.00) −0.06 (4.90) −9.20 (4.70) 88.5

HST/FGS ST −6.10 (2.16) −3.25 (1.49) +5.42 (2.14) 94.3

EOP EO +2.33 (0.88) +7.80 (0.90) 85.0

Table 18.4. Results of the individual link solutions for the spin vector !, expressed as residuals with respect

to the adopted solution. The second column contains the abbreviations used to identify the solutions in

Figure 18.4. The (formal) standard errors supplied with the individual solutions are given in parentheses.

The components marked with an asterisk (*) were not used in the synthesis.

Method Label Spin components (mas/yr)

ωx ω y ωz

VLBI VI −0.16 (0.30) −0.17 (0.26) −0.33 (0.30)

HST/FGS ST −1.60 (2.87) −1.92 (1.54) +2.26 (3.42)

NPM (Heidelberg) LH −0.77 (0.40) +0.15 (0.40) +0.23 (*)

NPM (Yale) LY +0.09 (0.18) −0.20 (0.18) +1.46 (*)

KSZ Kiev KZ −0.27 (0.80) +0.15 (0.60) −1.07 (0.80)

SPM (blue, α) YBA +0.23 (0.13) +0.50 (0.20) 0.00 (0.08)

SPM (blue, δ) YBD +0.07 (0.15) +0.58 (0.08)

SPM (visual, α) YVA +0.44 (0.12) +0.71 (0.18) −0.30 (0.07)

SPM (visual, δ) YVD +0.30 (0.12) +0.76 (0.06)

Bonn plates BP +0.93 (0.34) −0.32 (0.25) +0.17 (0.33)

Potsdam plates PP +0.22 (0.52) +0.43 (0.50) +0.13 (0.48)

EOP EO −0.93 (0.28) −0.32 (0.28)
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18.5. Discussion of the Individual Solutions

Before describing the methods and results of the synthesis, some remarks should be
made on the data provided by the various link techniques.

Radio Techniques

The relative precisions provided by the three interferometric techniques in the determi-
nation of the orientation (") are consistent with their baseline lengths and are therefore
considered as realistic. The precision of the determination of the spin (!) depends both
on the basic uncertainty of the observations and on the time span. This gives a major
advantage to the VLBI observations both for the orientation and spin. An attempt was
made to determine ! with MERLIN observations, but the result was not retained, the
time span being notably insufficient. A major concern with the radio techniques was the
small number of link objects and the consequently rather high sensitivity of the solution
to possible offsets of the radio and optical centres of emission. It was therefore very im-
portant to support these techniques by independent optical links to other extragalactic
sources.

Optical Determination of the Orientation

The full Hamburg/USNO programme comprises some 400 extragalactic sources, but
only about 20 per cent were completed at the time of the link. The Hubble Space
Telescope observations started very late due to the well known problems with the tele-
scope. In both cases, the uncertainties are large, but the methods are promising and
would have given better results with more data. Nevertheless, the results obtained are
in acceptable agreement with the radio techniques and support the adopted link within
the uncertainties of the optical techniques, namely a few milliarcsec.

Photographic Catalogues Referred to Galaxies

These techniques are much more sensitive to magnitude-dependent errors than the
preceding two optical methods. Most of the stars measured in these surveys are faint
and comparable in magnitude with the reference galaxies. However, for the link one
had to choose only the brightest of the survey stars, for which the effect is likely to be
much larger. The magnitude dependence is not necessarily linear at this end of the
survey population and the link results depend strongly upon either the model applied
or the magnitude cut-off adopted. This is illustrated by the discussions of the NPM,
SPM and KSZ programmes in the preceding section. No result can be considered as
being unbiased in this respect, although the SPM solutions have an advantage in that
the magnitude equation could be calibrated internally by the grating image technique.

The formal errors given by the authors of these methods are small because of the large
number of stars, and cannot be considered as realistic. Additional biases related to
the magnitude, and perhaps to other factors less well studied, certainly exist. This has
justified a significant down-weighting of the results provided. The difference between
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the results obtained at Yale and Heidelberg in their analyses of the NPM1 stars also
justifies this policy.

Special Photographic Link Programmes

Relying on archival plates for the first-epoch measurements, these programmes are
also prone to magnitude equation, with little possibility of controlling or studying the
effect. Because of this, their formal errors are probably underestimated. Strangely
enough, there seems to have been little gain in having a very long time span. Possibly
the magnitude-dependent errors are larger or more difficult to model in the old plates,
offsetting the advantage of the long time baseline.

Earth Orientation Parameters

In a sense this method is less direct than the others, as it depends on an intermediate
(terrestrial) reference frame, whose relations in the optical and radio domain may not be
completely understood. Apart from the problem with the z components discussed in the
preceding section, an additional uncertainty arises from the fact that the mean epoch
of the observations is 1985 and that all were performed before the Hipparcos mean
epoch. In the synthesis method where only "0 was estimated, this led to a considerable
down-weighting of the data. However, even when the strong correlation between "0 and
! was taken into account, the formal errors had to be substantially increased to make
sense in relation to other data.

18.6. Synthesis of the Link Solutions: General Methods

The synthesis of the individual link solutions was made independently by L. Lindegren
and J. Kovalevsky, using methods (referred to as Method A and Method B below) which
differ not only in implementation but also in the detailed treatment of the orientation
and spin components and in the weighting of the individual solutions.

Method A

This method is described in detail in Lindegren & Kovalevsky (1995) and was strictly
followed. As shown in that paper, it is possible to cast the results of each individual
link solution ( j) in the form of an information array [ N j h j ] representing the normal
equations N js = h j for the six-dimensional state vector s = [ ε0x ε0y ε0y ωx ω y ω y ]0. The
symmetric 6 × 6 matrix N j has full rank only for the techniques providing an estimate
of all six components of the state vector, which is then given by the solution s j = N−1

j h j

together with its formal covariance matrix N−1
j . Other link solutions providing only

partial information on the state vector can still be expressed as an information array
[ N j h j ], but N j is then singular, with r j = rank(N j ) < 6 being the number of state
vector components determined. In setting up the information arrays, the full set of
correlations among the determined parameters were taken into account; in particular
the correlations between the orientation and spin components were important for a
uniform treatment of the different mean observation epochs shown in Table 18.3.
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The individual link solutions j = 1 . . . J were given a posteriori weight factors 0 < wj ≤ 1
according to a semi-automatic procedure described below. This corresponds to a set
of multiplicative factors w−1/2

j ≥ 1 on the formal standard errors provided by the link
groups. The weighted synthesis solution is then given by:

bs =

0
@ JX

j=1

wjN j

1
A

−1
JX

j=1

wjh j [18.10]

where the inverse matrix also provides the estimated covariance of bs.

The main problem is to assign the weight factors wj . This must be done in such a way
that the distances of the individual link solutions from bs are compatible with the (re-
weighted) standard errors, taking into account the correlations among the components
of the individual solutions s j and the synthesised solution. This is complicated by the
fact that only few of the link techniques provide an estimate of the full state vector. In
practice a goodness-of-fit of each solution was computed from the re-weighted residual
vector of the normal equations:

d j = wj(h j − N jbs) [18.11]

Assuming that wjN j is the correct information matrix for estimate j , the expected
covariance of d j is then given by:

D j = wjN j − wjN j

0
@ JX

j=1

wjN j

1
A

−1

wjN j [18.12]

which has the rank r j . The goodness-of-fit statistic for solution j was computed as:

q j = d0

J D+
j d j [18.13]

where D+
j is the generalised inverse. q j is expected to follow the χ2 distribution with

r j degrees of freedom. The global statistic Q =
P

j q j should similarly follow the χ2

distribution with R =
P

j r j degrees of freedom.

The procedure for determining the individual weights wj was roughly as follows. Starting
from some a priori set of weights, the synthesised solution bs was computed according
to Equation 18.10, and hence the statistics q j according to Equations 18.11–18.13.
Typically this gave too high a value of Q due to unrealistically small standard errors
in some of the individual solutions. The most discrepant solution was identified by
comparing the normalised statistics q j /r j , the weight of that solution was halved, and a
new synthesised solution was computed with revised q j and Q. This process was iterated
until Q ' R and all q j ' r j , at which point the synthesised solution bs was accepted and
assigned the covariance given by the inverse matrix in Equation 18.10.

Method B

This method is based upon the fundamental assumption that the errors obtained by
every task are Gaussian. This means that the probability density function is given in its
most general form for n variables by:

f (x1, x2, . . . , xn) =

(2π)−n /2jVj−1/2 exp

"
−

1
2

nX
i=1

nX
k=1

�
V−1
�

ik (xi − xi)(xk − xk)

#
[18.14]
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where V is the variance-covariance matrix of the variables and xi their mean values.

This probability density function can be computed from the data provided by each in-
dividual link task ( j), namely the estimated variables with their standard errors and the
correlation matrix. Now, the joint probability density function of J Gaussian distribu-
tions is the product of the probability density functions of these distributions:

ϕ =
JY

j=1

f j(x1, x2, . . . , xn) [18.15]

which is easily computed, and has exactly the same form as Equation 18.14, since
the quantities in the exponential add. One can therefore compute back the variance-
covariance matrix corresponding to ϕ and derive the standard errors and the correlations
of the merged solution. This approach explicitly assumes Gaussian error distributions
and it would not be correct to apply it to other distributions. However, in the particular
case to which it is applied, no indication of a non-Gaussian behaviour was given by the
individual link solutions which all made the same assumption.

Although formulated in a probabilistic framework, this method is in principle equivalent
to a weighted least-squares method and should yield similar results as Method A. How-
ever, the practical implementations differ, and Method B was also applied separately to
the spin and orientation components, which may add some insight into the properties
of the individual solutions. As in Method A, a main problem is to adjust the relative
weights of the contributing solutions.

18.7. Synthesis of the Link Solutions: Results

Individual Link Data

The results obtained by various individual solutions were given in three different forms
depending on the type of solution:

• if the technique only allowed the determination of the orientation of the Hipparcos
frame relative to the extragalactic frame, then the vector "(T ) was given for the mean
epoch T of the link observations (MERLIN, VLA, Hamburg/USNO);

• if the technique only allowed the determination of the spin of the Hipparcos frame
relative to the extragalactic frame, then only the vector ! was given (NPM, KSZ,
SPM, Bonn, Potsdam);

• if the technique allowed the determination of both the orientation and spin of the
Hipparcos frame relative to the extragalactic frame, then the vectors "0 and ! were
given, with the former referring to the fixed epoch T0 = J1991.25 (VLBI, HST/FGS,
EOP).

In each case the standard errors and the associated covariance matrix were also supplied.
These data (except the correlations) are summarised in Tables 18.3–18.4 in the form of
the residuals with respect to the finally adopted solution b"0, b!. For the orientation com-
ponents in Table 18.3 the given data are the residuals at the mean epoch of observation,
i.e. "(T ) − b"(T ), where T is the datum in the last column.
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Results of Method A

The Heidelberg and Yale analyses of the NPM1 do not represent independent determi-
nations. They were therefore averaged prior to the synthesis, and the more pessimistic
standard errors from the Heidelberg analysis were adopted for the average. Similarly
the blue and visual SPM solutions were averaged, but in this case giving more weight
to the blue solutions. Thus, effectively 12 different solutions were considered in this
synthesis.

In a first attempt the original standard errors supplied by the different groups were
retained; i.e., wj = 1 was adopted for all j . This gave a value of ' 324 for the χ2

variable Q, with R = 44 degrees of freedom. This shows that the individual solutions are
quite incompatible if the given standard errors are taken at face value. Consequently
it was necessary to reduce the weights of at least some solutions. It is interesting to
note, however, that even this initial weighting gave a solution that was within 1.5 mas in
orientation and 0.2 mas/yr in spin from the final one.

The semi-automatic procedure described in the previous section was used for the down-
weighting. It is not obvious that this process converges to a unique result. Indeed,
slightly different weights were obtained if the starting point was taken at some a priori
judgement of the relative weights. However, the various synthesised solutions resulting
from such experiments rarely differed by more than 0.1 mas and 0.1 mas/yr, and the final
result was not very sensitive to additional changes in the weights. Independent of the
starting point, it was found that the solutions from the SPM programme and the Earth
orientation parameters had to be severely down-weighted, and the Bonn and HST/FGS
solutions slightly down-weighted, but otherwise the given standard errors were roughly
consistent with the overall solution. The final goodness-of-fit was Q = 47.9 with R = 44
degrees of freedom; the resulting standard errors of the orientation and spin parameters
were multiplied by the unit-weight error, (Q /R)1/2 = 1.043, to take into account the
remaining excess in Q.

The results of Method A are summarised by the following rotation parameters (with
standard errors in parentheses) referred to the epoch J1991.25:

ε0x = +0.01 (0.46) mas

ε0y = −0.20 (0.47) mas

ε0z = +0.12 (0.49) mas

ωx = +0.06 (0.16) mas/yr

ω y = −0.05 (0.15) mas/yr

ωz = +0.00 (0.14) mas/yr

9>>>>>>>>=
>>>>>>>>;

A [18.16]

The correlation matrix for the solution was:

RA =

0
BBBBB@

1 +0.25 +0.05 −0.04 −0.01 +0.00
+0.25 1 −0.13 +0.01 −0.11 +0.01
+0.05 −0.13 1 +0.01 +0.01 −0.06
−0.04 +0.01 +0.01 1 +0.05 −0.16
−0.01 −0.11 +0.01 +0.05 1 −0.16
+0.00 +0.01 −0.06 −0.16 −0.16 1

1
CCCCCA [18.17]
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The relative contributions of the various link techniques to the synthesised solution
can be estimated from the diagonal elements of the re-weighted information matrices
wjN j . It turns out that for the orientation parameters, the VLBI observations dominate
strongly. For the determination of the spin, the contributions are more evenly spread
among the several techniques, but with the SPM programme and the VLBI observations
together contributing about half of the total weight. It should be noted that in this
method the MERLIN, VLA, Hamburg/USNO and HST/FGS links also contribute
to the determination of the spin components by virtue of the spread in their mean
observational epochs.

Results of Method B

For this method the down-weighting was essentially based upon the considerations given
in Section 18.5, moderated by the examination of how the modifications of the weights
affected the goodness-of-fit of the synthesised solution and the individual residuals. To
begin with, the four solutions obtained from the Yale SPM programme were reduced
into a single one by taking a weighted mean. The HST/FGS results for ! were not used
because of their large uncertainties.

In a first approximation, an unweighted solution for "0 and another solution for ! were
computed neglecting the correlations between these quantities. This is justified because
they are close to zero in the case of the most accurate method (VLBI), but less justified
for the Earth orientation parameters method in which the correlations are about 0.89;
in this case the uncertainties are also much larger.

In further iterations weights were modified progressively in order to reduce the largest
residuals and the overall goodness-of-fit, as measured by the χ2 statistic. No system-
atic procedure was used to modify the weights, but rather a successive approximation
technique with steps of 0.2 in the weights.

Then, a global solution taking as unknowns all the six parameters of "0 and ! was
made, starting with the weights obtained in the preceding solutions. This did not
change significantly the results, as can be seen from the following summary of the
different solutions.

B1. Solution for "0 only: The weighted rms residual was 0.8 mas. The solution vector
for the epoch J1991.25 was (standard errors in parentheses):

ε0x = 0.00 (0.51) mas

ε0y = −0.04 (0.51) mas

ε0z = +0.16 (0.53) mas

9>=
>; B1 [18.18]

with correlation matrix:

RB1 =

 1 +0.28 −0.01
+0.28 1 −0.14
−0.01 −0.14 1

!
[18.19]

B2. Solution for ! only: The weighted rms residual was 0.3 mas/yr. The solution
vector was:

ωx = −0.01 (0.13) mas/yr

ω y = +0.08 (0.13) mas/yr

ωz = −0.05 (0.18) mas/yr

9>=
>; B2 [18.20]
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with correlation matrix:

RB2 =

 1 +0.04 −0.11
+0.04 1 −0.14
−0.11 −0.14 1

!
[18.21]

B3. Solution for both "0 and !: the weighted rms residual was 1.2 mas for the
orientation components and 0.4 mas/yr for the spin components. The solution vectors
were:

ε0x = +0.16 (0.41) mas

ε0y = +0.18 (0.43) mas

ε0z = −0.06 (0.46) mas

ωx = −0.06 (0.08) mas/yr

ω y = +0.05 (0.09) mas/yr

ωz = 0.00 (0.14) mas/yr

9>>>>>>>>=
>>>>>>>>;

B3 [18.22]

with correlation matrix:

RB3 =

0
BBBBB@

1 +0.03 +0.00 +0.31 +0.08 −0.36
+0.03 1 −0.13 +0.10 +0.13 −0.25
+0.00 −0.13 1 −0.01 −0.02 +0.00
+0.31 +0.10 −0.01 1 −0.11 −0.07
+0.08 +0.13 −0.02 −0.11 1 −0.12
−0.36 −0.25 +0.00 −0.07 −0.12 1

1
CCCCCA [18.23]

The correlations obtained in solutions B1 and B2 agree rather well with those obtained
from Method A, while the correlations in B3 deviate somewhat. However, the corre-
lations are in all cases small or only moderately large, showing that the combination of
link solutions gives a well-conditioned determination of all the parameters at the central
epoch of the Hipparcos Catalogue.

Final Results

After a comparison of these results and their discussion, it appeared that a mean value
of the two methods should be considered as the final solution for the link. The adopted
orientation and rotation vectors for the provisional catalogue H37C, given in Table 16.8,
were derived from a combination of the solutions A and B3. In the conventions of the
present chapter, where all results are given as residuals with respect to the adopted
solution, this corresponds to all parameters equal to zero.

The standard errors of the parameters were estimated to be 0.6 mas in each of the
components of "0, and 0.25 mas/yr in the components of !. These numbers were
obtained by a conservative rounding of the formal errors resulting from the synthesis,
taking into account also the spread of values obtained in the different synthesis solutions
and the uncertainty in the relative weights of the different link techniques.
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18.8. Verification and Conclusions

A completely independent and accurate verification of the extragalactic link is not pos-
sible at present, as practically all available means were already employed in the link.
With one important exception, the checks that are at hand can at best demonstrate that
the adopted link is not inconsistent with independent data. The exception is the use of
stellar kinematics, which is in principle very powerful, but depends on a very simplified
statistical description of the Galaxy. This section summarises the independent checks
made after the construction of the final Hipparcos Reference Frame.

3C273 (HIP 60936)

The only quasar included in the Hipparcos observing programme was 3C273. Its
median magnitude during the mission was Hp ' 12.8 mag. In addition to its faintness,
the position near the ecliptic and equator was quite unfavourable for observation. As a
consequence, the standard errors in the five astrometric parameters were in the range
4 to 6 mas or mas/yr. The measured parallax, π = 3.59 ± 6.07 mas, is consistent
with the assumed cosmological distance (the latter implying a parallax of the order of
10−9 arcsec). The position and proper motion measured for this object by Hipparcos
were not used in the link, and therefore constitute a completely independent check. The
proper motion components measured by Hipparcos, µα� = −11.01 ± 6.74 mas/yr and
µδ = +4.38 ± 4.28 mas/yr (with a correlation coefficient of −0.49) are hardly significant:
the probability of having errors as large as these is 0.19 in the normal case. It is possible
that variable source structure could contribute to the measured proper motion at the
level of 0.5 mas/yr.

The offset of the Hipparcos position from the ICRF position of the radio source 3C273B
(= ICRF J122906.70+020308.6) is ∆α� = +9.61 ± 7.14 mas, ∆δ = −2.12 ± 5.44 mas,
where the standard errors are the quadratically combined standard errors of the positions
in the two catalogues. The difference from zero offset is not statistically significant. The
rather strong negative correlations between the position and proper motion components
(ρµα�

α� = −0.68, ρµδ
δ = −0.62), in combination with the standard errors, show that the

effective epoch of observation was close to J1991.85 (see Equation 1.2.10 of Volume 1).
At that epoch the offset of the Hipparcos result from the radio position was only ∆α� =
+3.00±5.41 mas, ∆δ = +0.51±4.63 mas. This strengthens the conclusion that the proper
motion derived from the Hipparcos data is mainly due to noise in the observations, rather
than a real motion of the photocentre due to variability.

Magellanic Clouds

Standard models of the motions of the Magellanic Clouds assume that they lead the
Magellanic Stream, a narrow band of neutral hydrogen extending some 100� away from
the clouds, which then defines the orbit and direction of motion of the clouds. The
models predict proper motions of about 1.5 to 2 mas/yr (see Westerlund 1995 for a
review). The mean proper motions of the Clouds as derived from the Hipparcos data
are consistent in direction and magnitude, to within about 0.4 mas/yr, with e.g. the
numerical model by Gardiner et al. (1994).
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Stellar Kinematics

Galactic kinematics can be used to define an inertial frame based on a statistical model of
stellar motions. In the simplest form, the main assumption is that the peculiar motions
of the stars are, in a statistical sense, symmetric with respect to the galactic plane. The
velocity components along the galactic plane are highly systematic and cannot be used to
define an inertial frame based on simple kinematical considerations. Consequently only
the component of the proper motion in galactic latitude, µb, is useful for this purpose.

Let v and v� be the peculiar velocities of the star and the Sun, respectively, and u
the unit vector from the Sun towards the star. If the Hipparcos frame is rotating with
angular velocity !, then the observed proper motion vector of the star is given by:

� = (U − uu0)(v − v�)π /A − ! × u + � [18.24]

where U is the unit tensor, π is the parallax, A the astronomical unit, and � represents
the error of observation. With pG and qG denoting the unit vectors respectively in the
directions of increasing galactic longitude and latitude (Volume 1, Equation 1.5.15),
then µb = q0

G� or:
µb = −p0

G! − q0

Gv�π /A + vbπ /A + ξb [18.25]

where vb = q0

Gv is the latitude component of the star’s peculiar velocity, and ξb = q0

G� is
the observational error in galactic latitude.

Under the assumption that vb and ξb are independent centred random variables with
approximately known standard deviations, Equation 18.25 can be used in a least-squares
determination of ! and v� from the observed values of µb and π. Noting that G0pG =
(− sin l cos l 0)0 and G0qG = (− sin b cos l − sin b sin l cos b)0, where G = [ xG yG zG ] is the
galactic triad, it is seen that only the first two components of G0! may be determined in
such a solution, while z0G! obviously cannot be estimated from the proper motions in
latitude; in contrast, the complete vector of the solar peculiar velocity can be determined.

The Hipparcos proper motions and parallaxes for practically all the ‘single’ stars were
used in a robust least-squares solution based on Equation 18.25, assuming a standard
deviation of 25 km s−1 for vb. The results for the first two galactic components of !
were:

ω1 ≡ x0G! = −0.15 ± 0.04 mas/yr

ω2 ≡ y0G! = −0.09 ± 0.05 mas/yr
[18.26]

Using different selections of stars depending on distance, galactic latitude or colour
gives results within ±0.2 mas/yr of the values above. This result is consistent with the
adopted link in ! and its estimated uncertainty of 0.25 mas/yr in each coordinate.

Graphical Summary

Figures 18.5–18.6 illustrate the verification results from 3C273 and stellar kinematics
in the galactic x and y coordinates, together with the results of the various link solutions
from Tables 18.3–18.4. Considering the spread of the individual solutions and their
formal standard errors (shown by error circles or bands), the results from 3C273 and
stellar kinematics are fully consistent with the link solutions and with the adopted mean
result (represented by the origin of each diagram) to within its stated uncertainty.
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Conclusions

The procedure for determining the Hipparcos Reference Frame strictly followed the IAU
intentions for the new conventional celestial reference system, namely that it should be
non-rotating with respect to distant matter and that the fundamental directions are
set by the precise coordinates of extragalactic radio sources. As a matter of principle,
the procedure was not allowed to be influenced by considering the relationship to the
dynamical reference frame of the solar system or to the kinematical frame defined by
motions in our Galaxy.

Such considerations could nevertheless be applied a posteriori as a check of the Hipparcos
Reference Frame. For instance, observations of solar system objects in the Hipparcos
frame, together with a dynamical theory of the planetary motions, will determine the
direction of the total angular momentum of the solar system, which is expected to remain
fixed in the extragalactic frame to very high accuracy. This check must however await
a detailed (re-)analysis of the solar system observations, both from Hipparcos and from
the ground.

The various checks described in this section are all consistent with the stated accuracy
of the extragalactic link, namely 0.6 mas in the orientation and 0.25 mas/yr in the
spin, although no significant test of the orientation was obtained by these methods.
The strongest test of the spin is provided by the galactic kinematics, supporting the
conclusion that the Hipparcos frame is inertial to within a few tenths of a milliarcsec per
year.

18.9. Organisation of the Work

The importance of linking the Hipparcos Catalogue to the extragalactic system was
stressed already in the planning of the observing programme. Extensive preparations
were made by the INCA Consortium to initiate and collect relevant ground-based ob-
servations of radio stars and stars in the fields of compact extragalactic radio sources,
and to ensure that suitable link stars were included on the observing list (Argue 1989,
1991; Jahreiß et al. 1992). A special working group for the determination of the ex-
tragalactic link was appointed by the Hipparcos Science Team in 1993. It contained
representatives of all the groups participating in the link observations and was coordi-
nated by J. Kovalevsky and L. Lindegren, who were also responsible for the synthesis of
the different link determinations.

The members of the various groups contributing to the determination of the link are
listed hereafter.

VLBI: J.F. Lestrade led this group in close collaboration with R.A. Preston, D.L. Jones
(JPL) and R.B. Phillips (Haystack) for the northern stars, and J. Reynolds, D. Jauncey
(CSIRO) and J.C. Guirado (JPL) for the southern hemisphere.

MERLIN: This group comprised S.T. Garrington and R.J. Davis (NRAL, Jodrell Bank),
L.V. Morrison and R.W. Argyle (RGO), and A.N. Argue (IoA, Cambridge).



The Link to an Extragalactic System 413

VLA: This task was organised by K.J. Johnston (USNO); the computation of the link
was done by D.R. Florkowski (USNO).

Hamburg/USNO: This link was realised by C. de Vegt (Hamburg) and N. Zacharias
(USNO).

HST/FGS: Based on observations with the NASA/ESA Hubble Space Telescope, this
work was carried out by many people, but the data collection and analysis was the
result of continued efforts of P.D. Hemenway, E.P. Bozyan, R.L. Duncombe, A. Lalich,
B. MacArthur, E. Nelan and the Hubble Space Telescope Team.

Lick (NPM): The analysis of the NPM1 data for the Hipparcos link was made at
Yale Observatory by I. Platais, T.M. Girard, and V. Kozhurina-Platais, and at the
Astronomisches Rechen-Institut, Heidelberg, by S. Röser.

Catalogue of Faint Stars (KSZ): This link was realised at Kiev Observatory by
N.V. Kharchenko, V.S. Kislyuk, S.P. Rybka and A.I. Yatsenko.

Yale/San Juan (SPM): This work was shared by I. Platais, T.M. Girard, V. Kozhurina-
Platais; H.T. MacGillivray and D.J. Yentis furnished positions and magnitudes from the
COSMOS/UKST data base of the southern sky and W.F. van Altena provided many
useful suggestions.

Bonn: This work was shared by H.-J. Tucholke, P. Brosche, M. Geffert, M. Hiesgen
(Münster), A. Klemola (Lick), M. Odenkirchen and J. Schmoll.

Potsdam: This link was realised by E. Schilbach, S. Hirte and R.-D. Scholz.

Earth Orientation Parameters: This task was performed by J. Vondrák, I. Pešek and
C. Ron.

J. Kovalevsky, L. Lindegren, M.A.C. Perryman
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19. COMPARISONS WITH
GROUND-BASED ASTROMETRY

The Hipparcos Catalogue constitutes the best materialization of the optical
reference frame with a precision of the order of 1 mas in position and 1 mas/yr
in proper motion. It will supersede several astrometric catalogues currently in
use such as the FK5 and the PPM. In this chapter an analysis of the FK5 and
PPM positions and proper motions against Hipparcos allows the global rota-
tions existing between the Hipparcos(ICRS) and the FK5 and PPM systems
to be derived. Beyond the global rotation, systematic and regional effects as
large as 100 mas, functions of the right ascension and declination, are found
and described. Analyses of new reductions of astrolabe and meridian observa-
tions using Hipparcos astrometry are included as well as an assessment of the
astrometric measurements carried out with the Mark III interferometer.

19.1. Introduction

The Hipparcos Catalogue is referred to the International Celestial Reference System
(ICRS) and constitutes the optical counterpart of the inertial system materialised by a
set of radio sources observed by the VLBI technique. Its internal precision is typically
below 1 mas in right ascension and declination for all the bright stars and about 1 mas/yr
for the components of the proper motion. In addition it is expected to be free of regional
errors at the level of 0.1–0.2 mas, a level much lower than any existing global catalogue.
This provides the opportunity of using Hipparcos astrometry as a virtually error-free
reference to determine the true errors of other catalogues at the Hipparcos epoch and
to devise rules to correct for their systematic errors.

Up until now, the FK5 provided the basic stellar reference frame as adopted by the IAU
in 1976. It was considered to be the best realisation of a stationary system through
the accurate coordinates and proper motion of 1535 bright stars (Fricke et al. 1988).
Although the ICRS is nominally consistent with the FK5 for the mean equinox and
equator of the standard epoch J2000, there is still a global rotation between the two
reference systems due to the uncertainty of the stellar positions in the FK5.

Beyond this rotation, regional systematic differences between the FK5 stars (and hence
PPM) and the Hipparcos positions do exist up to 100 mas. In this chapter these
systematic differences are evaluated and characterized as a function of the right ascension
and declination. Due to the global nature of the construction of the Hipparcos Catalogue
and its intrinsic accuracy (on a global scale better than 0.2 mas) there is no doubt that
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these regional differences must be attributed to the FK5 (and hence PPM) and not to
Hipparcos. Eventually the knowledge of these differences might allow old astrometric
observations tied to the FK5 frame to be reprocessed.

The PPM Catalogue constitutes the most up to date (to be superseded by the availability
of the Tycho Catalogue) compilation Catalogue for the position and proper motion of
reference stars. Although it was nominally constructed in the same frame as the FK5,
it is desirable to determine its main systematic differences with respect to Hipparcos
independently and to assess the external error in position at the epoch J1991.25 and,
more important, the true quality of its proper motions.

There is an important difference between the comparison of the FK5 and the PPM to
the Hipparcos results. In the former situation, all the FK5 stars are in the Hipparcos
solution, so there is no risk of bias due to a truncated distribution of the Catalogue. In
the case of the PPM, there is only one quarter of the PPM stars (see Section 19.3) used
in the comparison (because the others are not in the Hipparcos Catalogue). Therefore
the sky distribution of this sample reflects only the selection made for the Hipparcos
programme and deviates from the PPM as a whole.

19.2. Comparison with the FK5 Catalogue

The FK5 Stars

The compilation of the FK5 represented a major effort by the Astronomisches Rechen-
Institut to provide a realization of a dynamical frame from the analysis of more than 300
individual catalogues primarily observed with meridian circles. It represents a revision
of the FK4 and results from the determination of systematic and individual corrections
to the mean positions and proper motions of the FK4, the elimination of the error
in the FK4 equinox, and the introduction of the IAU (1976) system of astronomical
constants. Its content of 1535 bright stars (the FK5 extension to 3522 stars is not
considered here because of its lower accuracy) has an expected accuracy of 0.03 arcsec
at the mean epoch of the catalogue: 1955 in right ascension and 1944 in declination.
The mean error quoted for the proper motion is 0.6 mas/yr for the northern hemisphere
and 1.0 mas/yr for the southern. By propagating the FK5 positions directly to the
Hipparcos epoch J1991.25, this leads to an expected error in the right ascension and
declination of 40 to 60 mas according to the hemisphere. About 95 per cent of the stars
of the FK5 have a Hipparcos magnitude in the range 2 to 7 mag, i.e. brighter than the
average Hipparcos star, thus their Hipparcos accuracies are better than average.

Method of Analysis

All the 1535 stars of the FK5 have been observed successfully by Hipparcos and their
positions are known at epoch J1991.25 with an accuracy typically 0.4 ± 0.1 mas in
declination and 0.6 ± 0.2 mas in right ascension (Figure 19.1), the larger scatter in
the latter case being the result of the strong dependence of the Hipparcos accuracy in
right ascension with the declination. The corresponding figures for the proper motions
are 0.7 ± 0.2 mas/yr and 0.55 ± 0.15 mas/yr with the same kind of dependence on the
coordinates as the positions.
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Figure 19.2. Formal error of proper motions of the 1535 FK5 stars in the Hipparcos Catalogue.

Data Filtering

A number of the FK5 stars have been found either to be double (97 cases) or to present
a non-uniform motion (95 cases), indicating that some may actually be astrometric
binaries. As a consequence the Hipparcos proper motion constructed on a timebase
shorter than the orbital period might be biased. For another 78 entries the Hipparcos
solution has been constructed by adding to the standard astrometric parameters one or
several orbital elements as supplementary unknowns. Therefore the astrometry refers
in this case to the centre of mass, which may differ from the photocentre used in the
FK5; these stars were not considered reliable enough for the comparison. Finally there
were 22 solutions with residuals significantly larger than the measurement error and
another 10 with an apparent motion of the photocentre ascribed to the variability of
one of the components of a binary star. All these stars have been excluded from the
analysis, resulting in 1233 reliable solutions remaining. Most of the 302 discarded stars
in fact have a good Hipparcos solution, but because of their multiplicity they may exhibit
systematic differences with the FK5 positions arising from a physical origin while for
the remaining 1233 single stars the differences could be accounted for as zonal errors.

Global rotation

The Hipparcos Catalogue was referred to the ICRS after the final astrometric solution
had been rotated as explained in Chapter 18. Nominally the ICRS was to maintain the
continuity with the previous dynamical reference system realized by the FK5 Catalogue.
However due to its limited accuracy the alignment of the ICRS pole and origin of right
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Table 19.1. Global orientation and spin differences between the Hipparcos and FK5 Catalogues.

Orientation (mas) Spin (mas/yr)

�x = −18.8 ± 2.3 ωx = −0.10 ± 0.10

�y = −12.3 ± 2.3 ω y = +0.43 ± 0.10

�z = +16.8 ± 2.3 ωz = +0.88 ± 0.10

ascension with the corresponding pole and origin of right ascension of the FK5 could
not be achieved with consistency better than 20 mas for the pole and 80 mas for the
origin of the right ascension. The final Hipparcos solution, ICRS(Hipparcos) and the
optical reference frame defined by the FK5, J2000(FK5), differ by a pure rotation and
numerous zonal differences of various wavelengths.

Both the rotation and zonal effects can be analysed globally by means of the decompo-
sition of the vectors fields [(αF − αH) cos δ, δF − δH] and [(µα�)F − (µα�)H, (µδ )F − (µδ )H]
on a set of orthogonal vectorial harmonics. The first degree of these harmonics rep-
resents the pure rotation while the harmonics of higher degree account for the zonal
differences at decreasing wavelengths with increasing degree. The global rotation and
spin differences, together with their uncertainty, are given in Table 19.1. These values
were used to rotate the positions and proper motions of the 1233 selected stars to the
ICRS at epoch J1991.25. The remaining differences are analysed below.

Epoch transformation

The stellar positions and proper motions in the FK5 are given for the epoch J2000 in the
FK5 system, while the Hipparcos Catalogue being an observation catalogue is referred
to an epoch close to the average observation time, namely T0 = J1991.25(TT). All the
FK5 positions have been propagated from J2000 to the epoch T0 using the FK5 proper
motions in a straightforward manner. No attempt has been made to estimate the errors
in the FK5 coordinates at the epoch T0 for each star, using in the following discussion
an overall and global estimate of the errors. In the following, these positions (rotated
and propagated to T0) are denoted by αF, δF while the Hipparcos positions are labelled
αH, δH.

Results of the Comparison

For each of the 1233 comparison stars the positional differences:

∆α cos δ = (αF − αH) cos δH [19.1]

∆δ = (δF − δH) [19.2]

have been determined and analysed from a statistical point of view. A similar approach
was taken for the proper motions. Results are shown in a series of diagrams as a
function of the right ascension and declination: in Figures 19.3–19.4 for the positions,
and Figures 19.5–19.6 for the components of the proper motion. A fit has been made
through the data points using a robust fitting technique with a moving window of 100
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data points. If the Hipparcos formal errors are correct, virtually all the scatter in the
plots must originate from the FK5 positions.

There are several notable features in the plots of the positional differences between
Hipparcos and the FK5:

1. the ICRS and FK5 equators are about 60 mas apart, leading to a systematic effect
in declination between the two catalogues of the same magnitude. This effect is
clearly seen in Figure 19.4 (in the left plot) with the average of ∆δ ' −60 mas;

2. both coordinates show significant regional differences as large as ±100 mas, an
amplitude which is definitely larger than the expected accuracy of the FK5 at the
Hipparcos epoch. Recent observations with meridian instruments have confirmed
this effect and support the claim that these are local distortions in the FK5 rather
than regional errors of Hipparcos;

3 both the north and south polar regions exhibit larger discrepancies and scatters
than the regions at intermediate declinations;

4. the scatter in each of these diagrams is a good and robust measure of the FK5
external error at epoch J1991.25. From this analysis:

σα� ~ σδ ~ 80 to 100 mas

and:
σµα� ~ σµδ ~ 2.0 to 2.5 mas/yr
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for the global inaccuracy, combining the random component (about 55 mas in both
coordinates), and the contribution of the regional errors (which amounts to about
60 mas). The random error in declination is larger in the southern hemisphere
(~ 70 mas) than in the northern (~ 50 mas). For the proper motion the random
component is 1.7 mas/yr and the contribution of the zonal distortion to the standard
deviation is 1.5 mas/yr, with no clear distinction with the sign of the declination.

These figures are markedly larger than the expected error at epoch J1991.25 and
than the quoted uncertainty for the proper motion, even if only the random com-
ponents are considered. One might have expected that locally, over a small field,
the proper motion components would have been consistent below 1 mas/yr, which
is definitely not the case. However the size of the fields used in this analysis are not
very small (200 square degrees) as a result of the small number of stars, and the
distortion on a very small scale cannot be separated from the truly random errors.

Using this uncertainty of 2 mas/yr for the proper motion the propagation from the
mean observation epoch to J1991.25 yields precisely the observed uncertainty in
the position as deduced from the comparison with the Hipparcos position. This
consistency indicates that the standard errors found for the position and proper
motion are broadly correct and that the external accuracy, including zonal errors,
of the FK5 is not as good as has been believed. This discrepancy has already been
pointed out by Morrison et al. (1990) from their meridian observations;

5. the regional errors in proper motion behave in a similar manner to the positional
errors (as a function of declination). For example, the overall shapes of the curves
representing ∆α cos δ and ∆µα cos δ as a function of the declination are rather
similar. The same is true for the declination and the corresponding proper motion.
Since the FK5 positions are propagated from the mean observation epoch of the
FK5 to J1991.25, i.e. over about 50 years, a local error of 2 to 3 mas/yr in proper
motion gives rise to a local distortion in the position of about 100 to 150 mas at
the same latitude. Thus, the wavy pattern in the positional differences with the
declination might be simply a consequence of the zonal error in proper motion. No
similar correlation can be drawn from the analysis as a function of right ascension.

Further Investigations

The complete characterisation of the regional distortions of the FK5 needs to be in-
vestigated more deeply, in particular in order to classify the various errors according
to their characteristic scale over the sphere. As noted previously a decomposition on
the vectorial harmonics on the sphere has been used to determine the global rotation
and spin and the associated uncertainties. In addition, it appears clearly that most of
the power spectrum lies in the harmonics of degree 1 and 2, both in their spheroidal
and toroidal form (Mignard & Morando 1989). A complete investigation will allow
easy-to-use formulae that will be sufficient to describe the main zonal errors of the FK5
frame to be derived.
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Figure 19.5. Difference in proper motion in right ascension between the FK5 and the Hipparcos Catalogue at epoch

J1991.25. The solid line results from a robust smoothing of the data. Differences are in the sense FK5 – Hipparcos.
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Figure 19.6. Difference in proper motion in declination between the FK5 and the Hipparcos Catalogue at epoch

J1991.25. The solid line results from a robust smoothing of the data. Differences are in the sense FK5 – Hipparcos.

19.3. Comparison with the PPM Catalogue

The basic catalogue for position and proper motion was until the early 1990’s the
SAO Catalogue, published in 1966. The SAO was intended for satellite-tracking pur-
poses and contains a compilation of positions and proper motions for 258 997 stars
reduced to a common system, nominally the B1950(FK4) coordinate system. At epoch
1990 the typical errors in position and proper motion were respectively 1 arcsec and
1.5 arcsec/century. The PPM Catalogue (Röser & Bastian 1991; Bastian & Röser 1993)
was designed to provide a more accurate net of reference stars on the J2000(FK5) system
based on multiple positional epochs rather than the usual two in the SAO.

The PPM Stars

The PPM north gives the J2000 positions and proper motions for 181 731 stars north
of a declination −2.�5 and brighter than 10.5 mag, although a small sample of fainter
stars is included. The published mean error of positions at epoch J1990 and proper
motions are respectively 0.27 arcsec and 0.43 arcsec/century. The PPM south covers
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the rest of the celestial sphere and comprises 197 179 stars with an astrometric precision
of 0.11 arcsec for the positions at J1990 and 0.30 arcsec/century for the proper motions
up to a magnitude of 10.5 mag, with few fainter stars. Both catalogues are constructed
to represent as closely as possible the reference frame defined by the FK5.

There are 108 046 Hipparcos stars in the two PPM Catalogues, 54 801 in PPM north
and 53 245 in PPM south respectively. Most of the faint stars of the Hipparcos pro-
gramme, Hp > 10.5 mag are missing in the PPM and so are not included in this analysis.
Unlike the FK5, the comparison sample is now, but for the faintest stars, the same as
the whole Hipparcos Catalogue but only 25 per cent of the PPM content. Thus the
error distribution (on the Hipparcos side) as a function of the magnitude and of the
position on the sky is the same as the Hipparcos distribution, of the order of 1 mas and
1 mas/yr for the position and proper motion, virtually error-free compared to the PPM
accuracy.

The Global Rotation

As noted previously, the PPM is nominally in the FK5 system, which implies that the
global rotation between the Hipparcos(ICRS) and the PPM should be given by the
rotational parameters of Table 19.1. An analysis of the systematic differences:

∆α cos δ = (αP − αH) cos δH [19.3]

∆δ = (δP − δH) [19.4]

by decomposition of a set of orthogonal vectorial harmonics gives the global rotation
as the component of first degree in this representation. A similar decomposition for
the differences in proper motions yields the spin components. Results are shown in
Table 19.2 and are relatively consistent with the rotation of the FK5, at least for the
components �x and �z , and slightly outside the probable error for �y. This confirms that,
as far as positions are concerned, the PPM Catalogue is globally aligned with the FK5
system, which was not obvious to achieve owing to the very small density of FK5 stars.
For the rotation rate, the differences are more significant, i.e. above the 3σ level.

Despite the much larger number of stars in the PPM comparison compared to the FK5,
the global rotation is defined with exactly the same accuracy, indicating again that there
is probably no single global rotation valid for all categories of stars. The technique
of harmonic analysis is naturally global and does not permit a rotation to be defined
separately for the north and the south. Therefore, both the values and the formal
standard errors of the global rotation and spin parameters given in Table 19.2, should
not be taken too literally. Since the zonal deviations reach a few tenths of an arcsec,
the concept of a ‘PPM system’ is loosely defined at the level of a few mas. If, instead
of the Hipparcos Catalogue, the Tycho Catalogue had been used for the comparison
(the latter being strictly on the Hipparcos system), a different result might have been
obtained due to the very different distribution of the stars on the sky. The comparison
sample would have been the entire PPM with its clear-cut concentration towards the
galactic plane.

The number of stars allows the global rotation to be studied according to different star
groupings. As an illustration, an analysis of the rotation per interval of magnitude is
shown in Figure 19.7. There is a clear trend in �z indicating a variable position of the
origin in right ascension according to the star brightness. There is also a small trend in
�x but this is less prominent. The standard error for each data point is of the order of
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Table 19.2. Global orientation and spin differences between the Hipparcos and PPM Catalogues.

Orientation (mas) Spin (mas/yr)

�x = −22.5 ± 2.4 ωx = −0.66 ± 0.07

�y = − 7.0 ± 2.4 ω y = +0.84 ± 0.07

�z = +16.8 ± 2.4 ωz = +0.14 ± 0.07
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Figure 19.7. Global rotation of the PPM with respect to Hipparcos for each class of magnitude.

4 mas for the most populated classes in the magnitude range 7.5 to 9.5 mag, well below
the level of variation of the rotation components.

Regional Differences

The differences between PPM and Hipparcos have been determined at J1991.25 by
computing PPM positions at this epoch with the PPM proper motions. The global
rotation and spin have been removed from the differences in Equations 19.3–19.4 and
the remaining residuals have been analysed as a function of the right ascension and
declination in the same way as for the FK5. Results are shown in Figures 19.8–19.10
for the positions and in Figures 19.11–19.13 for the proper motions.

The following features are noted:

1. not surprisingly the overall patterns are the same as for the differences between
the FK5 and Hipparcos, in particular in the combination of the north and south
catalogue. There are however noticeable differences between the two PPM Cata-
logues. For example, in Figure 19.8 there is a shift of about 50 mas between the
PPM north and south in the systematic difference ∆α cos δ between the PPM and
Hipparcos. Otherwise the curves are rather alike. In Figure 19.9, one sees again the
effect observed with the FK5 regarding the position of the FK5 equator compared
to the ICRS. The departure of the order of −50 mas in the north and −80 mas for



424 Comparisons with Ground-Based Astrometry

-150

-100

-50

0

50

100

150

0 50 100 150 200 250 300 350

∆α
 c

os
 δ

   
(m

as
) 

Right Ascension ( deg )

-150

-100

-50

0

50

100

150

0 50 100 150 200 250 300 350

∆α
 c

os
 δ

   
(m

as
) 

Right Ascension ( deg )

Figure 19.8. Median difference in right ascension between the PPM and the Hipparcos Catalogue at epoch J1991.25

as a function of the right ascension. PPM north on the left and PPM south on the right.
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Figure 19.9. Median difference in declination between the PPM and the Hipparcos Catalogue at epoch J1991.25 as

a function of the right ascension. PPM north on the left and PPM south on the right.
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Figure 19.10. Median difference in right ascension and declination between the PPM and the Hipparcos Catalogue

at epoch J1991.25 as a function of the declination. Difference in right ascension on the left and in declination on the

right.
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Figure 19.11. Median difference in proper motion in right ascension between the PPM and the Hipparcos Catalogue

at epoch J1991.25 as a function of the right ascension. PPM north on the left and PPM south on the right.
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Figure 19.12. Median difference in proper motion in declination between the PPM and the Hipparcos Catalogue at

epoch J1991.25 as a function of the right ascension. PPM north on the left and PPM south on the right.

- 4

- 2

0

2

4

-80 -60 -40 -20 0 20 40 60 80

Declination  ( deg )

∆
µ α 

co
s 

δ 
  

(m
as

/y
r)

 

- 4

- 2

0

2

4

-80 -60 -40 -20 0 20 40 60 80

Declination  ( deg )

∆
µ δ 

 (
m

as
/y

r)

Figure 19.13. Median difference in proper motion in right ascension and declination between the PPM and the

Hipparcos Catalogue at epoch J1991.25 as a function of the declination. Difference in right ascension on the left and

in declination on the right.
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Table 19.3. External accuracy (1σ) of the PPM for the random, regional and global components. The figures

apply to both right ascension (σα cos δ) and declination (σδ ), and similarly for the proper motion components.

Positions (mas) Proper Motions (mas/yr)

North South North South

Random 215 125 4.5 3.7

Regional 85 105 2.8 2.6

Global 230 165 5.3 4.5

the south. The difference as a function of the declination is comparable to that
observed in the difference FK5–Hipparcos;

2. in the analysis as a function of declination, the error bars in positions are significantly
smaller in the south than in the north (this is not obvious with the resolution of
the plots, but these are typically 2.5 mas for the south and 3.5 mas for the north
for the error of the median for each class of about 5000 stars). The effect is less
pronounced, although visible, for the proper motion (respectively 0.07 mas/yr and
0.08 mas/yr). This is in agreement with the a priori better quality of the PPM south
compared to the north;

3. on a more quantitative basis the random scatter about the median can be used to
assess the true precision of the PPM Catalogues. The standard error on the median
multiplied by the square root of the population of the class provides a robust estimate
of the scatter in the core of the distribution, excluding automatically the outliers.
From the analysis of both the right ascension and declination as a function of the
right ascension one gets 235 mas for the north and 145 mas for the south. For
the analysis as a function of declination the figures are respectively 220 mas and
155 mas. For the north this is slightly better than the quoted precision of 270 mas,
but for the south the above figures are somewhat larger than the 110 mas given in
the presentation of the PPM. The results of an attempt to discriminate between
random and regional errors are given in Table 19.3 for the difference in position
and proper motion between the PPM and Hipparcos;

4. for the proper motion, the figures lead to an external accuracy of 5 mas/yr and
4.5 mas/yr for the north and south instead of 4.0 and 3.0 mas/yr for the standard
error given in the presentation of the PPM. These numbers are about ten times
larger than the spin rate corrections and the uncertainty on this rotation does not
affect the above conclusion. The propagation over 50 years with these figures
yields too large an error in the position at epoch J1991.25 in comparison with the
departure of the PPM positions with respect to Hipparcos at this epoch.

At first sight, this discrepancy appears somewhat surprising, since various uses of
the PPM have indicated that the precision of the relative proper motions over small
fields (such as star clusters, the Magellanic Clouds and the Cygnus superbubble
region) agrees much more closely with the stated errors. Thus the discrepancy must
be due to large regional errors on the scale of 5� to 10�, which could not be taken
into account in the present investigation. That regional errors of the required size
could indeed be present is indicated by detailed comparison of the PPM system of
positions with a preliminary Hipparcos Catalogue by Lindegren et al. 1995 (more
specifically Figure 7 of that paper).
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A study of the dispersion of the differences of the proper motions PPM–Hipparcos
in cells of about 10 square degrees, yields a dispersion of 4.5 mas/yr for the north and
3.7 mas/yr for the south. This scatter is a good indicator of the level of the random
errors, provided that there is no large systematic effect of typical size less than a few
degrees. On the other hand the inter-cell scatter represents the contribution of the
systematic differences over wavelengths larger than few degrees, and amounts to
2.7 mas/yr, which eventually leads to the 4.5 to 5.3 mas/yr for the external accuracy
of the PPM;

5. the medians of the systematic differences in position at epoch J1991.25 and proper
motion are very significant, often larger than five times the standard errors. As in
the case of the FK5, the most conspicuous feature is the systematic shift between
the ICRS and FK5 equator of about 50 mas to 80 mas. There are large zonal errors
(~ 100 mas) in both coordinates;

6. the relationship between the differences in proper motions and in positions is more
striking than in the case of the FK5. A comparison between Figures 19.8–19.10
and Figures 19.11–19.13 is instructive in this respect. The corresponding plots
in each set are very similar in shape with roughly a scale factor between them,
linked to the time span between the mean epoch of the PPM (1931) and J1991.25.
Unlike the FK5 this remark applies fully to both the analysis as a function of right
ascension and declination. Thus the zonal errors seen in position very likely are
the consequence of the unsatisfactory knowledge of the proper motions, a situation
which will not be improved until the re-reduction of the Astrographic Catalogue in
the Hipparcos system and its combination with the Tycho data.

19.4. Comparison with the Mark III Interferometer Results

The Mark III interferometer was set up by Shao et al. (1990) at Mount Wilson Ob-
servatory in the late 1970s, and became operational for astrometric observations in
September 1986. Observations were discontinued in 1993 with the development of a
new instrument located at Mount Palomar Observatory. It was designed for observa-
tions in amplitude and phase mode, the latter mode allowing global astrometry to be
conducted by careful laser monitoring of the delay lines. The astrometric measurement
carried out in 1988 over 12 FK5 stars yielded an average 1 σ error for fifty observations
of the order of 10 mas in right ascension and 6 mas in declination (Shao et al. 1990).
However the conclusion of this first run was that an extended series of measurements
was needed to ascertain the true accuracy that the instrument could achieve in absolute
astrometry.

Repeated measurements over four years have been obtained by Hummel et al. (1994)
for 11 stars at four different epochs between 1988.6 and 1992.7. Measurements at
two different wavelengths were used to correct for the refractive index fluctuations in
the atmosphere. Although the number of stars was too small to allow an absolute
determination of the declination, the analysis of the offsets with respect to FK5 led to
an accuracy of 13 mas in declination and 23 mas in right ascension. Using Hipparcos
data, which for these bright stars are better than 1 mas and 1 mas/yr in position and
proper motions, one can see whether these estimates are realistic or not, and assess the
real potential of the interferometers for the measurements of stellar positions.
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Table 19.4. List of stars with astrometric solution obtained with the Mark III optical interferometer.

HIP FK5 Name Hp α (deg) δ (deg)

3031 19 � And 4.3 9.63 +29.31

4436 33 µ And 3.9 14.18 +38.49

7607 52 – 3.8 24.49 +48.62

8903 66 β Ari 2.7 28.65 +20.80

10670 79 γ Tri 4.0 34.32 +33.84

101076 1534 – 4.1 307.34 +30.37

106481 1568 ρ Cyg 4.1 323.49 +45.59

109410 835 π2 Peg 4.4 332.49 +33.17

111169 848 α Lac 3.8 337.82 +50.28

112748 862 µ Peg 3.7 342.50 +24.60

116805 1619 κ And 4.1 355.10 +44.33

Because of a difference in the reference system, which is difficult to resolve with a small
unevenly distributed sample of stars, the comparison is done directly on the arc-lengths
between stars of the Mark III programme and the corresponding arcs computed from
the Hipparcos astrometric solution. This method has the advantage of being insensitive
to a global rotation but also has the drawback of the lack of independence of the set of
arc-lengths, which precludes a rigorous statistical analysis. In addition it is impossible
to scale separately the accuracy in declination and right ascension.

The list of the stars with an interferometric astrometric solution is given in Table 19.4,
which contains also other relevant parameters. Among the 11 stars, HIP 8903 =
FK5 66= β Arietis was solved by Hipparcos with a significant orbital motion, and was
eventually excluded from the comparison. Each of the ten remaining stars was observed
at four different epochs by Mark III. For each of these observations the Hipparcos
positions were computed using the Hipparcos astrometric parameters. The number of
arcs was then 4 × 10 × 9/2 = 180, for only 4 × 10 × 2 = 80 independent measurements.

The distribution of the differences is shown in Figure 19.14 for the 180 arcs. They are
ordered as follows: the arcs of HIP 3031 with HIP 4436 for the four epochs, then the
four arcs of HIP 3031 with HIP 7607, and so on until the set of arcs is exhausted with
the four arcs of HIP 112748 with HIP 116805.

The median of the differences is −1.2 mas, and the scatter measured by the standard
deviation 32 mas. The latter is in agreement with the results on nine stars by Lindegren
et al. (1995) in a comparison made against Hipparcos preliminary results using, for each
star, a normal positions derived from the four individual observations. The median is
not significantly different from zero over this small sample. The significance of the
dispersion must be evaluated with reference to the uncertainty of the positions of each
pair of stars, given that the Hipparcos error can be neglected.
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Figure 19.14. Distribution of the differences of the arc-lengths between the Mark III observations and the correspond-

ing arcs from the Hipparcos Catalogue.

The propagation of the errors on the positions at each epoch to the arc-lengths was
estimated by a Monte-Carlo procedure, using the mean coordinates of the ten stars
to determine the reference lengths of the 45 basic arcs and then adding a Gaussian
noise component on each coordinate with a standard error of 13 mas in declination and
23 mas in right ascension (σα and not σα cos δ). From 500 such experiments it appears
that the distribution of the standard error (1σ) on the arc-lengths was between 19 mas
and 30 mas with a well defined average of 24 mas, somewhat smaller than the quadratic
propagation of the error on the positions of the two end-points of an arc. This can be
understood as follows : for two stars more or less on the same celestial meridian, the
arc-length is insensitive to an error in right ascension which displaces the two stars in a
direction perpendicular to the arc. A similar reasoning holds for the error in declination
for two stars with similar declinations.

Thus the observed scatter of 32 mas in the arc-lengths is significantly larger than the
expected value (i.e. ' 24 mas) determined with the reported accuracy of σα = 23 mas
and σδ = 13 mas, indicating that the astrometric accuracy is overestimated by about
30 per cent. One cannot conclude with certainty as to whether the right ascension or
the declination should be incriminated; probably both.

19.5. Astrometric Reductions of Schmidt Plates

A preliminary study was made to test the ultimate accuracy attainable in reducing plates,
using intermediate Hipparcos and Tycho 30-month solutions (Robichon et al. 1995).
To minimise the effect of the errors on proper motions, especially for Tycho data, plates
with epochs close to the Hipparcos mid-mission epoch were chosen for this test. This
study has not yet been repeated using final Hipparcos and Tycho Catalogues but its
results are nonetheless meaningful since the difference between the 30-month and the
final solutions are much smaller than the typical error in the plate reduction.
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The Observational Material: Hipparcos and Tycho 30-month Solution

The intermediate Hipparcos astrometric catalogue constructed from the first 30 months
of data obtained from the satellite is described in Kovalevsky et al. (1995), Lindegren et
al. (1995) and in Chapter 16 of this volume. The intermediate Tycho Catalogue version
used below is T30d, the first iteration containing both proper motions and parallaxes.
The properties of this version are described in Høg et al. (1995), Høg (1995), and in
Chapters 11 and 16 of Volume 4.

The Observational Material: Schmidt Plates

The plates used in this study were taken with the CERGA and ESO Schmidt telescopes,
as part of a programme on eight open clusters observed by Hipparcos. Plates were
obtained in U, B, V, R, I, with a long (1–2 hours) and a short (15–30 min) exposure for
each colour.

Six short-exposure plates have been used to test the ultimate accuracy attainable on
positional determination from Schmidt plate measurements, and two long-exposure for
comparison. Astrometric reductions were made using successively PPM data (PPM
North: Röser & Bastian 1993; PPM South: Bastian & Röser 1993), and preliminary
Hipparcos and Tycho data. Each field, of about 25 square degrees, contains approxi-
mately 350 PPM stars (ranging from 250 to 400), 85 Hipparcos stars (from 70 to 200),
and 1000 Tycho stars (from 550 to 3000).

Mean errors of PPM positions and proper motions are of the order of 300 mas and
4 mas/yr respectively in the north (i.e. fields 1, 2, 3, 8) and 150 mas and 3 mas/yr
respectively in the south (i.e. fields 4 to 7), to be compared with 1.5 mas and 1.5 mas/yr
for preliminary Hipparcos results, and with 30 mas and 30 mas/yr for preliminary
Tycho results. The plates were scanned with the Machine Automatique à Mesurer pour
l’Astronomie (MAMA) of the Centre d’Analyse des Images in Paris.

The Results

The results obtained show that the ultimate accuracy expected from a single Schmidt
plate is better than 0.10 arcsec (0.06–0.07 arcsec) for stars brighter than 11 mag, to
be compared with 0.15–0.37 arcsec obtained using the PPM Catalogue. The model is
more reliable when the reduction is carried out using the numerous, though less accurate
data from Tycho than the more accurate, but less numerous data from Hipparcos. A
decrease of the errors on the positions of the reference stars below 0.01 arcsec does
not seem to improve the results. The modelling errors are of the order of 0.05 arcsec.
An rms error of about 0.04 arcsec for the centring of the images is consistent with our
results. This study emphasizes the importance of obtaining good proper motions for
Tycho Catalogue stars, using Tycho data in conjunction with first epoch astrometric
data such as the Astrographic Catalogue, in order to take advantage of these accurate
data for plates taken at epochs very different from the Hipparcos mid-epoch.
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Figure 19.15. Residual in the astrolabe catalogue after five years of observations for the right ascension of 68

FK5 stars. On the left, all the reduction has been done with the FK5 Catalogue coordinates and on the right with

Hipparcos.
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Figure 19.16. Residual in the astrolabe catalogue after five years of observations for the declination of 48 FK5 stars.

On the left, all the reduction has been done with the FK5 Catalogue coordinates and on the right with Hipparcos.

19.6. Analysis of Recent Meridian Circle Observations

The impact of the Hipparcos and Tycho Catalogues on the meridian circle observations
has been known for years. A critical examination of the residuals obtained with respect
to the FK5 has been made by Réquième et al. (1993) with the very first positions
based on the Hipparcos observations, without improvement of the proper motions.
Subsequently an analysis of recent meridian circle observations, using successively the
FK5 and Hipparcos as reference has been done by Réquième et al. (1995) with the
Hipparcos 18-month solution. A remarkable improvement in the post-fit residuals of
the least-squares adjustment was obtained for observations made by the Bordeaux and
La Palma automatic circles. The difference between the two fits confirmed the existence
of systematic errors in the FK5 and revealed small instrumental errors of 30 mas in right
ascension and 50 mas in declination that were hidden by the larger noise brought about
by the FK5 regional errors.
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19.7. Analysis of Recent Astrolabe Observations

Astrolabe observations have been performed at OCA/CERGA on a regular basis for the
last twenty years. During the last decade they were done on an impersonal photoelectric
and highly automated instrument. In addition to determining the daily orientation of
the local vertical, the yearly analysis of the residuals permits corrections to the star
catalogue to be derived.

The processing of the same observations performed over five years centred on the
Hipparcos epoch, from J1988.5 to J1993.5, has been done by using successively the FK5
coordinates and proper motions and the Hipparcos data for the same stars. The results
expressed as corrections to apply to the star positions given in the astrolabe catalogue
are shown in Figure 19.15 and Figure 19.16 respectively for the right ascension and
declination.

The comparison between the left and right plots in each figure confirms the real im-
provement of the Hipparcos reference frame compared to FK5 and gives for the first
time the true level of accuracy of the observations carried out with a photoelectric
astrolabe. The remaining scatter in the right plots is a combination of the instrument
limitation and the photon noise and should not be interpreted as errors in the Hipparcos
positions.

Prior to this comparison it was difficult to decide from the residuals on the FK5 stars
on the respective contribution of the instrument and that due to the FK5 uncertainties.
The difference between the internal error obtained during the processing, of the order
of 12 mas in right ascension and 14 mas in declination (Vigouroux et al. 1995), and the
true external error which is in fact closer respectively to 20 mas and 28 mas is evident.

F. Mignard, M. Frœschlé, C. Turon



20. VERIFICATION OF PARALLAXES

Hipparcos parallaxes will play a major role in the astrophysical applications of
the Hipparcos results and in this respect their accuracy is more important than
their precision, at least for investigations of a statistical nature. In this chapter,
the systematic errors of the Hipparcos astrometric parameters, including the
parallaxes, are evaluated by examining the possible sources of bias arising in the
data reduction process. Then, the external errors of the parallaxes are further
studied on the basis of individual or statistical comparisons to ground-based
distances. The validity of the Hipparcos standard errors are also investigated.

20.1. Introduction

The determination of distances for a large number of stars was probably the most
eagerly awaited product of the Hipparcos mission and was indeed the key element that
led eventually to the decision to design a dedicated space experiment. Distances are
the foundation on which virtually all stellar and galactic astronomy rests, and the future
development of astronomical research in these areas will rely to a large extent on the
Hipparcos parallaxes. It was then of the utmost importance to validate the results, to
certify the standard errors and to assess the magnitude and the kind of systematic errors
that may be present in the data.

In practice this validation is not easily achieved. It is commonplace with the Hipparcos
data to state that the results have so good an internal accuracy that there is no sample of
ground-based data which would allow the pattern of the external errors to be assessed,
at least statistically. This is particularly true for the parallaxes because of the relative
paucity of ground-based measurements matching the Hipparcos precision and accuracy.
As a consequence the comparison to external data is based on a carefully selected sample
of stars whose distance is statistically well known, even though this is not necessarily
true for individual objects.

20.2. Assessment of Possible Errors

The Hipparcos trigonometric parallaxes are essentially absolute, which is not the case
of those obtained with ground-based programmes. In principle, given the way the
Hipparcos observations were performed and the data reduced, no systematic errors
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above 0.1–0.2 mas are expected in the Hipparcos parallaxes. However, the possibility
of a zero-point shift cannot be ruled out, for example if there were periodic variations
of the basic angle of the instrument beam-combining mirror (Lindegren et al. 1992).

Systematic errors of the order of, or smaller than, 0.1 mas may be evident only with
samples of several hundred error-free parallaxes, e.g. typically a set of stars known to
be farther than few kiloparsecs or cluster members of known distance. The Magellanic
Clouds fall short in fulfilling this criterion, because there are less than 50 such stars in
the Hipparcos programme which, in addition, are predominantly faint stars. One has
then to resort to galactic clusters.

Photometric calibrations (uvbyβ) are also used in order to get estimates of the interstellar
extinction and to derive visual absolute magnitudes. With these data and a simple
galactic model it is possible to compute an unbiased estimate of the global zero-point of
the parallaxes of distant stars along with its unit-weight error.

The absence of a significant zero-point error on parallaxes would probably imply the
same absence on the other parameters, as the parallax does not play a special role in
the astrometric reduction. It is also possible to have a general view of the systematic
errors on all the astrometric parameters, using the residuals from astrometric reduction.
For this reason, the Hipparcos data are systematically studied as a function of the
astrometric and photometric data of the stars: positions, parallaxes, proper motions,
apparent magnitudes and colours.

Regarding random errors, the standard errors of the Hipparcos parallaxes vary mostly
with magnitude, and also with ecliptic latitude as a result of the scanning law of the
satellite. Internal tests by Lindegren (1995) and external tests by Arenou et al. (1995) on
the 30-month solution reached the conclusion that the standard errors on parallaxes were
good estimates of true external errors. However, in the H30 catalogue, the astrometric
parameters were obtained with a straight average of FAST and NDAC data, and their
assigned standard error was the quadratic average of FAST and NDAC standard errors;
unlike the final merged solution, these averages did not take into account the correlation
between Consortia data. It was thus necessary to study the random errors in the final
Catalogue. Given their large range (from 0.5 to 5 mas at the faint end), the standard
errors themselves are not evaluated directly but the unit-weight error is studied instead.

20.3. Comparison with Ground-Based Data

In this section, Hipparcos parallaxes are compared to various samples of ground-based
parallaxes. Ground-based measurements are generally affected by atmospheric or me-
chanical effects and suffer from lack of homogeneity. Thus, while the ground-based
data could not be used to assess the external precision of the Hipparcos parallaxes,
Hipparcos data could be used to determine the systematic errors present in ground-
based measurements down to the mas level.

In the following comparisons, robust estimates have been used to secure results insen-
sitive to outliers. The estimates rely heavily on the median of the distributions instead
of the average as location parameter, and on the half-width between the 15.85th and
84.15th percentile as an unbiased estimate of the standard deviation.
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Figure 20.1. Comparison between Hipparcos and USNO parallaxes.

USNO Parallaxes

The US Naval Observatory has been conducting a systematic photographic programme
for trigonometric parallaxes since 1964 with the 61-inch telescope at Flagstaff. The
latest list has brought the programme to 1013 stars and over the years the typical parallax
precision for a completed series, has evolved from ±4 mas to ±2 mas. This programme
is now discontinued and superseded by the parallaxes determined by the CCD initiated
in 1983. Results from that programme demonstrated that relative parallaxes with formal
mean errors in the 0.5 to 1.2 mas range are readily achieved if suitable reference star
frames are available (Monet et al. 1992).

For the present comparison to the Hipparcos parallaxes, a set of nπ = 88 stars (Harring-
ton & Dahn 1980, Harrington et al. 1993) has been used. The median quoted formal
precision for these stars is ' 2.5 mas. Differences between Hipparcos and USNO re-
sults are plotted in Figure 20.1 which shows that very good agreement is found, with no
obvious outliers. The median of the differences between these ground-based parallaxes
and their Hipparcos counterparts is 0.2 ± 0.35 mas, typically of the order of σn−1 /2

π , sug-
gesting the absence of bias and of systematic differences between the two techniques.
The distribution of normalized differences computed as:

πUSNO − πHq
σ2

USNO + σ2
H

[20.1]

has a standard deviation of 0.96, a good indication that the formal errors are probably
realistic.
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Table 20.1. List of radio stars observed in the VLBI programme.

HIP Name Hp α δ πH σH πVLBI σVLBI

mag deg deg mas mas mas mas

12469 LSI61303 10.7 40.1 61.2 5.65 2.28 −0.66 0.62

14576 Algol 2.1 47.0 41.0 35.14 0.90 32.51 0.59

16042 UX Ari 6.5 51.7 28.7 19.91 1.25 19.89 0.39

16846 HR 1099 5.8 54.2 0.6 34.52 0.87 33.88 0.47

19762 HD 283447 10.9 63.6 28.2 9.88 2.71 6.93 0.25

23106 HD 32918 8.1 74.6 −75.3 3.43 0.61 4.02 0.80

66257 HR 5110 4.9 203.7 37.2 22.46 0.62 22.21 0.45

79607 σ2 CrB 5.2 243.7 33.9 46.11 0.98 43.93 0.10

98298 Cyg X1 8.8 299.6 35.2 0.58 1.01 0.73 0.30

103144 HD 199178 7.2 313.5 44.4 10.68 0.73 8.59 0.33

109303 AR Lac 6.1 332.2 45.7 23.79 0.59 23.97 0.37

112997 IM Peg 5.9 343.3 16.8 10.33 0.76 11.29 0.68

VLBI Parallaxes

The systems of positions and proper motions resulting from the analysis of the Hipparcos
data have very high internal consistency, meaning that the angular separation between
two stars is known with millisecond accuracy, but without any connection to any pre-
defined reference system. In order to link the Hipparcos reference system to the ICRS,
several link programmes were undertaken (Lindegren and Kovalevsky 1995, Chapter 18
of this Volume) and used to rotate the provisional Hipparcos solution to the ICRS. Al-
though this link has no influence on the parallaxes, it happens that the extragalactic
link programme based on the VLBI observations of radio stars carried out by Lestrade
et al. (1995), yielded positions, proper motions and parallaxes of 12 optically bright
radio-emitting stars to the outstanding precision of 0.2–1 mas, the only instance where
individual ground-based parallaxes are of better quality than Hipparcos.

The 12 VLBI stars are listed in Table 20.1 with the parallaxes measured by Hipparcos
and by radio-interferometry (Lestrade et al. 1997). The comparison illustrated by
the plot of Figure 20.2 shows that good agreement is found between the two sets of
measurements. Among the VLBI stars, three are detected and solved as double stars
(HIP 16042, 16846, 79607), one astrometric binary (HIP 14546 = Algol) the solution
of which refers to the barycentre after correction of the circle abscissae for the orbital
motion, and one variable double (HIP 19762), with a poor solution. Given the accuracy
of the VLBI data, and the fact that as far as Hipparcos is concerned, these stars are
representative of the difficulties encountered in the processing, the comparison looks
very favourable for the Hipparcos determination, although the small number of objects
precludes from too general a conclusion being drawn.
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Figure 20.2. VLBI versus Hipparcos parallaxes (mas). Two stars were down-weighted for the extragalactic link, due

respectively to their jet structure or duplicity, and five stars are in the Hipparcos Double and Multiple Systems Annex.

Yale Parallaxes

The Yale University Observatory published in 1995 a completely revised and enlarged
edition of the General Catalogue of Trigonometric Stellar Parallaxes, containing 15 994
parallaxes for 8112 stars published before the end of 1995 and obtained at various
places. (GCTP, van Altena et al. 1995). The mode of the parallax accuracy for the
' 1700 newly added stars of 4 mas is considerably better than in the previous editions
(about 16 mas). The relative parallaxes which constitute the basic data, are corrected
to absolute parallaxes using corrections that are based on an improved model of the
Galaxy. Altogether the median formal errors of the GCTP parallaxes is about 10.5 mas.
An attempt is made by the authors to determine the accidental and systematic errors of
the parallaxes.

Compared to the small samples studied in the previous sections, the General Catalogue
of Trigonometric Stellar Parallaxes provides a sample of 4292 stars suitable for the
comparisons with the Hipparcos single stars. A more in-depth cross-identification
process could probably have yielded more stars, however the sample has been considered
large enough for our comparison purpose, considering the extra effort needed to get a
comprehensive intersection of the two catalogues.

A straight comparison between GCTP and Hipparcos parallaxes gives a median differ-
ence πGCTP − πH = 1.8 ± 0.2 mas, which differs significantly from zero. This bias comes
partly from distant stars: the difference amounts to 2.6 ± 0.3 mas for stars farther away
than 50 parsecs whereas it is only 0.5 ± 0.4 mas for stars nearer than 20 parsecs, i.e.
hardly significant. It could originate from the transformations applied to correct to the
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absolute parallaxes using a model of the Galaxy, although this statement needs to be
substantiated.

However, the main source of bias comes from zonal errors, as may be seen in Figure 20.3.
Systematic errors, up to 7 mas at declination δ = −30�, and to a smaller extent in right
ascension, are found. If the comparison is restricted to the northern hemisphere, the
median difference between GCTP and Hipparcos parallaxes is reduced to 1.2 ± 0.3 mas
for stars farther than 50 parsecs. The difference between the two hemispheres is striking,
and comes as no surprise given the number of observatories and variety of instruments
involved in the compilation made by van Altena et al. (1995). Moreover, variations with
magnitude cannot be ruled out: a bias is also possibly present at the bright and faint
ends.

Apart from the systematic errors reported above, no indisputable outliers were found
(the largest deviation is of 4.7σ). The width of the normalised differences (see Equa-
tion 20.1) is 1.04±0.01, indicating that their is no global scale defect in the formal errors
of the General Catalogue of Trigonometric Stellar Parallaxes.

20.4. Systematic Errors of the Hipparcos Astrometric Parameters

The search of a zero-point error, or of more complex systematic effects, on the five
astrometric parameters is not straightforward since their observed values cannot be
compared to their unknown true values. It is however possible to test for neglected
terms in the position, by reprocessing the final adjustment of the great-circle abscissae
to the astrometric parameters, with an improved model including either a constant term
or by extending the five-parameter model of star motion which was adopted for the
majority of the Hipparcos stars, including systematically acceleration components in
right ascension and declination. These terms, being physically spurious, should average
out to zero. If the observed averages happen not to be significantly different from zero,
one could conclude that the astrometric parameters are also free of significant systematic
errors of global nature.

During the data processing, every star has been tested for the significance of the accel-
eration terms. When the test was negative, the usual five parameter model was taken as
the baseline. Now, if all the double stars and the suspected astrometric binaries are ex-
cluded, and all the other stars are processed with the extended model, the average value
of the components of the acceleration should be zero. Any departure from this would
be an indication that small systematic effects could pervade the astrometric solution.
One must add that there are only a handful of nearby stars with perspective acceleration
larger than 0.1 mas and they do not affect the overall statistics.

A dedicated run of the astrometric processing was set, with either a six-parameter model
(a constant term c was also computed) or a seven-parameter (including the acceleration
components gα� and gδ ). Only stars never flagged as double, were considered. This
amounts to ' 92 000 stars for the six-parameter solution, with an a priori exclusion of
outliers, and ' 95 000 stars for the seven-parameter solution. On average, the formal
errors on the offset c, and the acceleration components gα� and gδ were respectively
about 0.6 mas, and 3.1 and 2.4 mas/yr2. In both models, the unit-weight error of
these terms were found to be 1.07, suggesting that the standard errors of the Hipparcos
astrometric parameters might be slightly underestimated.
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Figure 20.3. Distribution of the parallax differences between the General Catalogue of Trigonometric Stellar Parallaxes

and the Hipparcos Catalogue.

The medians of the three terms are plotted in Figure 20.4 as a function of magnitude
and colour, and as a function of the five Hipparcos astrometric parameters. Significant
variations larger than 0.1 mas are clearly visible. Although this limit may appear very
small, it is about one quarter of the best standard errors of the parallaxes (0.42 mas)
in the Hipparcos Catalogue. Possible departures from zero of the plotted data should
however be appreciated with their formal errors in mind, at a 2σ level for instance. The
quoted error bars depend both on standard errors (which increase with magnitude) and
on the number of stars in each bin.

The main results are as follows:

1. for the brightest stars a significant offset is found: the median value of c for the
' 1000 stars brighter than Hp = 5 mag is 0.11 ± 0.01 mas;

2. the chromaticity effect played an important role in the Hipparcos data reduction;
a clear trend may be seen, especially concerning redder stars. For the ' 900 stars
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with V − I > 2.5 mag, one finds a median c of 0.24 ± 0.04 mas, significantly larger
than 0.1 mas. The acceleration components exhibit the same trend. Significant
peaks around V − I = 0.6 mag and V − I = 1.8 mag are also found;

3. no significant effect is found as a function of position;

4. for parallaxes, no conclusion may be drawn from the small parallaxes or from the
negative tail, since in this case the parallax value represents merely the observation
error, which is obviously correlated with the observation errors on c, gα� and gδ ;
however, for larger parallaxes, the c term remains constant and significantly positive;

5. variations of accelerations with high proper motions, noticeable in particular for
µα� < −200 mas/yr, are possibly due to the expected correlation between g and µ.

Although systematic errors greater than 0.2 mas may occur for the reddest stars, it must
be stressed that this analysis was done by adding one or two unknowns in the astrometric
reduction. In the case of the baseline model with five astrometric parameters, these
errors are probably distributed among the five unknowns. Apparently, parallax and
proper motions are more sensitive to this effect than coordinates.

In any case, the number of stars affected by a possible systematic error above 0.1 mas
remains very small. As seen in Figure 20.4, the bulk of the Hipparcos stars (Hp ~ 9 mag,
πH ~ 3 mas, low proper motion) correspond to values of c, gα� and gδ which are
completely negligible on the average.

20.5. The Zero-Point and Unit-Weight Error of the Parallaxes

It was shown in the previous section that the astrometric parameters may have small,
but significant, systematic errors. The purpose of this section is to assess the magnitude
of the zero-point z of the Hipparcos parallaxes. Simultaneously, the standard errors of
the parallaxes are also studied by means of the determination of the unit-weight error
k = hσext /σHi, i.e. the ratio of the external to the internal errors. If both parallaxes and
standard errors are unbiased, the expected values are z ' 0 and k ' 1.

Magellanic Cloud Stars

Magellanic Clouds stars were included in the Hipparcos programme in order to de-
termine the proper motion of the Small Magellanic Cloud and the Large Magellanic
Cloud. They are distant enough, with parallaxes of ' 0.02 and 0.015 mas, that they
can be used to search for a systematic bias in the Hipparcos parallaxes. Out of the 46
Hipparcos stars lying in the Magellanic Clouds which were regularly observed during
the mission, 8 have been solved with a poor parallax accuracy. They have been detected
as non single stars and placed in the Double and Multiple Systems Annex. Three of
these stars belong to the category of the stochastic solutions, since it was impossible to
reconcile the final residuals with the a priori abscissa errors.

Using the 38 remaining single stars, the average weighted parallax is zM = −0.1±0.23 mas.
However, due to the correlation between great-circle abscissae, the precision on the
mean parallax of a group of n adjacent stars is about σπ n−0.35 instead of the expected
σπ n−1 /2 (Lindegren 1989). This has not been taken into account in the quoted error bar
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of the average parallax. The unit-weight error is kM = 1.04 ± 0.12. This analysis on a
very limited and peculiar sample (the stars in the Magellanic Clouds are predominantly
faint) leads to the conclusion that the zero-point in the parallax determination is not
larger than 0.4 mas, too high an upper bound to qualify the Hipparcos distances.

Open Cluster Stars

Open star clusters are the most recognisable stellar systems and are easily observable even
with a small telescope. Astronomers have long appreciated their use in the understanding
of stellar evolution as well as their link with the physics and dynamics of the Galaxy. To
date, there are just over 1200 known open clusters, nearly all within 2000 parsecs.

Since the members of a star cluster form a more or less bound system, they are essentially
all at the same distance. This property, associated with the assumption of a common
origin, has made it possible to measure the distance of an open cluster with some
confidence. The distances of galactic open clusters are believed to be known with a
relative error of the order of ten per cent. Using distant clusters (> 200 parsecs) and
assigning to each member of a particular cluster, the distance of this cluster, allows an
absolute error on their parallax to be obtained to better than 0.5 mas.

These estimates provide a reliable basis for a comparison with the Hipparcos parallaxes,
provided that all test stars are true members of the corresponding clusters. To assess
the cluster membership, the average proper motion of the cluster was computed with all
the candidates stars. Then all the stars with a proper motion component relative to the
average, five times greater than its standard error, were rejected.

Using the BDA cluster data base (Mermilliod 1992), and the distance moduli quoted by
Lyngå (1987), parallaxes were available for 391 stars, after exclusion of non-members.
The median difference between the Hipparcos and cluster parallaxes was found to be
zC = 0.04 ± 0.06 mas, thus not significantly different from zero, and the unit-weight
error is kC = 1.06 ± 0.07. This is a much more significant result than that obtained with
the Magellanic clouds, although the contribution of the uncertainty of the distance of
the clusters to the error of the median would require a more refined appraisal.

Estimation Using Photometric Data

After trigonometric and moving cluster parallaxes, calibrated intrinsic luminosities pro-
vide the most widely used and reliable distance estimators for individual stars. Many
uvbyβ calibrations were used in order to obtain an estimate of the photometric distance
modulus for all available stars. The major part of the Hertzsprung-Russell diagram was
covered: dwarfs B to M2, supergiants B to G5, population II F stars; red giants are of
course missing. A programme was built to automatically choose the calibration which
must be applied, and from these calibrations, estimates of intrinsic (corrected for the
reddening) photometric indices, B−V colour excess, interstellar extinction AV , absolute
magnitude, effective temperature, gravity and metallicity were obtained. Photometric
errors were propagated through the different steps so that formal errors on the stellar
parameters were also estimated. Eventually the absolute magnitude, the extinction, and
the apparent magnitude were used to determine the distance modulus t = V − MV − AV .

The uvbyβ input data came from the Hauck & Mermilliod (1990, 1996) Catalogue
in an updated version. In order to minimize the error on the distance modulus based
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on photometric data, only the most distant stars must be kept since a relative error
in parallax translates directly into an absolute error in the distance modulus. For this
reason, the sample was restricted to stars with a distance modulus 8.5 < t < 14.5.
In addition, stars known to have a variability > 0.2 mag, having a joint photometry
associated to binaries or those with σt > 0.35 were not included in the sample. After all
these filters were applied 467 stars remained.

The truncation in distance moduli combined with the random measurement errors
caused the sample average parallax to be biased. In order to take this bias into ac-
count and limit its adverse effect, a specific statistical method was applied by Arenou et
al. (1995) and is now briefly summarised.

The conditional probability density function that the Hipparcos parallax of a star is πH,
given its observed distance modulus t, its galactic latitude b, the Hipparcos zero-point
error (z) and the unit-weight error (k), is:

f (πHjt , b, z, k) =

Z +1

0
p1(πHjπ, k, z)p2(tjπ)p3(bjπ)p4(π) dπ

Z +1

−1

Z +1

0
p1(πHjπ, k, z)p2(tjπ)p3(bjπ)p4(π) dπ dπH

[20.2]

where the conditional probability distributions p1 to p4 are determined in Arenou et
al. (1995). In this equation the unknown parameters are the zero-point and the unit-
weight errors; they can be estimated from the observed parallaxes and distance moduli.
The estimator of (k, z) is found numerically from the maximum of log-likelihood func-
tion L =

P
ln f (πHi jti , bi , z, k) of the n-sample. The method also checks the quality of

the fit to the model, filters out the outliers and gives the standard errors of the unknowns.

The distribution of the errors on Hipparcos parallax was shown to be approximately
Gaussian by Arenou et al. (1995). Thus p1 is a Gaussian of expectation π + z and
standard deviation kσH. A possible censorship on πH was taken into account, although
no truncation was actually applied to Hipparcos parallaxes. The moduli t were assumed
Gaussian around the true value −5 log π − 5 and the truncation on t was also explicitly
taken into account. For the joint distribution of the galactic latitude and parallax,
p(b, π) = p3(bjπ)p4(π), the distribution perpendicular to the galactic plane was assumed
exponential with a mean scale height of 100 pc. However this assumption is not critical
for the sample investigated here.

Applying this method to the available sample of n = 467 stars, the zero-point found was
zP = −0.05 ± 0.05 mas, thus not statistically different from 0, the unit-weight error being
kP = 1.04 ± 0.04. The uncertainty of the median is in good agreement with 1/

p
n mas.

No outlier was found in the sample.
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20.6. Conclusions

Results obtained with the external comparisons are summarized Figure 20.5. The
global zero-point error of Hipparcos parallaxes can be safely assumed to be smaller than
0.1 mas. Another important conclusion is that the standard errors of the parallaxes have
probably not been underestimated by more than 10 per cent.

These results have been derived from distant stars only, so that one may ask whether
they are representative of the whole Hipparcos Catalogue. This is probably indeed the
case. Firstly, the absolute value of the distance played no specific role in the Hipparcos
data processing, and it is difficult to imagine a systematic effect on the parallax which
would be function of the parallax itself. Also, no bias was found in the comparisons to
the USNO or VLBI parallaxes despite the fact that they cover a large range of parallaxes.

The chromaticity effect exhibited in the previous section may also be studied with the
distant stars. Although no red star was available for this comparison, Figure 20.6 shows
that variations of the zero-point with colour of about some tenths of mas cannot be
excluded even for blue stars. It is however difficult to assess whether these variations
are really in the Hipparcos data or due to ground-based data used for the comparison
purpose.

Eventually the Hertzsprung-Russell diagram constructed with the Hipparcos provisional
data (Hipparcos parallaxes, colour indices and magnitudes of the 30-month solution)
has provided an important confirmation of the quality of the parallaxes and the pho-
tometry through the overall consistency of the diagram for a wide range of stars and
distances (Perryman et al. 1995). This is particularly meaningful for the parallaxes
whose uncertainty would broaden the main sequence with the standard error of the
absolute magnitude ' 2.1 σπ /π. As discussed by Perryman et al., the observed width of
the main sequence is likely to be attributable to intrinsic dispersion of physical origin
rather than to some random or systematic effect of the parallaxes.

F. Arenou, F. Mignard, J. Palasi
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21. VALIDATION OF PHOTOMETRIC RESULTS

The Hipparcos photometric solution was one of the highlights of the mission
and proved to be very successful. As was done for other parameters determined
from the Hipparcos observations, the aim of this chapter is to provide an
evaluation of the quality of the results from the study of the internal consistency
and, when this was possible, from direct comparisons with ground-based data
of comparable quality. Various aspects are taken up successively: the reliability
and the precision of the calibration and in particular the error of the zero-
point, the meaning of the internal errors published in the Catalogue with their
relation to the true errors, the stability of the photometric system over the
three years of instrument ageing and the validity of the period determination
of newly identified periodic variables. Comparisons with three ground-based
photometric systems show both the overall reliability of the data, as well as
some of the features encountered when combining Hipparcos and ground-
based photometry.

21.1. Introduction

Chapter 14 of this Volume presents the methods and algorithms that were developed
and implemented to compute the magnitudes of all the Hipparcos programme stars.
The magnitude estimates were obtained at every field transit, providing an average of
110 observations per star. This proved to be a rather complex task: starting from the
recorded photon counts as indicators of the stellar intensity and relying on a set of pho-
tometric standard stars, defined within the assumed photometric system, instrument
parameters were derived that determined the transformation of the observed intensi-
ties to magnitudes in this photometric system. At various stages of the processing the
photometric system and the associated values of the photometric standard stars were
re-adjusted and followed by a complete re-reduction of all photometric data available
at that time (see also Section 14.5). An internal assessment of the quality of the final
product was highly desirable and could be based on the consistency of all the determi-
nations, the demonstration of the stability of the calibration from the fluctuation of the
individuals measurements of known (or assumed) constant stars. From this analysis
and the knowledge of the various noise contributions considered, our expectation was
that the internal accuracy at the grid-crossing level was about 0.012 mag for a single
measurement of a star of Hp = 8 mag.
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Comparisons with ground-based systems may tell us more about the ground-based
system than about Hipparcos, but a good agreement between well calibrated indepen-
dent systems does provide a clear indication of the level of reliability of the Hipparcos
photometry.

21.2. Evaluation of the Calibrations

As explained in Chapter 14, both FAST and NDAC used an instrument model to
represent the sensitivity of the Hipparcos detection chain as a function of the position
of the stellar image on the grid and of the colour of the star. The basic term of this
calibration is the zero-point coefficient, representing the response of the detector at the
centre of the grid for a star of colour V − I = 0.65 mag. Its variation with time mirrors
the slow decline of the overall photometric response of the instrument, due mainly to the
transmission loss in the glass of the optical elements of the main detection chain. This
process was referred to as ageing. While the absolute value of the zero-point is rather
arbitrary and has no deep physical meaning, the scatter of the zero-point about the mean
ageing curve and the way the zero-points of the preceding and following field behave are
very relevant to assess the ultimate accuracy of the calibration and as a consequence,
that of the photometric solution.

Figure 21.1 shows the variations of the zero-point over the mission, expressed in mag-
nitude. The origin of the scale was chosen to be close to the theoretical mid-mission,
where the Hipparcos photometric scale was defined through the predicted magnitudes
of the set of photometric standards. The plot gives the history of the zero-point for the
dc-scale with the preceding field of view on the left scale and the following field of view
on the right. The points on these curves are computed as −2.5 log X1 where X1 is the
FAST zero-point defined in Table 14.5. The ageing has been analysed in Chapter 14
and will not be reconsidered here. What is more important in the context of the vali-
dation of the photometric solution, is the fact that the same details appear in the two
curves at the same time, although the calibrations for the two fields of view were fully
independent and used different observations obtained within the same orbit. Several
small incidents are visible on both curves and should be considered significant. See for
example the small loss of sensitivity of about 0.02 mag at day ' 600, or the isolated
increase of the same amplitude at day 934. The complex fine structures around days
' 700 are very similar in the two field of views. The same details can be observed from
the equivalent NDAC calibration values (see Figure 14.4). The occurrence of these
synchronous changes with the same amplitude makes us confident that these effects
were real and not artifacts, and that they were properly accounted for by the calibrations
that were performed twice a day during the mission.

Figure 21.2 shows the evolution of the difference between the zero-points of the pre-
ceding and following field of view. The observed difference is close to zero. This is
not a chance effect, as most of the optical and detector chain is identical for the two
fields of view. The precise value of the difference is, however, of little or no meaning.
On the other hand the fluctuations of the distribution are much more relevant. The
long term fluctuations are real and indicate small sensitivity variations that were not
perfectly identical in the two fields of view. Similar variations between the two fields of
view have been observed for a wide range of parameters (see, for example, Chapters 8
and 10). The overall variation of sensitivity has been of order 0.5 mag over the mission
(Figure 21.1). However the evolution of the difference between the two fields, up to the
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Figure 21.1. Time variation of the zero-point of the photometric calibration for the dc-magnitude scale. The left scale

refers to the preceding field of view (FOV) and the right scale to the following. The two scales in the plot have been

shifted by 0.2 mag for better visibility; however the absolute value of the two sensitivities are very similar and should be

very close at about day 700.
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Figure 21.2. Zero-point differences between the photometric calibrations of the preceding and following fields of view

during the mission. The plot refers to the dc-photometric scale.

start of the gyro problems at day 1250, remained within ±0.01 mag and was perfectly
monitored by the calibration. During the sun-pointing mode and at the end of the mis-
sion the two fields started behaving differently. This could be contributed to changes in
the temperature of the spacecraft, and the effects thereof on the optical system.

Also noted were a few discontinuities revealing quick changes in the instrument or
in the calibrations as at day 388, with an increase of 0.003 mag in the sensitivity of
the preceding field or the event of day 755 of 0.006 mag in the other direction and
which in fact was not transient. The first event was caused by the implementation of
the calibrated grid rotation in the observations, causing a general improvement in the
pointing of the instantaneous field of view. The latter event was associated with a failure
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Figure 21.3. Time variation of the zero-point of the photometric calibration for the ac-magnitude scale. The left scale

refers to the preceding field of view (FOV) and the right scale to the following field of view. The two scales have been

shifted by 0.2 mag for better visibility; however the absolute value of the two sensitivities are very similar.

of the Thermal Control Electronics (TCE1), and a switch to the redundant system
(TCE2) (see Table 2.1). These small changes in sensitivity were all properly restored
by the photometric calibration which guaranteed the consistence of the photometric
system to within a few millimagnitudes.

On a shorter time scale, the width of the curve is of the order of 0.003 mag and variations
are of a random nature. This provides information on the amplitude of the statistical
fluctuations of the calibration from one orbit to the next. It provides an indication for
the ultimate quality of a calibration, which is about 0.002 mag in each field of view.
This means that the individual Hipparcos photometric measurements are not defined
in an absolute sense with an accuracy better than 0.002 mag. The internal consistency
of the photometric system is, however, much better defined. For a constant bright
star, the accuracy and stability of the instrument modelling, the zero-points and the
chromatic parameters, were the limiting factors in the error budget of the accumulated
photometry. For fainter stars, the photon statistics was the primary contributor to the
errors.

A similar investigation was performed for the ac-scale, and led to the plots shown in
Figure 21.3 for the evolution of the photometric response at the centre of the field for
a star of colour index V − I = 0.65 mag and in Figure 21.4 for the difference between
the two fields of view. The overall ageing is the same as for the dc-scale with a total
decrease of the sensitivity of about 0.45 mag over the mission. The curves are however
more structured over short timescale than for the dc-scale.

This becomes more clear by looking at the differences between the two fields of view
in Figure 21.4. The long filaments going downward extending over one month at the
beginning of the mission and two months later on, are associated to the slow change
of focus, followed by the abrupt refocusing of the instrument (see also Figure 14.3 and
Chapter 2 of this Volume, and Chapter 10 of Volume 2). As explained in Chapter 14,
the ac-photometric scale is based on the amplitude of the modulation IM1, where
M1 is the modulation coefficient of the first harmonic. (The exact formula is slightly
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different for FAST, but this is of no importance here.) The zero-point of the ac-scale
was therefore directly affected by the change in the modulation coefficient M1, and thus
by the refocusing, which produces a change in modulation and thus in the apparent
sensitivity. The refocusing is global and does not have the same effect in the preceding
and following field of view. From Figure 21.3 it is evident that the average sensitivity of
the preceding field of view, as far as it can be measured by the zero-point, gets larger just
after a refocusing took place whereas it decreases in the following field. This differential
behaviour shows up amplified in Figure 21.4 as a significant difference in the zero-points
according to the field of view.

21.3. Distribution of the Unit-Weight Variance

The Overall Distribution

The aim of this section is to investigate the reported standard errors of the photometric
transits in order to assess whether they are representative of the true errors. The best
way would be to study the true error of the Hipparcos photometry with respect to
ground-based photometric measurements of comparable or better quality, and more or
less obtained at the same time. Unfortunately few such measurements are available,
and when they are, there remains the problem of transforming from the ground-based
photometric system to Hipparcos, or vice versa, with an accuracy of few millimagnitudes.

The approach adopted here instead was to study the statistical distribution of the errors.
Basically the scatter about the mean or the median of the 40 to 380 individual magnitudes
of a constant star, should be related to the standard error given for the individual
transits. If the standard errors are too optimistic the scatter appears too large and one
can conclude that there is a lack of consistency. This is equivalent to studying the χ2

distribution of the deviation of the individual measurements with respect to the median.
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Figure 21.5. Distribution of the reduced unit-weight variance of Hp in the Wilson-Hilfert normal approximation.

For the ith star and the magnitudes Hpi j obtained at the times t j with the standard
deviations σi j and a median of Hpi , one has:

χ2
i =

niX
j=1

(Hpi j − Hpi )2

σ2
i j

[21.1]

which follows a χ2 distribution with νi = ni − 1 degrees of freedom. The Wilson-Hilfert
cube root transformation has been used (Kendall & Stuart 1977) in the analysis because
it gives a remarkably useful normal approximation to the χ2 distribution as:

Z =
�

9ν
2

�1/2
"�

χ2

ν

�1/3

+
2
9ν

− 1

#
[21.2]

which follows asymptotically a normal law with zero mean and unit variance.

For constant stars with Gaussian errors, the distribution of the Z(χ2
i ) should be close

to a standardized normal. When the star is variable, the systematic deviations from
the mean are larger than the deviation expected from the purely random noise, since
the total variance of the time series is the combination of the random component and
that brought about by the true light variations. As explained in Volume 1, Section 1.3,
Appendix 2, the χ2 has been one of the basic variability indicators. Thus it is not possible
to eliminate the variable stars to determine whether the χ2 distribution of the remaining
stars is adequately distributed. It should be the case by construction.

What has been done is the following: the negative range of Z predominantly comprises
constant stars, even though just about the same number are in the positive region, but
indistinguishable from the population of the true variables which are there as well. The
argument is supported by the distribution of the reduced χ2 in its Wilson-Hilfert version,
shown in Figure 21.5. Roughly, from −5 < Z < 5 there is a somewhat symmetrical
distribution centred around Z = 0, as expected.

The fact that the maximum of the distribution is aboutZ = 0, is equivalent to saying that
the unit-weight variance of the constant stars does not depart from unity on average.
As a consequence for the bulk of the catalogue the standard errors of the accepted
photometric transits are representative of the scatter observed between the individual
transits and may be considered as realistic. Later in this section the particular case of
the bright end will be considered separately.
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Focussing on the positive range of the distribution, the population of the classes with
Z > 2 are systematically larger than their negative counterpart, indicating the presence of
variable stars of small amplitude or with short duty cycle like the eclipsing binaries. The
extension of the distribution to larger Z values is entirely populated by variable stars.
Altogether there are 41 per cent of the stars with Z < 0, 48 per cent with 0 < Z < 5
and 11 per cent with Z > 5. So there must be from this distribution 7 per cent of
weak variables and 11 per cent of perfectly detectable variables, i.e. about 13 000 such
cases. This is the population of stars flagged U, M or P in Field H52 of the Hipparcos
Catalogue.

Consider now the χ2 distribution of the 41 per cent of the stars which show less scatter
about the mean than expected. This amounts approximately to the 46 000 entries
with the flag C in Field H52; the tests applied were not strictly the χ2. Ideally, for a
homogeneous population, the negative region of Figure 21.5, should be similar to the
negative region of a standard normal law of zero mean and unit standard deviation. To
see that better, a plot of the distribution and its mirror image with respect to Z = 0 has
been drawn (Figure 21.6).

By construction it is perfectly centred and symmetric, but its width is related to the
scatter of the χ2 of the constant stars. The standard deviation of this distribution is very
close to 1.5 and a normal distribution of zero mean and σ = 1.5 is also plotted (the
solid line in Figure 21.6). Other estimates of the standard deviation of the distribution
can be obtained by restricting to the distribution shown in Figure 21.5 by using the
quantiles < 0.5. With the quantiles 0.2, 0.3, 0.4 one gets for the standard deviation
of the assumed normal distribution 1.53, 1.52 and 1.5 respectively. The mean of the
distribution for Z < 0 is under the normal assumption σ

p
2/π. The observed mean of Z

with Z < 0 is 1.19, which yields for the estimate of σ ' 1.49. Finally the same study has
been made by partitioning the stars according to their brightness using four classes of
similar size with Hp < 7.5 mag, 7.5 mag < Hp < 8.5 mag, 8.5 mag < Hp < 9.5 mag and
Hp > 9.5 mag which happen to be centred on Hp = 7, 8, 9 and 10 mag. The respective
standard deviations are 1.56, 1.60, 1.52, 1.48.

This phenomenon cannot be ascribed simply to a mere scale factor in the standard
errors, since this would also change the mean dramatically and make the mode of
the χ2 distribution much larger than unity, even for a small underestimation of the
standard error (and much smaller than unity for a small overestimation). It seems to
indicate rather that the population is not a homogeneous one, even after scaling by the
standard deviation, and there are some categories of stars where the standard deviation
is too small compared to the actual scatter and other groups where just the opposite
conclusion applies. On the average the distribution remains well centred, but its negative
wing gets wider due to the population with too large standard errors which displaces the
whole distribution to the left. A more detailed investigation of this effect goes beyond
the objectives of this volume, but is worth doing in the future.

Bright Stars

For the bright stars an investigation has been conducted to determine the χ2 distribution
within each class of magnitude. In the Hipparcos Catalogue there are 1473 stars brighter
than Hp = 5 mag consisting of 1264 single stars and 209 double and multiple stars.
Obviously the recognition of the variability becomes much more sensitive for these stars
and the χ2 distributions show extended positive wings with significant population. The
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Figure 21.6. Symmetrised distribution of the unit-weight variance of Hp.

Table 21.1. The unit-weight variance for the bright stars as a function of Hp. The second line gives the

average of the reduced χ2 for the constant stars within a class of magnitude. The factor κ represents the

coefficient by which the standard deviations should be multiplied to make the χ2 centred at one.

Hp 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

χ2 4 3.4 2.8 2.2 1.9 1.5 1.3 1.1 0.99

κ 2 1.85 1.67 1.48 1.38 1.25 1.14 1.04 1.00

number of stars in each class is too small to apply the symmetrised distribution used
above to a sub-population assumed to comprise only constant stars.

Instead, stars with Hpmin − Hpmax < 0.02 mag have been considered as constant and
the median of their χ2 distribution has been computed as a function of the magnitude.
It departs markedly from one as shown in Table 21.1. Interpreting this offset as an
underestimation of the standard errors, one can determine the factor κ by which one
should multiply the standard errors to scale down the unit weight variance.

21.4. Analysis of the Periods of Variable Stars

Period searches were undertaken for stars detected as variable from the variance analysis.
Several methods were applied to determine reliable periods, usually using a Fourier
analysis as a first step. However severe limitations were placed on the efficiency of any
method as a result of the poor and irregular time coverage of the observations. The
character of the scanning law made the period recognition particularly difficult in the
range 5 to 100 days. A description of some of the methods actually employed is given
in Section 1.3 of Volume 1.

For many variable stars, a ground-based determination of the period is available and
can be used to assess the quality of the Hipparcos determination based only on the
observations made during the mission. There are a total of 2541 periods that were
successfully computed from the Hipparcos data, of which 1272 have a ground-based
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Figure 21.7. Distribution of the periods of periodic variable stars computed from the Hipparcos data for which a

ground-based determination is known. The abscissa gives the logarithm of the period expressed in days.

counterpart and 1269 can be considered as new determinations, as far as the search in
the literature can be considered as comprehensive, a goal almost impossible to fulfill.
These figures should be regarded as a good order of magnitude for each category.

The period distributions for the two groups are shown in Figure 21.7 and Figure 21.8.
The two distributions are broadly similar but differ in the details. They cover the same
range of periods from about one hour to 1000 days. The upper limit is smaller for
Hipparcos newly determined periods, with an upper bound of about 500 days, i.e. half
the mission duration. The ground-based periods covers roughly three regions centred
at 5 hours, 4 days and 250 days with a significant depletion at P ' 40 days. As for
the distribution of the new determinations many periods appear in the range 0.6 days
to 5 days, with a regular decrease in the detection of larger periods. The decrease in
number of periods just above 5 days should be ascribed to the observation window
which makes the period analysis difficult in this range. The depletion at about 40 days
is less prominent than in the case of the periods with ground-based measurements, but
this could also be due to the window function: periods in that range could quite easily
have been wrongly assigned.

To judge the validity of the period determination relying only on the Hipparcos data,
it is useful to compare the 1272 determinations which have an equivalent from the
ground, where it should be realized that there is considerable variation in the reliability
of ground-based periods, as well as that some variable star periods are changing with
time. A plot showing the ground-based period against the Hipparcos value is shown
in Figure 21.9. It is found that j∆P j /P is less than 1 per cent for 917 stars out of the
1272 examined, less than 10 per cent for 1150 and larger for the remaining ' 100. As
a consequence most of the data points in Figure 21.9 lie along the first diagonal. The
small straight spikes at periods 0.1, 0.2 and 0.3 days result from the rounding of periods
in the published data.

In a logarithmic plot, all the data points well outside the first diagonal correspond to
very large disagreement between the Hipparcos and the ground-based period. However
as a rule, there is either a close agreement or a strong disagreement between Hipparcos
and the ground-based data. As the period range of the new variable stars measured by
Hipparcos is not very different from the periods measured in the set of known variable
stars, we may infer that the new periods have the same level of reliability.
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Figure 21.9. Comparison of the periods of variable stars found in the literature to the determinations based only on

the Hipparcos observations.

21.5. Stability of the Photometric System

Selection of Constant Stars

The ageing of the instrument was significant during the mission, reaching 0.5 mag for
a star with V − I = 0.65 mag as it was shown in Section 21.2. The effect was colour
dependent, being more pronounced for the early type stars than for the reddest (see
Chapter 14, Figure 14.4). Over the 37 months of observation, the calibration process
intended to reduce all the observations onto a unique and constant photometric system,
close to the actual sensitivity curve of Hipparcos at mid-mission. One way to check



Validation of Photometric Results 457

Table 21.2. List and basic data on the ten constant stars that have been used in this work to determine

the stability of the Hipparcos photometric system. N1 = number of photometric transits, N2 = number of

accepted transits, Var. = Variability flag of the Hipparcos Catalogue.

HIP HD Sp. V − I N1 N2 Var. Hp σHp σtransit

mag mag mag mag

11698 15596 G5 III 0.970 57 55 C 6.3760 0.0011 0.0062

13473 18149 F5 V 0.505 150 148 X 6.0318 0.0006 0.0064

34622 54810 K0 III 1.026 88 86 X 5.0792 0.0007 0.0049

37447 61935 K0 III 1.007 153 145 C 4.0986 0.0004 0.0039

41307 71155 A0 V −0.024 75 71 C 3.8987 0.0003 0.0033

49712 88206 B3 IV −0.100 149 126 X 4.8151 0.0006 0.0047

58345 103932 K4 V 1.219 92 86 X 7.0986 0.0009 0.0078

59750 106516 F5 V 0.526 143 133 X 6.2143 0.0007 0.0062

69722 124780 F0 V 0.335 82 82 X 6.6416 0.0007 0.0067

75181 136352 G2 V 0.715 80 76 C 5.7821 0.0007 0.0056

whether this goal was achieved is to investigate the ‘light curve’ of known constant stars.
If the system remained well defined and constant during the mission, the scatter of
the individual measurements about the mean should be compatible with the standard
errors computed at the transit level and no trend should appear in the data between
the beginning and the end of the mission (however, note that a trend could still appear
if the wrong colour index had been applied for a star in its data reductions; see also
Section 14.5).

The computation of the unit-weight variance has been the baseline to identify about
46 000 stars as constant, i.e. not detected as variable with the Hipparcos data. It would
have been a vicious circle to select few constant stars from this sample to investigate
the stability of the photometric system. Instead, a list of eleven photometric standards
of various spectral types and classes has been kindly provided by E. Chapelier (private
communication). One of the stars was detected and solved as double by Hipparcos and
was not included in the analysis. The remaining ten stars should be photometrically
constant at the level of 0.01 mag.

The list of selected stars is given in Table 21.2 with the spectra and colour of each
star and the summary data of the Hipparcos observations. The number of accepted
transits corresponds to the photometric transits considered as particularly reliable, with
no anomaly detected. The median value of Hp and its standard error are based only
on the accepted transits and are the same as the corresponding numbers given in the
Catalogue. The last column gives the average of the standard errors of the individual
transits for each star computed from the transit data in the Hipparcos Epoch Photometry
Annex. The ratio between the numbers of the last two columns is always of the order ofp

N2 as expected. The variability index is particularly interesting in the present context:
only four of these stars were labelled constant and none was discovered as variable.
Being ‘constant’ is an attribute which is not the opposite of being variable.
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The individual observations are plotted in Figure 21.10 and Figure 21.11 as a function of
the observation number. The data points appear in chronological order, but the scale is
not linear with the time. However for every star there are observations performed during
the first months and the last months of the mission. The error bars are given by the
standard error of the individual transits published in the Hipparcos Epoch Photometric
Annex. The full scale of the Y -axis is the same for all the plots with a range of
0.1 mag. From a visual inspection the distribution of the individual observations look
very satisfactory at first glance. The stability of stars like HIP 41307 and HIP 75181
appears particularly outstanding.

Application of a �2 Test

For each star χ2 /ν and its Z approximation have been computed with Equations 21.1
and 21.2. Results shown in Table 21.2 indicate, as expected, no evidence of variabil-
ity. However the values are large enough for HIP 37747 and HIP 49712 to exclude
them from the category of constant stars, until further examination. For example, for
HIP 37747, it appears that from the data points plotted in Figure 21.10, the large χ2

value is based on a few measures that deviate from the median by several standard de-
viations and also because of a larger scatter at the end of the mission. A different test,
able to locate outliers would probably conclude that this star is sufficiently stable to be
classified as constant.

Study of the Range

The χ2 is an all purpose test and is not always sensitive to all the possible defects of the
photometric reduction. The columns Hmin and Hmax in Table 21.3 give respectively the
magnitude for the observed maximum and minimum brightness, computed as the 5th
and the 95th percentiles of the magnitudes measured at every field transit. The values
have been recomputed from the transits data and have one more decimal figure than in
the Catalogue. The range is the difference between these two numbers and under the
assumption that the star is constant and the error Gaussian, the expectation of the range
is 3.29 standard deviations. The observed and expected values are given in Table 21.3 as
∆1 and ∆2. They are relatively consistent with each other; the most significant departure
being again HIP 37747 and to a lesser degree HIP 58345 and HIP 59750. For the other
stars the agreement is very satisfactory.

With the results from the χ2 tests, the following conclusions can be drawn:

(1) the estimate of the standard deviation at the level of the individual observations is
compatible with the scatter of the observations, indicating that the errors given in
the catalogue are probably realistic, except as noted earlier, for the very bright stars;

(2) for constant stars there is no large tail in the distribution of errors. Otherwise
the test based on the range would have failed. This test is very sensitive to small
departures from the expected distribution.

Testing for the Presence of Trends

The third study carried out on this set of constant stars aimed at detecting possible sys-
tematic trends with the time, a possibility arising as a result of the instrument chromatic
ageing (see Section 14.5). A linear model Hp(t) = α + β(t − t0) has been fitted to the data.
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Figure 21.10. Light curves based on the Hipparcos data for a sample of known constant stars. The observations are

ordered according to the observation number in chronological order.
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Figure 21.11. Light curves based on the Hipparcos data for a sample of known constant stars. The observations are

ordered according to the observation number in chronological order.
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Table 21.3. Summary results of the checks performed on the constant stars listed in Table 21.2. ∆1 =
Hmin − Hmax, ∆2 = its expected value with σtransit of Table 21.2.

HIP χ2 Z Hmax Hmin ∆1 ∆2 Trend

mag mag mag mag 10−6 mag/day

11698 0.66 −1.95 6.367 6.386 0.019 0.020 +1.6 ± 2.6

13473 1.07 +0.59 6.020 6.044 0.024 0.021 −1.7 ± 2.0

34622 1.11 +0.70 5.071 5.091 0.019 0.017 +2.6 ± 1.9

37447 1.42 +3.16 4.090 4.108 0.018 0.013 +4.4 ± 1.4

41307 0.85 −0.89 3.894 3.906 0.012 0.011 −0.8 ± 1.7

49712 1.51 +3.49 4.806 4.826 0.019 0.016 +2.2 ± 1.6

58345 1.08 +0.55 7.090 7.120 0.031 0.026 +9.5 ± 2.9

59750 1.12 +0.99 6.204 6.229 0.025 0.020 −6.7 ± 2.1

69722 0.78 −1.44 6.634 6.653 0.020 0.022 −7.8 ± 3.8

75181 0.87 −0.78 5.772 5.791 0.018 0.018 −1.9 ± 2.2

The fitted gradient of the trend β is given together with its error in the last two columns
of Table 21.3. The trend is just above the 3σ level for the same three stars for which
the range was found anomalous. A trend between 4 × 10−6 to 9 × 10−6 mag per day is
equivalent to a total systematic effect in the range 5 to 10 millimag over the mission. For
the other stars the trend is totally negligible which confirms at the same time that these
stars are not long period variables and that the Hipparcos photometric system does not
change with the time. The fact that few stars exhibit a trend does not invalidate this
conclusion: as was stated above, trends can be the result of errors in the colours used in
the data reductions, and can occasionally be related to actual astrophysical phenomena.
As long as the average star does not show a significant trend, it can be concluded that
the photometric system is stable.

21.6. Comparison with the Walraven Photometric System

The Walraven photometric system (Lub & Pel 1977) is amongst the best internally
calibrated systems. A complete recalibration of all available data has been undertaken
by Lub & Pel, based upon a consistent programme of standard star measurements made
between 1980 and 1985. This programme resulted in the complete redefinition of the
VBLUW system of standard stars as it was available on the Dutch telescope at La Silla
between 1979 and 1991. The system available prior to 1979 in South Africa, though
closely related to the La Silla one, has to be treated separately and will not be further
discussed here. Based upon the reductions which Lub provided for all available data,
Pel produced a list of in total 1972 ‘calibration’ stars of high quality observations, and
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Figure 21.12. Comparison of Walraven photometric V -band measurements with Hipparcos median Hp magnitudes.

Above: the direct comparison of the data (the VW is expressed in log I), and the fitted curve. Below: the residuals left

after subtracting the fitted curve.

spanning a large range of intrinsic properties, as a preparation to a full rediscussion of
the merits of the VBLUW photometric system.

Pel (1991) applied this basic catalogue to an intercomparison between the four pho-
tometric systems with most data available in the southern hemisphere. Whereas the
comparison with the Cousins’ V magnitude and (B − V ) colour, and similarly with the
Strömgren y and (b− y) versus Walraven V and V − B showed no clear systematic effects
as a function of magnitude, colour, right ascension and declination, problems were en-
countered in the comparison with the Geneva V and (B2 − V 1) (see also Section 21.7).

A comparison between two photometric systems will show that either one of the sys-
tems is having problems (without distinguishing which system), or that both systems are
reliable at the level of detection. The chance of both systems being affected by exactly
the same discrepancies is too small to be considered seriously, in particular when back-
grounds of these systems are very different. Accordingly it was considered to be of great
interest to compare the same high-quality catalogue with the Hipparcos photometry. Of
the 1972 stars, 1720 were identified as Hipparcos stars (only the 1948 stars with HD
numbers were checked), and of these 944 had a χ2 based probability of being constant
higher than 20 per cent.

In the comparison only 843 stars of luminosity classes III to V were used, after verifica-
tion that there were no systematic effects observed between stars of these classes. Stars
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Figure 21.13. The differences between Hp and transformed VW magnitudes as a function of declination (top) and

right ascension (bottom), showing no signs of dependence of residuals with position on the sky.

detected as possibly variable had been excluded. Comparisons were made with respect
to median Hp magnitudes in the Hipparcos system. In the Walraven system, all data
are represented as log(I ) values, which requires a multiplication by −2.5 to obtain the
equivalent in magnitudes.

Figure 21.12 shows the comparison between the Walraven V and the Hp magnitudes, as
a function of the Walraven (V − B) index. As the system was originally intended for the
study of early type stars, to which the sensitivity to a three-dimensional classification for
the F and G stars was added later, the majority of comparison points are found among
the B, A, F and G type stars. To every point an error was assigned, based on the error
on the median as given in the Hipparcos catalogue, and the error on the mean for the
Walraven data (the quoted standard deviation divided by the square root of the number
of observations). The errors were dominated by the contribution from the Walraven
system. The data were subsequently fitted with a cubic spline function, using 6 knots.
The unit-weight standard deviation after this fit was 1.7, which may reflect the length of
time covered by the Walraven data (> 10 years). There is also an indication that some
of the remaining dispersion is still related to astrophysical properties: a comparison
between the (B − U ) colour index and the remaining residuals showed some (difficult
to represent) systematic behaviour. The remaining noise is at a level of 0.003 mag,
which can be considered as very good for both the Hipparcos and the Walraven system.
Systematic differences are well below the 0.001 mag level.

Figure 21.13 shows the residuals as a function of right ascension and declination. In
some photometric systems there are small but significant calibration inconsistencies
as a function of position on the sky, due to the complicated process of establishing a
fully reliable calibration sequence in the presence of seasons and a fixed location. The
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Table 21.4. Corrections needed to transform the V magnitudes in the main catalogue (Field H5) to Johnson

VJ magnitudes for luminosity class III to V and spectral type O to G5.

B − V Corr B − V Corr B − V Corr B − V Corr

−0.50 −0.0083 0.20 +0.0037 0.70 +0.0041 1.30 −0.0072

−0.40 −0.0068 0.30 −0.0007 0.80 +0.0032 1.35 −0.0086

−0.30 −0.0053 0.35 −0.0024 0.90 +0.0030 1.40 −0.0088

−0.20 −0.0034 0.40 −0.0018 1.00 +0.0020 1.50 −0.0070

−0.10 −0.0015 0.50 +0.0013 1.05 −0.0010 1.60 −0.0023

0.00 +0.0003 0.60 +0.0049 1.10 −0.0022 1.70 +0.0028

0.10 +0.0022 0.65 +0.0053 1.20 −0.0045 1.80 +0.0080

Walraven system appears to be free of systematic effects down to a level of at least
0.001 mag, and the same has to be true for the Hipparcos system (see also Pel 1991).

This comparison is, due to its limited range in colour, only providing information on
the system quality for relatively blue stars (B − V < 1.3), and it requires other systems to
make similar comparisons for redder stars. However, the very good level of agreement
shows that the Hipparcos system can be considered as internally consistent and very
reliable for at least all but the most extreme-colour stars.

21.7. Additional Comparisons with Ground-Based Systems

The Magnitude Scale

The comparison of Hp magnitudes to ground-based data required a reduction of Hp to
Johnson VJ magnitude through a single relation for stars earlier than G5 stars or with
(B − V ) < 0.9, and relations distinct for giants and dwarfs of later type. The colour
corrections are expressed as function of (V − I ) and lead to the V magnitude as given
in Field H5 in the main catalogue (see Volume 1, Sections 1.3 and 2.1). The set of
standard stars was obtained by reducing all data from the major photometric system
to Johnson V , (B − V ) and Hp. The comparison of V , as provided in Field H5, with
genuine UBV data shows small chromatic residuals (Table 21.4). They are to be added
to the V given in the Hipparcos catalogue to obtain the Johnson V for O to G5 stars
and later type red giants. Similar tables must be used to reproduce V magnitudes from
different photometric systems.

Once corrected for chromatic residuals, V magnitudes from Hipparcos may be checked
against ground-based data. The mean difference VJ − V (Hp) is plotted as function
of the visual VJ magnitude in Figure 21.14, retaining stars in common with Geneva
photometry and UBV photometry respectively, and excluding M giants and variable
stars. The common feature is a small but significant non-linearity with a mean slope of
−0.0017 mag/mag in the range V = 3− 9 mag. The bump around V = 4.7 mag is present
both with UBV and Geneva data. This global behaviour is not understood and may
be due to ground-based data as well as to Hipparcos instrumentation. The occurrence
of similar departures for two distinct photometric systems is an indication that space
magnitude scale may be slightly distorted. Uncertainty on the intensity transfer function
would affect only the brightest stars.
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Figure 21.14. The mean errors V(ground)-V(Hp) as a function of the apparent V magnitude from Geneva

photometry (filled symbols) and from UBV photometry (open symbols).

By construction the Hipparcos Hp system is tied to the UBV system by the relation:
Hp = VJ for B − V = 0.000 mag. With the above mentioned chromatic corrections
the mean difference hVJ (UBV ) − V (Hp)i is only −0.00006 mag for 15 386 non-variable
comparison stars.

The Brightest Stars

The Hp magnitudes of the brightest stars show some departures from the expected
magnitude computed from ground-based Johnson VJ or Geneva V (Gen), and colour
correction (Hp − V ) derived from (B − V )J or [B − V ]G. The departure Hp(obs) −
Hp(true) reaches 0.005 mag at V = 3.5 mag, and 0.025 mag at V ' 2 mag. A few
stars around V = 0 mag show departures up to 0.04 mag. Hp magnitudes are slightly
underestimated in the range 0 to 4 mag and overestimated if brighter than V ' 0 mag.
This non-linearity effect is attributed to the satellite detection chain calibration and not
to the ground-based photometry since the departures between observed and predicted
Hp magnitudes are the same for two independent data sets, UBV and Geneva, obtained
with different detectors.

The brightest stars are often used as spectro-photometric standards, like HIP 91262,
α Lyr. The estimated Hp for the three brightest stars are given in Table 21.5 together
with data from Geneva and UBV photometry. The other bright stars, with V > 0 mag,
have observed Hp coherent with the prediction from ground-based photometry. For
Sirius (HIP 32349), the photon flux from Hipparcos is underestimated by about 44 per
cent. The reason for this discrepancy was the failure of the analogue mode for the image
dissector tube (see Section 5.1), which forced the observations of Sirius to be made in



466 Validation of Photometric Results

Table 21.5. Magnitudes for the brightest stars measured by Hipparcos, compared with measurements in

the Geneva and the UBV systems.

Name HIP Hp σHp Hp(Gen) Hp(UBV )

Canopus 30438 −0.5536 0.0066 −0.678 −0.652

Sirius 32349 −1.0876 0.0024 −1.422 −1.453

Vega 91262 0.0868 0.0021 0.048 0.030

photon counting mode, even though it was evident that counts would be seriously
affected by saturation.

The mean V magnitude for the primary standard Vega, HIP 91262, in UBV photometry
is V = 0.033 ± 0.003 mag with a range from 0.01 to 0.06 mag and few discrepant values
up to 0.16 mag. Geneva V = 0.028 ± 0.004 mag is consistent with the magnitudes as
measured in the UBV and WBVR systems: 0.028 mag. A mean value VJ = 0.030 mag
is adopted to tie the Hipparcos magnitude scale to the spectrophotometric data. With
B − V = −0.001 mag, Hp = 0.030 ± 0.001 mag for Vega. Table 21.5 provides a summary
of the relevant photometric data for the brightest stars.

Photometric Precision

With the exception of a possible, small, systematic magnitude drift, the Hipparcos
photometry shows the highest accuracy ever achieved in stellar photometry. At the
time of the Hipparcos Input Catalogue compilation only 49 per cent of these stars had
photoelectric magnitudes and colours. The remaining stars had photographic or visual
magnitudes. The cumulative distributions of standard errors on V magnitude for non-
photoelectric, photoelectric and Hipparcos Hp magnitudes are shown in Figure 21.15.
The transition from classical photoelectric photometry to the Hipparcos era represents
a jump in accuracy similar to that from photographic to photoelectric, i.e. about one
order of magnitude.

Magnitude Homogeneity

The intercomparison of stars over great circles of various orientations ensured the ho-
mogeneity of Hp magnitudes, free from systematic errors as a function, for example, of
the star coordinates. The comparison with ground-based data reveals errors on classical
photometry rather than on Hp magnitudes. For example the distribution of V residuals
with respect to the declination, Figure 21.16, shows very small systematic errors as a
function of declination, but an increase of quality for UBV data when obtained from
southern sites, i.e. for δ < 10�. With a mean error on V (Hp) of 0.0032 mag, the external
error on VJ appears to be about 0.026 mag.

The distribution of residuals over the whole sky is displayed in Figure 21.17 for V from
UBV system. No large scale systematic errors, of the order of 1 per cent are noticeable
although local departures are present. The comparison with Geneva magnitudes, Fig-
ure 21.18, shows little scatter locally over the sky but a modulation as a function of right
ascension in the southern hemisphere with a peak to peak amplitude of 0.008 mag. The
homogeneity of the Hipparcos photometric reference system is high enough to allow a
complete re-evaluation of the star magnitudes as measured in the various photometric
systems.
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Figure 21.15. The cumulative distribution of standard error on Hp magnitude (left curve), on photoelectric V

magnitude (central curve) and on photographic or related visual magnitude (right-curve). The vertical jumps

corresponds to assumed errors for single source data.

Figure 21.16. The distribution of the residuals VJ − V (Hp) for stars in common with UBV photometry and

V − I < 1.8, as a function of declination.
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Figure 21.17. The residuals VJ − V (Hp) as a function of equatorial coordinates.

Figure 21.18. The residuals VG − V (Hp) as a function of equatorial coordinates.
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Figure 21.19. The residuals V (Gen)–V (Hp) for stars with declination below 10� (bottom) and above 10� (top),

as a function of right ascension.

21.8. Conclusions

Unlike the situation that prevailed with the relative astrometry and photometry of the
double stars, or to a lesser extent with the absolute astrometry of single stars, there was
no real possibility of assessing the external quality of the photometric treatment from a
comparison on a star-by-star basis, to ground-based data of comparable quality, for lack
of material and the difficulty in making the transformation of the photometric system
with the required accuracy. Therefore the various methods of validation attempted in
this chapter had to rely mostly on the internal consistency rather than on an analysis
of differences between Hipparcos photometry and independent external measurements.
This was, however, possible on less quantitative aspects, such as the constancy of a
limited set of bright stars or the comparison of the period of variables concluded from
the Hipparcos data to their ground-based counterpart.

The comparisons do not reveal major shortcomings in the Hipparcos evaluation of the
magnitudes and the estimate of the internal errors, except maybe for the very bright
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stars (Hp < 3 mag) where the errors at the transit levels are probably a bit optimistic
on the average. In this range as well, the Hp values may suffer systematic effects and
should be used with care. The period determination appears of remarkable quality
despite the relatively short time base for the long period variables, and the unfavourable
observation window in many cases. Finally there are several pieces of information
not evaluated here, but which constitute a major asset of the Hipparcos Photometric
Catalogue: the alternate photometric scale ac, the indication for every transit of the
complementary field of view and the identification of possible perturbing objects from
the Guide Star Catalog. The value of this information should not be underrated in the
astrophysical applications.

F. Mignard, M. Grenon, F. van Leeuwen



22. ANALYSIS OF DOUBLE STAR RESULTS

A solution for the relative astrometry and photometry of double stars has been
obtained from the Hipparcos observations, strictly based on the methods in-
troduced in Chapter 13 of this volume. Although the Hipparcos processing
provides an indication of the internal error, a better evaluation of the true
external error can only be obtained by comparison with ground-based obser-
vations of comparable accuracy. We discuss in this chapter two such com-
parisons: the first analyses the results of the relative astrometry with respect
to the best ground-based observations by speckle interferometry, for about
1000 stars common to Hipparcos and to the CHARA programme; the second
investigates the photometric solution in relation to the CCD photometric ob-
servations carried out at La Palma over a sample of similar size common to
both programmes.

22.1. Introduction

The details of the methods implemented by FAST and NDAC to determine the as-
trometry and photometry of double and multiple stars are given in Chapter 13 of this
volume, along with the main properties of the solution. The precision for the relative
astrometry (separation % and position angle θ) was shown to be mainly dependent on
the magnitude difference but not very sensitive to the separation, at least for separations
less than 15 arcsec. A fit of the median of the standard error of the separation yields the
following useful formula for the precision as a function of the magnitude difference ∆m:

log σ% ' max(0.75, 0.5 + 0.3∆m) [22.1]

where the standard error σ% is expressed in milliarcsec (Figure 22.1). For the subset
of easy double stars, with % >~ 0.2 arcsec and ∆m <~ 2 mag, the separation could be
obtained with a precision better than 10 mas and in many instances than 5 mas. For
relative photometry, Hipparcos provides the best homogeneous and full-sky coverage
for a sample of 12 000 systems with a precision of a few 0.01 mag. The precision of
the magnitude difference is, again, primarily dependent upon the magnitude difference
itself and to a lesser extent on the separation. For separations larger than 0.3 arcsec a
smooth representation of the median of the standard error is given by:

log σ∆m ' −1.7 + 0.25∆m [22.2]
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Figure 22.1. Average standard errors of the relative astrometric (left scale) and photometric (right scale) solution of

the binary stars as a function of the magnitude difference.

(see Figure 22.1). For smaller separations the typical standard error in ∆m grows sharply
with 1/% and the magnitude difference and separation become strongly correlated.

It is difficult to assess to what extent these internal errors are representative of the true
errors, despite the effort of the data analysis groups to provide as realistic an evaluation of
this error as possible. In addition, systematic errors both in astrometry and photometry
are possible and very likely to exist especially at the two extremes: small separations
(% < 0.15 arcsec) and large magnitude differences (∆m > 3 mag). The analyses presented
in this chapter attempt to provide a more objective assessment of these errors through
the results of a comparison of the Hipparcos results with the best ground-based data to
date, the speckle astrometric measurements and the CCD photometric observations.

22.2. Relative Astrometry

Ground-Based Material

The only sizable set of observations of relative astrometry of multiple systems matching
the quality of the Hipparcos data is provided by the speckle observations and occultation
timings compiled in the various versions of the CHARA Catalogue. The following
work is based on Version 3, available on the World Wide Web (Hartkopf et al. 1996).
Preliminary comparisons were carried out on a small sample during the Hipparcos
data reduction (Mignard et al. 1995) and based on a previous version of the CHARA
Catalogue or on data published in the Astronomical Journal, and led to the evidence
of a small bias in separation between Hipparcos and the ground-based observations for
separations above 0.6 arcsec. All these observations are included in the present analysis.

To be more precise, the third CHARA Catalogue includes all measures of binary and
multiple star systems obtained by modern high-resolution techniques (speckle interfer-
ometry, photoelectric occultation timings) as well as negative examination for duplicity,
as of December 1995. For each observation reported, there is an indication of the
observer and the method employed. Each system is identified by one or several of the
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following identifiers: ADS, HR, HD, SAO, WDS. The observation records give the
date of observation, position angle, separation (or upper limit when no detection was
possible), and, in some cases, an indication of the error. When available, the magnitude
of each component is also given, but these data were not used for the present analysis
because they are too scarce and have a relatively low accuracy compared to the CCD
observations made at La Palma (Section 22.3).

Cross-Identifications

The Hipparcos identification number is obviously not among the various identifiers
found in the CHARA Catalogue and it must be searched for by cross-identification.
Unfortunately, none of the above identifiers is alone sufficient to find all the Hipparcos
stars which are in the CHARA Catalogue. In principle the WDS identifier, available for
every entry, should allow the correct identification of all the systems to be found by using
properly truncated J2000 coordinates or the CCDM number when the system is known
to be double in the Hipparcos Catalogue. While easy to implement, this method is not
very reliable, yielding too many wrong identifications simply because of differences of
one or two units in the last digit of rounded right ascension or declination between the
WDS identifier and the Hipparcos truncated positions.

As a consequence systems clearly in the Hipparcos and CHARA Catalogues went un-
noticed (i.e. were not recognised as Hipparcos objects) or were given a false Hipparcos
identifier, only because the coordinates of two Hipparcos entries were a few minutes
apart. (An example of such a situation arises with HIP 162 and HIP 171, which are
different components of a wide system.) This method of identification was not used in a
systematic way but only as a last resort after all the other identifiers had been exhausted.
The other identifiers like HD or SAO do not suffer from this drawback, but unfor-
tunately do not cover all the Hipparcos entries. Eventually all these possibilities were
used in sequence and the final files were merged into a single one without redundant
identifications.

There are 6280 entries in the CHARA Catalogue representing about 22 000 individ-
ual observations. Five thousand of these entries have a counterpart in the Hipparcos
catalogue and 2100 are associated with at least one positive and reliable observation of
separation and position angle. The number of systems with a double star solution in
the Hipparcos catalogue is obviously smaller, of the order of 1700. Accurate numbers
are given in the last column of Table 22.1. The 400 remaining systems are mainly close
binaries and therefore not detected as non-single by Hipparcos.

Few systems were solved with more than two components from the Hipparcos observa-
tions (there are 249 entries related to triple and quadruple systems). On the other hand
the CHARA compilation provides in several instances the observations of individual
components for systems with three or more components, in which one particular pair
may be associated with a Hipparcos double star solution. Because of the difficulty in
making a safe and automatic identification of these components, the CHARA systems
with more than two components potentially resolvable by Hipparcos were not consid-
ered in the comparison. This sample was in any case too small to affect the conclusions
of this investigation.
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Table 22.1. Content of the selected comparison data set between Hipparcos and the CHARA Catalogue.

Categories (see text) 1 2a 2b 3a 3b Total

Entries in common 906 192 866 104 38 2106

With Hipparcos double star solution 765 159 637 95 24 1680

∆% < −50 mas 18 3 35 3 1 60

∆% > +50 mas 37 4 62 5 6 114

Systems used in the analysis 710 152 540 87 17 1506

Astrometric Parameters

To be significant the comparison between the speckle measurements (%S, θS) and the
Hipparcos observations (%H, θH) must be based on nearly contemporaneous observa-
tions. As most of the systems considered in CHARA have separations less than one
arcsec, and many below 0.3 arcsec, the orbital motion could be large enough to prevent
a meaningful comparison at the level of one milliarcsec in the case when the Hipparcos
and CHARA epochs differ by more than a few months. Several observing missions col-
lected speckle data at the end of 1990 or in 1991, quite close to the Hipparcos Catalogue
epoch of J1991.25, making the epoch difference negligible. In addition not every star
in the CHARA sample exhibits a significant annual orbital motion, so that observations
carried out a few months before or after the Hipparcos epoch are nonetheless useful
in such a comparison. Finally when two CHARA observations bracket the Hipparcos
epoch, an interpolated position could be computed at the Hipparcos epoch, provided
the orbital motion was not too large over the bracketed interval.

The comparison data set was eventually separated into five categories according to the
reliability of the estimation of the separation at the Hipparcos epoch:

(1) systems with at least two CHARA observations bracketing the Hipparcos epoch.
Two kinds of linear interpolations were tried: the first in Cartesian coordinates
X (t) = %S sin θS and Y (t) = %S cos θS, from which the separation and position
angle were then computed for the Hipparcos Catalogue epoch T0 = J1991.25; the
second method interpolated directly the polar coordinates. It is obvious that for a
nearly circular motion the latter is preferable while for a nearly linear motion with a
large excursion in position angle the interpolation in rectangular coordinates gives
better results. For objects showing a motion of few degrees in position angle the
two methods are equivalent at the milliarcsec level. It was found that the statistical
analysis did not depend very much on the interpolation method, although for a small
number of systems the cartesian and polar interpolation may lead to quite different
results. The results below refer to the interpolation in Cartesian coordinates;

(2) systems for which the last CHARA observation was made earlier than T0, with the
following two sub-cases:

(2a) the last observation was made after T0 − 0.5 yr;

(2b) the last observation was made before T0 − 0.5 yr;
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Figure 22.2. Difference in the apparent separation of double stars observed by Hipparcos and speckle interferometry.

A smooth curve has been fitted to the data points to show the systematic differences. The difference is defined in the

sense Hipparcos minus speckle.

(3) systems for which the first CHARA observation was made later than T0, with the
following two sub-cases:

(3a) the first observation was made before T0 + 0.5 yr;

(3b) the first observation was made after T0 + 0.5 yr.

In case 2 the last observation found in the CHARA Catalogue was retained for the
comparisons, and in case 3 the first observation in the CHARA Catalogue was used.
Attempts to extrapolate from a polynomial fit over the last (case 2) or first (case 3) two
or three observations were rapidly abandoned as being too difficult to handle safely.

For all the observations the possible 180� ambiguity between the speckle observations
and the Hipparcos solutions was removed by adding 180� to the position angle of the
speckle data (θS) whenever cos(θS − θH) < −0.85. It turns out that among the 949 ‘good’
systems of categories 1, 2a and 3a appearing in the last line of Table 22.1, the differences
in position angle left no room for ambiguity as to when a 180� shift had to be applied.
The actual distribution of ∆θ = θS − θH had a core of 771 systems with −20� < ∆θ < 20�

and then two distinct small populations at ±180� with respectively 95 and 83 systems.
These are indeed rather small numbers considering the difficulty of removing the 180�

ambiguity in the speckle observations.

The content of each category is shown in Table 22.1. In some cases the components
considered in the Hipparcos solution were not the same as the two components given
in CHARA. For the subsequent statistics all the systems for which the difference in the
separation supplied by Hipparcos and CHARA was larger than 50 mas were removed,
the difference being considered as too large to belong to the statistical distribution. This
indicates an incorrect identification of the system or of the components of a multiple
system, or was the consequence of an invalid interpolation of the CHARA data to the
Hipparcos epoch. In Table 22.1 the occurrence of more cases of ∆% in the positive wing
follows from the fact that the difference was taken in the sense %H − %S and that for
multiple hierarchical systems CHARA usually refers to the close pair and Hipparcos to
the distant component. Such systems obviously had to be removed from the comparison
sample.
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Results and Analysis of the Comparisons

For each of the above categories various analyses were carried out. Table 22.2 sum-
marises the results for the differences ∆% = %H − %S for each category. As expected
the best results are obtained in the first group, when an interpolated separation was
computed at T0. The scatter in ∆% measured by the standard deviation is 8.8 mas, close
to the typical error of the Hipparcos measurement of 6–7 mas for this sample of bright
stars with small magnitude difference (Figure 22.1). The slight bias is hardly significant
for a population of 700 objects. The scatter is slightly larger in categories 2a and 3a,
with the selected observations within six months of the Hipparcos epoch and is much
larger for the other two populations. In this last two cases the filtering at j∆%j < 50 mas
makes the scatter somewhat too optimistic, since differences may fall in the range 50 to
100 mas.
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Table 22.2. Summary statistics of the comparison of the separations between Hipparcos and speckle inter-

ferometry.

Categories (see text) 1 2a 2b 3a 3b

Number of systems considered 710 152 540 87 17

Mean of ∆% in mas +0.5 +0.8 +1.6 +1.1 −1.9
Median of ∆% in mas 0 +2 +2 +1 −4

Standard deviation of ∆% in mas 8.8 9.1 14.7 11.7 13.8

The plot in Figure 22.2 shows the data points as a function of % = (%H + %S)/2 and the
running median as a solid line. There are three regimes in this plot. At the smallest
separations (< 0.2 arcsec, close to the Hipparcos detection limit), there is a systematic
difference of 3–4 mas but also more scatter in the data than for the larger separations.
For separations between 0.2 and 0.6 arcsec, there is no noticeable systematic difference.
For still larger separations, there is again an increasing systematic difference, reaching a
maximum of about 3–4 mas at % ' 1 arcsec. If this latter effect is real, its origin in either
the Hipparcos or the speckle data is still unknown, and its full understanding requires
further investigation.

Another presentation of the residuals is shown in the histograms of Figure 22.3 and
Figure 22.4. The first diagram represents the distribution of the differences in separa-
tion in mas, while the second histogram gives the reduced distribution, determined by
computing for each star the scaled difference as:

%H − %Sq
σ2

H + σ2
S

[22.3]

with σS = 3 mas. For a normal distribution of the errors with the above variances,
the scaled difference should follow a normal law with zero mean and unit standard
deviation, shown by the solid line in Figure 22.4. The standard deviation of the observed
scaled difference is however 1.15, slightly larger than expected and primarily due to the
populated tails rather than the distribution between -2 and +2. If the standard errors
in the speckle observation are accepted to be less than 5 mas, including the uncertainty
induced by the interpolation at T0, this may indicate that the quoted Hipparcos errors
are too small by about 15 per cent, at least to account for the wings of the distribution.

The comparison in position angle shows that there is no systematic orientation difference
larger than 0.�05–0.�1. The scatter diagram in Figure 22.5 shows %∆θ as a function of
the separation with the median smoothed out in the solid line. A systematic difference
in orientation would show up as a trend in %∆θ such that a difference of 1 mas for
% = 1 arcsec would correspond to 0.�05 in orientation. The other features in this
diagram less than 1 mas are not significant.

The summary statistics of %∆θ are given in Table 22.3 for each of the categories. The
number of systems in each category is smaller than the corresponding numbers in
Table 22.2, because an additional filtering has been applied whenever j%∆θj > 50 mas,
to be consistent with the analysis of separations. As expected the same behaviour as
in Table 22.2 is observed, with the smallest scatter in the first category linked to the
interpolated positions. However the standard deviations are larger than in the case of
∆%, which could be explained by the fact that the apparent orbits are more circular than
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Table 22.3. Summary statistics of the comparison of the position angles between Hipparcos and speckle

interferometry.

Categories (see text) 1 2a 2b 3a 3b

Number of systems considered 695 152 507 86 16

Mean of %∆θ in mas −1.1 +1.1 +1.7 +0.1 −0.6

Median of %∆θ in mas −0.5 +1.2 +2.1 +0.1 +1.8
Standard deviation of %∆θ in mas 10.4 11.8 14.4 10.5 17.2

elongated ellipses and an error of a few months between the Hipparcos and CHARA
shows up primarily in %∆θ rather than in ∆%.

Figure 22.6 shows the difference of relative position of the secondary with respect to the
primary computed as:

∆X = (%H sin θH − %S sin θS) [22.4]

∆Y = (%H cos θH − %S cos θS) [22.5]

There is no preferred orientation in this plot and the standard deviations in each direction
are nearly identical, respectively 10.2 and 10.4 mas.

22.3. Relative Photometry

Through the history of the double star observations little attention has been given to
provide magnitude differences of high quality, at least in comparison with the efforts
made to get reliable astrometry. Lately CCD observations have dramatically changed
the situation with the possibility of processing digitised images with good photometric
calibrations. A large amount of such data has been made available by A.N. Argue et
al. (1992) from observations carried out at La Palma in 1986–1987.
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More than 2300 systems were observed with separations typically larger than 0.7 arcsec
and usually in the range 1 to 5 arcsec. Among them, there are 1360 systems of the
Hipparcos programme. These were all detected as non-single from the Hipparcos
observations and solved for the astrometry and photometry with solutions of higher
quality than the average, primarily because there are no close binaries in the sample.
The magnitude difference range covers the whole Hipparcos range up to ∆m = 4 mag
and the reported accuracy is typically between 0.01 and 0.02 mag, smaller by a factor
two to four than the Hipparcos standard error for this sample as seen in Figure 22.1.

The photometric system used in the La Palma observations is different from Hipparcos
and the comparison of the magnitude differences cannot be done directly. Argue and
his colleagues provide component magnitudes in the V and R wavebands of the Landolt
photometric system based on the Johnson UBV and Cousins’ RI systems. Writing the
link between the BV and Hp bands as the function:

Hp − V = f [(B − V )] [22.6]

the magnitude difference between the components A and B is given by:

∆mLP = ∆mV + f [(B − V )B] − f [(B − V )A] [22.7]

where ∆mLP is the La Palma magnitude difference in the Hp band. For main-sequence
stars there is a correspondence between B − V and V − R, which in principle allows
the transformation of the V − R of each component as measured by Argue et al. into
B − V . Only systems with j∆mV − ∆mRj < 0.4 mag have been selected in order to ensure
that Equation 22.7 gave a good approximation to the Hipparcos system. Finally the risk
of possible misidentification was limited by excluding from the analysis all the systems
with differences in separation between Hipparcos and La Palma larger than 0.3 arcsec.
In the end, the comparison sample reduced to 958 systems.

The main results of the comparison are plotted in the two diagrams of Figure 22.7
with ∆mLP − ∆mH in ordinate and, in abscissa, the magnitude difference (upper panel)
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and separation (lower panel). The average of δ(∆m) = −0.002 mag and the standard
deviation is 0.13 mag. Up to ∆m ' 3 mag there are no systematic differences between
the Hipparcos and ground-based measurements. Neither is the separation a factor
affecting the difference, at least for % > 1 arcsec. For smaller separations the scatter
is larger and is more likely due to the CCD observations which are less reliable in this
range.

Regarding the distribution of the reduced differences:

∆mLP − ∆mHp
σ2

LP + σ2
H

[22.8]

plotted in Figure 22.8, it is quite different from a normal law of zero mean and unit
variance. There is a small systematic zero effect of −0.2 mag in reduced values, or
−0.01 mag in unscaled values, which is acceptable. The scatter of the distribution
however is much larger than expected if the quoted standard deviations are real estimates
of the random errors. A normal curve with standard deviation 1.4 provides a good fit
to the central part of the observed distribution, but does not account for the tails.
Clearly the reduced distribution is not Gaussian and exhibits extended wings. The
effect introduced by the difference between the two photometric systems is probably
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non-negligible at the level of few 0.01 mag and contributes also to increase the random
scatter in a way hard to quantify. Another natural source of increased scatter is stellar
variability. While the Hipparcos data are averages over a three-year period, the La Palma
measures are much more liable to instantaneous deviations in magnitude.

22.4. Conclusions

The above comparisons have been restricted to the relative astrometry and photometry,
for which ground-based data of comparable quality exist. The comparisons confirm the
excellent overall quality of the Hipparcos results in the astrometry of double stars. The
comparison of absolute astrometry was not possible at the same level, because of the
lack of an independent sample matching the Hipparcos quality. However there is no real
difference between the absolute astrometry of single stars and that of double and multiple
stars, except that the latter are not as accurate. The confidence in the astrometry of
single stars applies equally well to the double and multiple stars. In particular there are
no reasons to suspect that the quoted standard errors are underestimated by more than
10 to 20 per cent.

For the photometry the situation is not so clear and illustrates the loss of accuracy in
disentangling the complex signal of a multiple system into that of its components. While
the photometry of the single stars (Chapters 14 and 21 of this Volume) is precise and
accurate and limited primarily by the photon noise for star fainter than 8 mag, no such
feat was achieved for the relative photometry of double and multiple systems. However,
it was not possible to assess exactly what kind of systematic effects are to be expected
and whether the overall underestimation of the standard errors applies equally to all the
stars.

F. Mignard, C. Martin
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23. FUTURE PROSPECTS

23.1. The Merits of a Scanning Astrometric Mission

A concept for a future space astrometry mission based on an extrapolation of the prin-
ciples adopted by Hipparcos has recently been formulated (Lindegren & Perryman
1996), and has been recommended for further study within ESA’s long-term scientific
programme. A small interferometer, with a baseline of about 2.5 m, and equipped with
CCD detectors, should be capable of measuring the astrometric parameters of every
object down to 15 mag or fainter (some 50 million or more), with an accuracy of some
10 microarcsec at 15 mag or some 2–3 microarcsec at about 10 mag. Instrumental
optimisation could lead to the measurement of a significant proportion of objects down
to 20 mag, with an improved accuracy of about 2–3 microarcsec at 15 mag.

Scientifically, the attractions of such a mission are very broad. Distances of objects
throughout the Galaxy would be measured (with a 10 per cent accuracy at distances
of the galactic centre), and space velocities would be acquired with an accuracy of
around 1 km/sec even at 20 kpc. In addition to the detailed motions and properties
of individual stars and stellar groups throughout the Galaxy, metric terms would be
directly measurable (with a precision in the PPN parameter γ of the order of 1 part
in 106), and planetary companions of a few Jupiter masses would be observable out
to a few hundred parsecs. The appeal of such large-scale, high-accuracy astrometric
measurements, and the technological prospects of conducting them within the next one
or two decades, provokes the question of the extent to which the Hipparcos experiences
can be carried forward to space astrometry in the future.

In general terms, the measurements conducted by such a continuously scanning satellite
can be shown to be almost optimally efficient, with each photon acquired during a
scan contributing to the precision of the resulting astrometric parameters. Although
every object down to the limiting magnitude of the Hipparcos instrument could not be
observed, and significant inefficiencies resulted from the sequential mode of operation
of the detector, a future mission would most probably be able to observe the objects
passing across the field of view simultaneously, with every star above the corresponding
signal-to-noise threshold ultimately contained within the final catalogue. The small
conceptual appeal of being able to devote more observing time to a particular object
of high scientific interest by means of a payload which can ‘stop and stare’ at a given
region of sky appears to be completely outweighed by the very high accuracy that is
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achievable in any case on such a large number of objects. One of the scientific targets of
a future astrometric mission, indeed, will be the large-scale dynamical motions of stars,
associations, clusters, and galactic spiral arms, that can only be tackled by access to the
distances and motions of large samples of stars.

The scanning satellite concept also leads directly to the construction of a global ref-
erence frame into which each object is placed in an absolute sense. One of the great
merits of Hipparcos is that it generates a reference frame within which parallaxes and
proper motions are rigidly defined. A future astrometric mission, reaching to 15 mag
or fainter, would circumvent one of the problems faced by the Hipparcos mission in
linking the resulting reference frame to an inertial system, through the direct observation
of extragalactic objects. The wide separation of two separate viewing directions would
be preserved, since it leads to the determination of absolute trigonometric parallaxes,
and thereby circumvents the problem which has plagued ground-based parallax deter-
minations, namely the transformation of relative parallaxes to absolute distances. The
successful implementation of these concepts has been convincingly demonstrated by the
Hipparcos mission.

The continuously scanning satellite approach leads to two further important attributes
of the resulting data. The first of these is the wealth of photometric information that
is acquired by an instrument which continuously scans the celestial sphere in a reason-
ably uniform manner. The calibrated photometric results from Hipparcos surpass in
quantity, quality and uniformity the corresponding ground-based results acquired over
many decades. The application of the photometric data to the study of stellar variability,
and the direct astrophysical value of high-accuracy magnitudes and colours, is already
evident from the Hipparcos results.

The other feature of the global astrometric data which is such an important pointer for
the future is the capability of determining the astrometric parameters of double and
multiple systems. Although posing a considerable and continual challenge to the instru-
ment design, the data acquisition, the data analysis, and the final catalogue production,
the wealth of information contained in the Hipparcos results provides an insight into
the importance of double and multiple systems within the context of a future catalogue
of 50 million objects with microarcsec accuracy. At this level, the complexity of the
systems already evident in the Hipparcos Double and Multiple Systems Annex will be
compounded, and a powerful observational system which samples the stellar images and
their photocentric motions semi-continuously will reveal much about star formation, the
initial and subsequent mass functions, n-body interactions, and many other details of
stellar structure and evolution. The scanning satellite concept is important in that a
semi-continuous sampling of the double or multiple star geometry is possible, and is
again directly placed within the overall reference frame of the global catalogue.

Finally, in all of these considerations, it should be stressed that both for Hipparcos, and
for an advanced mission based on similar concepts, the number of distinct astrometric
observations per star is very much larger than the number of variables characterising the
stellar motion. In this sense the overall instrument is self-calibrating, and the resulting
astrometric parameters are determined along with estimates of their standard errors and
correlations. This provides the possibilities of an accurate and unambiguous calibration
of the instrumental geometry, and standard errors of the astrometric parameters which
are expected to be a realistic indication of the true errors. For the rigorous scientific
exploitation of the astrometric data such confidence in the error estimates is crucial.
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23.2. The Space Astrometry Problem Revisited

Looking back on the many years of planning and execution of the data reductions for
Hipparcos, it is easy to find instances where a somewhat different approach to the
analysis of the satellite data might have been advantageous. In several cases more
direct and accurate methods would certainly have been adopted, given the availability
of present-day computing facilities. This experience must be taken into account in
any future space astrometry project. In this context it is perhaps of some interest to
reconsider the space astrometry problem in very general terms.

Stellar astrometric observations from space aim at the determination of a finite set of
parameters describing the barycentric motion of each star. These parameters may be
summarised in a vector of unknowns, a. The observations consist of instantaneous
measurements of the centroids of stellar images on the detector, expressed in detector
coordinates, such as slits or pixels, denoted G and H . Each observation, k, is therefore
characterised by the time tk, a measurement vector gk = (Gk, Hk)0, and associated
statistics.

Very generally, the space astrometry problem can be formulated as the minimisation
problem:

min
a,n

gobs − gcalc(a, n)


M [23.1]

where gobs is the vector of all measurements and gcalc the vector of detector coordinates
calculated from the astrometric parameters. The norm is calculated in a metric M
defined by the statistics of the data, which in the general, non-linear case need not
be Gaussian. In this equation n is a vector of parameters which are of no direct
interest to the astronomical problem at hand, but which are nevertheless required for
a physically realistic modelling of the data and therefore have to be estimated along
with the astrometric parameters. The practical formulation of the problem is mainly
related to the specification of the ‘nuisance parameters’ n, which naturally depends on
the type of mission considered. Subsequently a continuously scanning satellite, such as
Hipparcos or GAIA, will be assumed.

The modelling of the observables g is done by three successive transformations: (1) from
astrometric parameters to the celestial directions of the star at the instants of observation,
using an astrometric model; (2) from celestial to instrumental frame directions using an
attitude model; and (3) from instrumental directions to detector coordinates using an
instrument model.

Astrometric Model

In the simplest case, as applied to most of the Hipparcos stars, the modelling of the
satellitocentric direction to star i at time tk depends on just five parameters intrinsic
to the star, the so-called five astrometric parameters: αi , δi , πi , µα�i , and µδ i , referred
to a given epoch and being defined with respect to the solar system barycentre. More
generally, the stellar astrometric parameters could include, for instance, the orbital
parameters of binary stars.
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One of the important insights gained from the Hipparcos mission concerned the im-
pact of stellar duplicity on high-accuracy astrometry, and the sometimes astonishing
complications brought about by this well-known, but easily forgotten, phenomenon of
the common stars. For the present discussion it is assumed that the vector ai includes
whatever parameters are needed to represent the motion to the required accuracy.

Calculation of the observable (proper) direction of the star at an arbitrary instant requires
a set of auxiliary data e which are regarded as known, i.e. not subject to improvement
from the observations. Most importantly this set includes the barycentric ephemeris of
the satellite. The transformation to proper direction, largely covered in Chapter 12, is
written symbolically:

uik = u(ai jtk, e) [23.2]

Note that the auxiliary data e are not part of the nuisance parameters. Hence they
are placed, with time, to the right of the bar in Equation 23.2, indicating that they are
‘given’.

Continuous Attitude Model

The attitude specifies the instantaneous orientation of the instrument axes in the same
celestial reference frame as used for the astrometric parameters. The instrument axes are
defined by means of the celestial projections of certain reference points on the detector.
Clearly the attitude angles enter as unknowns in the general problem. There are two
rather different ways in which they can be handled: as discrete or continuous variables.

In the discrete case there is an independent set of (three) attitude angles for every instant
tk. Given that each observation provides two coordinates, a prerequisite for this model
is that at least two observations are made at each instant. In principle the attitude
parameters can be eliminated ‘on the spot’, leaving a set of equations representing the
instantaneous relative measurements, e.g. in the form of the angular separations of
stellar images expressed in detector coordinates. A pointing space observatory is the
most obvious example where the discrete attitude model applies.

The continuous attitude model is only applicable to a scanning satellite. It describes the
attitude in the form of continuous functions of time, using a reduced set of parameters c.
These could be, for instance, the spline coefficients for the three attitude angles with
respect to an analytical reference model. Provided that the actual attitude motion is
sufficiently smooth, this model has a significant advantage over the discrete model,
owing to the smaller number of parameters, or degrees of freedom, that have to be
estimated. The optimum dimension of c is a compromise between the measurement-
induced error and the modelling error. Considering the relatively short dynamical
memory of the satellite it is reasonable to use an independent set of attitude parameters,
c j , for each time interval T j of several hours.

Angular coordinates on the sky, measured with respect to the projected axes of the
instrument, are called ‘field angles’ and denoted (η, ζ). Given the proper direction to a
star and the attitude parameters, the field angles of the object at the time tk 2 T j can be
written:

fik = f (uik, c j jtk) [23.3]

where fik is the vector of field angles.
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Instrument Model

The final transformation is from field angles f to detector coordinates g, i.e. G, H ; this
is the field-to-detector transformation:

gik = g(fik, d j jtk) [23.4]

It depends on the instrument parameter vector d j describing the scale, detector orienta-
tion, optical and mechanical distortions, etc. The set of parameters d j is also assumed
to be defined on the interval T j but may contain a subset which is constant over much
longer times, e.g. for the medium- or small-scale distortion.

The practical formulation of the field-to-detector transformation is rather dependent on
the hardware of the optics and detector system. The scan field mosaic of the Hipparcos
main grid naturally led to a model with two components (Chapter 10): one fixed,
medium-scale distortion pattern representing the physical deformations of the scan
fields, and a variable, large-scale polynomial component capable of absorbing all kinds
of optical distortion, chromaticity, etc.

Model Synthesis

The overall transformation can be written:

gik = g(f (u(ai jtk, e), c j jtk), d j jtk)

≡ h(ai , c j , d j jtk, e) [23.5]

The general minimisation problem thus becomes:

min
a,c,d

kgobs − h(a, c, djt, e)kM [23.6]

where the indices i, j and k have been dropped since the norm is to be computed over
the whole range of the indices.

The observations are invariant with respect to a uniform, rigid rotation S of the celestial
coordinate system. The rigorous formulation must therefore be such that:

h(Sa,Sc,Sdjt,Se) = h(a, c, djt, e) [23.7]

for any such transformationS of the parameter vectors. Only the instrument description,
which does not involve celestial coordinates, can be assumed to be independent of this
transformation: Sd = d.

In the Hipparcos reductions this invariance was most strikingly demonstrated by the
different choices of celestial reference frame—ecliptic versus equatorial—by the two
consortia. On a more subtle scale it was manifested in the small global orientation and
spin differences found after transformation to equatorial coordinates (Chapter 16). The
discussion of the rank-deficiency problem in Chapter 11 showed that this invariance was
not an obvious property of the data reduction problem in its usual formulation based on
the so-called ‘three-step’ method (Chapter 4). One conclusion for the future is that the
invariance with respect to uniform rotations should be carefully considered and built
into the equations from the very start, resulting in minimally constrained solutions for
the reference frame.
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Method of Solution: Direct Approach

In Equations 23.3 and 23.4 the unknowns c j and d j were both taken to be defined over
the interval T j of several hours. While the two parameter sets represent very different
physical models, they are thus equivalent from a data processing point of view and may
be considered together as parts of the ‘local’ vector of nuisance parameters, n j . However,
as was remarked before, d j may contain a part which is common to a longer interval,
or even the whole mission. These ‘global’ nuisance parameters may be separated out as
the vector , and n may be redefined to contain only the ‘local’ nuisance parameters.
Equation 23.5 is then recast as:

gik = h(ai , n j ,jtk, e) [23.8]

and the general minimisation problem becomes:

min
a,n,

kgobs − h(a, n,jt, e)kM [23.9]

It can be noted that this form, after linearisation, has the same general structure as the
least-squares problems encountered in the great-circle reductions (Equation 9.5) and
the sphere solution (Equation 11.23), and could in principle be handled by the same
direct method as was used in those problems. That is, after sorting the data either
chronologically (by the j index) or systematically (by the i index), the corresponding
unknowns (n j or ai) may be eliminated, resulting in a rather dense system of normal
equations for the remaining parameters. For Hipparcos the dimensions of a and n were,
respectively, about 370 000 (the astrometric parameters for the primary reference stars,
see Table 11.1) and ~ 2 000 000 (the number of spline coefficients and free instrument
parameters in the FAST great-circle reductions). If the n j are successively eliminated,
the direct solution of the remaining system requires of the order of n3 /3 ~ 1016 floating-
point operations, and the administration of n2 /2 ~ 6 × 1010 double-precision reals
(' 500 Gigabyte): a non-trivial task even for supercomputers and parallel processing.
It was such considerations that lead to the idea of the ‘three-step’ decomposition pro-
posed in 1976. However, the practicality of that method was gained at the expense of
approximations which should now be avoided.

Global Iterative Solution

Apart from the ‘three-step’ method, the only alternative to the direct solution proposed
to this date seems to be an iterative solution. The basic idea dates back at least to 1977,
when Prof. Pierre Lacroute advocated the use of intermittent guiding of the satellite and
the use of ‘dynamical smoothing’ in the quiet intervals. In his introductory talk at the
‘Colloquium on European Satellite Astrometry’, held in Padova in June 1978, the idea
was formulated the following way:

... it is possible to represent the attitude motion during the periods of free motion by using the coordinates
of the stars and all their transit times. With the help of mechanical laws the computed attitudes should
be very accurate and by using them along with the transit times we could obtain better evaluations of the
coordinates.

To iterate this procedure is an obvious possibility. The resulting method, which may be
referred to as the ‘global iterative solution’, was subsequently proposed and studied by
a group at the Istituto di Topografia, Fotogrammetria e Geofisica, Milano (Betti, Sansò
et al., in Perryman et al. 1989 Volume III, Chapter 28) and further discussed by Lattanzi
et al. (1990). In the present framework it can be described as follows.
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Let ii be the vector of all observations gobs
ik of a particular star i, and similarly let j j

be the vector of all observations made in the time interval T j . With I and J denoting
the number of stars and time intervals, respectively, (i1, i2, . . . , iI ) and (j1, j2, . . . , jJ )
are thus different partitions of the total observation vector gobs. In practice they could
be obtained by sorting the observations according to star index or time, respectively,
although this may not be necessary depending on the administration of the equations.

If, for a moment, the astrometric parameters a and the global parameters  are regarded
as known, or rather as ‘given’, it is a simple matter to solve, for each time interval j , the
minimisation problem:

min
n j

kgik − h(ai , n j ,jtk, e)kM [23.10]

involving only the observations j j and resulting in a linearised system of equations with
dim(n j) unknowns, i.e. typically a few hundred. The solution to this problem may be
formally written as the function n̂ j(j j je, a,). This problem is somewhat analogous to
the attitude reconstruction problem discussed in Chapter 7.

Conversely, by regarding  and the local parameters n = (n1, n2, . . . , nJ ) as given, the
astrometric parameters of each star are obtained by solving the problem:

min
ai

kgik − h(ai , n j ,jtk, e)kM [23.11]

involving only the observations ii and resulting in a linearised system of equations
with dim(ai) unknowns (typically 5). The solution to this problem, analogous to the
astrometric parameter determination discussed in Chapter 11, may be written as the
function âi(ii je, n,).

Finally, if both the local and astrometric parameters are regarded as given, the global
parameters may be obtained as the solution to the problem:

min


kgik − h(ai , n j ,jtk, e)kM [23.12]

and denoted ̂(gobsje, a, n). This problem involves all the observations, but still results
in a relatively small system of equations with dim() unknowns.

The global iterative solution is a straightforward sequential application of the above
(partial) solutions. The optimal sequence of the three estimators n̂ j , âi , ̂ is not
obvious, but the following order seems intuitively natural:

a(0) = initial catalogue


(0) = 0

n(m)
j = n̂ j(j j je, a(m−1) ,(m−1)), j = 1, 2, . . . , J

a(m)
i = âi(ii je, n(m),(m−1)), i = 1, 2, . . . , I


(m) = ̂(gobsje, a(m), n(m))

9=
; m = 1, 2, . . .

[23.13]

If the iterations converge, the end result is evidently equivalent to a direct solution of
the global minimisation problem, Equation 23.9.

Concerning the convergence properties, it can be noted that the linearised form of the
procedure, written in the form of normal equations, is equivalent to the Gauss-Seidel
iteration method for the solution of the linear system of equations. It is well known
that this method converges for any symmetric and positive definite matrix. Due to the
(theoretical) rank deficiency of the problem, this condition is in principle not satisfied.
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However, it can be argued that the particular degeneracy due to the undefined reference
frame is of no practical consequence for the iterative solution, since each of the partial
minimisation problems (Equations 23.10–23.12) do not suffer from this degeneracy.
The tentative conclusion is therefore that the method does converge, namely to the
particular solution closest, in some sense, to the initial estimate a(0), n(0), (0).

Intuitively, the global iterative solution is expected to converge as a consequence of the
geometrical structure of the problem, namely that in a given interval T j many different
stars contribute to the determination of n j , while, conversely, many different intervals
contribute to the determination of a given star. Thus, an initial error in the coordinate
of one star gives only a much smaller error in the attitude parameters of the affected
intervals, and these errors in turn are diffused, in the next iteration, to a large number
of stars, and, in rather few iterations, to the whole set of stars. It can be noted that this
diffusion is strengthened by the superposition of the two fields of view in Hipparcos, by
the incommensurability of the basic angle to 360�, and by the diversity of scan directions
across any point on the sky; i.e. by the very properties that make the Hipparcos reference
frame internally ‘stiff ’. It is a very likely hypothesis that the convergence properties are
closely linked with the stiffness of the resulting reference frame: a well-designed space
astrometry project should ensure good convergence of the global iterations.

A simplified version of the global iterated solution, using 2000 stars, was in fact im-
plemented by Sansò et al. (in Perryman et al. 1989 Volume III, Chapter 28), and was
found to converge in only two iterations. The block iteration method used for the FAST
sphere solution (Equations 11.27–11.29) follows the same general numerical principle
(although the detailed equations are different), demonstrating its feasibility for a similar
problem with ~ 370 000 unknowns.

The global iterative solution thus appears to be a both practically feasible and intu-
itively natural method for solving the general space astrometry problem. One possible
disadvantage of the method is that it seems to be difficult to estimate reliably the un-
certainties of the astrometric parameters. The curvature matrix associated with the
restricted problem in Equation 23.11 gives only a lower bound to the covariance matrix
of a, by neglecting the uncertainties in n and . This aspect of the global iterative
solution requires additional study.

23.3. An Attempted Global Iterative Solution

The ‘three-step method’ on which both the FAST and NDAC data reductions were
based introduced the star abscissae as an intermediate quantity in order to allow a
direct, but approximate, solution of the general space astrometry problem. The nature
of this approximation was discussed in Sections 11.3 and 11.7. A particular concern
was that it might introduce a distortion of the resulting system of positions and proper
motions. As shown in the previous section, the approximation could be eliminated
by adopting instead the ‘global iterative solution’. It was also remarked that some
of the key procedures necessary for the global iteration were in fact very similar to
procedures already implemented in the data reductions: for Equation 23.10, the attitude
reconstruction or, more precisely, the attitude smoothing included in the great-circle
reductions; for Equation 23.11, the determination of astrometric parameters.



Future Prospects 491

In 1993, when the end of the main astrometric reductions in NDAC appeared to be
within sight, it was therefore natural to start thinking of a possible alternative treatment
of the grid coordinates, eliminating the artificial division into the great-circle reductions
and sphere solution. A first plan was drafted by L. Lindegren in July 1993, and most
of the software was written by C.S. Petersen at Copenhagen University Observatory
between March and September 1994. However, because of other commitments and the
more urgent requirements of the final iteration of the nominal reductions in NDAC, it
was not until April 1995 that a first successful solution was made.

The input to the Copenhagen global iterative solution consisted of two major data sets:

• the attitude files (~ 1.6 Gigabyte), containing the results of the last iteration of the
NDAC attitude determination;

• the grid coordinate files (~ 2.8 Gigabyte), containing the phase determinations of
all the programme stars observed in each observational frame.

These data sets were essentially the output from the first stage of the data processing
(Part A in Section 4.1) performed at the Royal Greenwich Observatory, but with the
along-scan attitude component updated from the great-circle reductions. Additionally,
three data bases were used:

• the star catalogue from one of the last NDAC sphere solutions (N37.1);

• the instrument parameters determined in the last run of great-circle reductions;

• the mean residual maps (Section 10.3).

The output consisted of the updated star catalogue including the 5× 6 normal equations
system for each of the ' 118 000 programme stars.

In order to make the best use of existing procedures and minimise the need for additional
software development, the following simplifications were introduced, in comparison with
Equation 23.13:

• no global parameters () were included;

• the local parameters n j included only the spline coefficients for the corrections to
the along-scan attitude angle (Ω), with the knot sequences taken without changes
from the last great-circle reduction;

• the instrument parameters were not updated.

Each iteration consisted of three main procedures run in sequence:

(1) initialisation of the normal equations for all the stars;

(2) a loop through the attitude intervals T j to determine the spline coefficients n j

and, using the residuals of each such fit, update the normal equations for the
corresponding stars;

(3) solution of the normal equations for one star at a time.

The initial catalogue, a(0), was taken from the NDAC sphere solution N37.1. Only a
single iteration was made (m = 1), and took about 18 hours on a Sparc-10 workstation.
Nearly all the time was spent on procedure (2) above, the other two procedures being a
matter of few minutes only.
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Table 23.1. Standard deviations of the differences in astrometric parameters between the global solution NG1

and four other catalogues, after elimination of orientation and spin differences: the Hipparcos Catalogue

(HIP), the final FAST and NDAC sphere solutions (F37.3 and N37.5), and the NDAC sphere solution

N37.1 used as starting point for the global solution. The positions were compared at the epoch J1991.25.

The standard deviations were computed by the robust method of Equation 16.22. The second column gives

the number of stars used in each comparison. The last column gives the geometrical mean, D, of the five

standard deviations in each comparison, as a somewhat arbitrary measure of the global ‘distance’ between

the catalogues. Differences among the comparison catalogues are given in the lower part of the table (see

Tables 16.9–16.10).

Solutions No. of Standard deviations (mas, mas/yr)

compared stars ∆α� ∆δ ∆π ∆µα� ∆µδ D

NG1–HIP 101 093 0.77 0.66 0.90 1.08 0.94 0.858

NG1–F37.3 101 036 1.03 0.87 1.18 1.37 1.17 1.111

NG1–N37.5 100 919 0.72 0.61 0.84 1.01 0.88 0.800

NG1–N37.1 100 713 0.73 0.62 0.85 1.05 0.93 0.822

F37.3–HIP 101 189 0.51 0.43 0.62 0.64 0.51 0.536

N37.5–HIP 101 071 0.59 0.49 0.73 0.72 0.60 0.619

N37.5–F37.3 100 894 0.97 0.81 1.17 1.19 0.98 1.014

N37.5–N37.1 100 589 0.51 0.43 0.62 0.71 0.60 0.566

Results

The first iteration of the NDAC global iterative solution, here denoted NG1, resulted
in a star catalogue with 117 616 entries. However, in the following only the 101 093
entries in common with the basic subset defined in Section 16.2 will be considered, thus
avoiding the major complications due to stellar duplicity.

The results of NG1 were compared with the final Hipparcos Catalogue (HIP) and the
last FAST and NDAC sphere solutions (F37.3 and N37.5) according to the general
principles described in Section 16.6. Additional comparisons were made with N37.1,
the catalogue used as a starting approximation, in order to obtain the mean updates
produced by the global solution, and between the various comparison catalogues in
order to see the typical differences arising in the nominal Hipparcos processing.

First, the global orientation and spin differences of NG1 with respect to HIP were
determined. The results were:

"0 =

 −39.910
−41.592
+67.666

!
mas [J1991.25], ! =

 −1.389
+0.832
+1.069

!
mas/yr [23.14]

These values are extremely close to the corresponding values for the sphere solution
used as starting point for the global iteration, N37.1 (see Table 16.8), showing that
the iteration did not introduce any significant change in the global reference frame.
After elimination of the orientation and spin differences, the differences in each of the
five astrometric parameters were calculated with respect to the comparison catalogues.
The standard deviations of the differences, estimated according to Equation 16.22, are
shown in Table 23.1.
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In each comparison, the standard deviations of the differences in the five astrometric pa-
rameters vary in much the same way, and a geometrical mean, denoted D in Table 23.1,
can be taken as a global measure of the ‘distance’ between any two solutions. In this
sense, the global solution is ‘nearest’ to the final NDAC sphere solution (D = 0.800),
which is not surprising, as they used the same basic input data. In this connection
it is worth noting that the distance to the initial catalogue, N37.1, is slightly greater
(D = 0.822). Clearly the global solution is rather different from both N37.1 and N37.5,
although less different from these than the FAST and NDAC sphere solutions from each
other. Interestingly, the global solution, while moving away from N37.1 and N37.5,
does not seem to approach the FAST solution (or HIP), but rather behaves to some
extent as independent of the FAST and NDAC sphere solutions. This was confirmed
by the properties of the parallax distribution (see below).

The median offset in parallax was hπNG1 − πHIPi = −0.012 ± 0.003 mas. The offset
was found to be slightly dependent on colour, with a mean coefficient of +0.06 ±
0.01 mas per magnitude of V − I . The hemisphere asymmetry, defined in analogy with
Equation 16.24, was ∆π0 = −0.028 ± 0.006 mas. The width of the parallax distribution
indicated that NG1 was slightly more precise than N37.5, while the fraction of negative
parallaxes lead to the contrary conclusion. Both criteria showed that a weighted mean
of NG1 and N37.5, with about equal weight to the two solutions, would provide a
significant improvement of the parallaxes (by ' 8 per cent in the median standard
error). Even with respect to the final Hipparcos Catalogue, the global solution would
contribute significant information, reducing the median standard error in parallax by a
few per cent. This supports the previous conclusion that the modelling errors in NG1
are rather different from those in the sphere solutions.

Large-scale differences between NG1 and HIP, apart from the global offset in orientation
and spin, were investigated by computing the rotational offsets in eight different areas
of the sky (see Table 16.12). In position ("0) the absolutely largest difference was
0.080 mas, while in proper motion (!) it was 0.175 mas/yr. These values are somewhat
larger than the FAST–NDAC differences reported in Table 16.12, but not alarmingly
large and probably related to the chromatic effects described below.

By far the most serious systematic effects revealed by the various comparisons are
related to the colours of the stars. The slight chromatic offset of the parallaxes was
already noted. Chromatic effects are however much more drastic in the positions and,
especially, the proper motions. They show up, for instance, as very large chromatic
rotation parameters, defined as in Equation 16.27:

"
0

0 =

 −0.444
+0.098
+0.688

!
mas mag−1 [J1991.25], !

0 =

 −1.586
+0.723
+0.911

!
mas yr−1 mag−1

[23.15]
This is very likely caused by inadequate modelling of instrument chromaticity, in partic-
ular the ‘constant chromaticity’ term c00 not included among the instrument parameters
(see Equation 10.9 and Figure 16.5). Since this would have to be included among the
global parameters , it was not taken into account in NG1. The effect has both the
magnitude and the strong time dependence needed to explain the strong influence on
the proper motion system. Some of the earlier comparisons of the NDAC and FAST
sphere solutions showed similar colour-dependent differences (Table 16.13), which dis-
appeared only in the final solutions after careful modelling of the chromaticity.
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Although very robust methods were used in the comparisons, the error statistics of NG1
are somewhat degraded by the rather unclean appearance of the solution in comparison
with either sphere solution or the Hipparcos Catalogue. This is manifested, for instance,
in the number of parallax values below −10 mas, which is 80 in NG1, but only 9, 16,
and 12 in F37.3, N37.5, and HIP (as always, only the intersections of these catalogues
with NG1 and the basic subset were considered).

Finally it should be remarked that the standard errors in NG1, computed from the
curvature matrix of Equation 23.11, were typically underestimated by a factor 0.5 to
0.8 compared with N37.5. This was the case even though the average unit-weight
variance of the residuals was close to one. The discrepancy highlights the problem,
referred to in the previous section, of finding a practical method to compute reliable
covariance matrices for the global iterative solution.

Conclusions

Although the Copenhagen experiment provided only a single iteration step, the practical
feasibility of the global iterative solution was clearly demonstrated. Moreover, it resulted
in a solution which was not inferior to the standard sphere solution in terms of overall
precision, but rather different in terms of the detailed (modelisation) errors. Given more
time and work, it is probable that the major shortcomings of NG1—in particular the
chromatic errors and the occurrence of outliers—could have been eliminated, resulting
in a solution somewhat better than the standard NDAC sphere solution. Furthermore,
rigorous inclusion of the instrument and global parameters among the unknowns, as
well as fine-tuning of the attitude smoothing and more iterations, would surely result in
additional improvements.

An obvious extension of the method would be to merge the FAST and NDAC data
already at the grid-coordinate level and perform a global iterative solution on the merged
data. However, the degree of improvement in the end results remains uncertain.

While the global iterative solution thus appeared to be a very promising alternative
approach to the Hipparcos data reductions, the amount of additional work required was
likely to be substantial, and it had to be abandoned as the baseline NDAC contribution
to the Hipparcos Catalogue. Further study of the method should nevertheless be
encouraged, especially in view of future space astrometry missions.

23.4. The Challenges for the Future

A future space astrometry mission will clearly rest very heavily on the Hipparcos expe-
riences. Certain issues, such as the basic conceptual problems faced by the first global
scanning space astrometry experiment—the derivation of absolute trigonometric paral-
laxes, the determination of the astrometric parameters of complex double and multiple
systems, and so forth—have been convincingly demonstrated.

An experiment aiming for the cataloguing of the astrometric parameters of tens of
millions of stars will certainly face numerous problems associated with the treatment
of such a large quantity of data related to a very large number of stars. Not only
will the Hipparcos experience help in preparing such reductions, but developments in
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computational power and object-oriented data bases mean that the complexities related
only to the data volume will certainly not rise in proportion to the number of objects.

Apart from the instrumental challenges of designing, launching and operating a satellite
with the requisite optical and geometric stability, the challenges to be faced in pro-
ceeding from milliarcsec to microarcsec astrometry will most likely be of comparable
complexity as those involved in the progress to milliarcsec positional accuracy. Metric
and light travel time effects will compound the complexities of the astrometric model,
and its formulation and practical solution. And the conceptual definition of a reference
system in which differential galactic rotation becomes a significant observable effect may
demand a more complex representation of the space motion of each object observed.

What appears beyond doubt is that the principles of the Hipparcos space astrometry
mission can be carried over to the realms of a microarcsec astrometry experiment, the
successful completion of which would characterise to an even more significant degree
the structure and evolution of stars, and our Galaxy, in a manner completely impossible
using any other methods.

L. Lindegren & M.A.C. Perryman
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APPENDIX A

GLOSSARY

Some of the terms included in the Glossary of Volume 1 are repeated here, where consid-
ered appropriate. Certain additional terms more relevant for the published catalogues
may also be found in the Glossary of Volume 1.

Abscissa: the angular coordinate of a star measured from an arbitrary origin on the refer-
ence great circle to the normal projection of the star on that circle. The perpendicular
coordinate is known as the ordinate of the star. The collection of abscissa measurements
were used to derive the astrometric parameters of each star. The individual abscissa
measurements are retained as useful intermediate astrometric data on the ASCII CD-
ROMs. See also great-circle reduction.

ac magnitude: the magnitude derived from measurements of the modulation amplitude
of the image dissector tube signal.

Accumulated photometry: the magnitude Hp determined for every star as the median of
the Hp magnitudes derived from the individual transits.

Accuracy: the uncertainty of a measured quantity, including accidental and systematic
errors. The term is often used synonymously with ‘external standard error’ (cf. preci-
sion).

Active stars: in the FAST Consortium’s great-circle reduction software, stars were divided
into ‘active stars’ for which a rigorous least-squares solution was computed (and which,
therefore, defined the geometric reference on the circle) and ‘passive stars’ (which were
defined a priori or during the processing itself) which were fitted into the reference
framework of the active stars. In the NDAC Consortium, the concept of active and
passive stars was replaced by the procedure of re-weighting.

Astrometric binary: a physical stellar system not observed as a visual double because of
its small separation and/or large magnitude difference, but evidently non-single because
of the detectable non-linear proper motion of the photocentre. A large residual from
a model with five astrometric parameters may also indicate that the actual motion may
deviate from the assumed rectilinear motion of the centre of mass.

Astrometric parameter determination: the final step of the ‘three-step’ method, which
allowed the calculation of astrometric parameters for any (single) star from its observed
abscissae on (typically) 50 different reference great circles.

Attitude determination: the name given to the process by which the data from the satellite
(the star mapper transits and the gyro data) were used to derive a description of the
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three-axis attitude of the viewing directions of the payload at any instant in time. On-
board, this process (referred to as real-time attitude determination) used the brighter
star transit information from the star mapper to yield a three-axis attitude accurate to
about 1 arcsec rms. On the ground, this was improved to some 0.1 arcsec for the
direction of the spin axis, and to a few milliarcsec for the spin phase.

Attitude smoothing: as part of the iterations performed during the great-circle reductions,
knowledge of the along-scan attitude of the satellite was improved by modelling the
attitude evolution, between gas jet actuations, by means of splines. The improved
attitude resulted in the effective connection of stars not present simultaneously within
the combined field of view, in a correspondingly improved ‘rigidity’ of the great-circle
solution, and, thus, in improved precision on the great-circle abscissae of the programme
stars.

Basic angle: the fixed angle, approximately 58�, between the two viewing directions of
the Hipparcos telescope. The exact value of the basic angle was determined during
commissioning to a precision of about 1 arcsec, sufficient for the piloting of the image
dissector tube to the transiting programme stars. During the great-circle reductions,
the basic angle was determined, as part of the geometrical transformation parameters,
to much better than a milliarcsec. The stability of the basic angle during the calibration
period (of one reference great circle, or about 10.7 hours) was ensured by the payload
thermal control.

BT magnitude: see Tycho magnitudes.

Beam-combining mirror: the first element of the Hipparcos payload optics, responsible
for combining the light from the two fields of view, separated by the ‘basic angle’.

Complementary field of view: during the observation of a programme star in one of the
two fields of view, the region of the sky covered by the other field of view is referred to
as the complementary field of view.

Corrections to origins: the angular correction applied to the arbitrary origin of each great
circle to bring these origins into a consistent system (see also sphere solution).

Cramér-Rao limit (or Minimum Variance Bound): in statistical estimation a lower bound
to the variance of an unbiased estimator of a parameter. The practical importance
of the limit is that it is often much easier to calculate than the actual variance of a
given estimator, and is independent of the choice of estimator: it is given by the negative
inverse of the expected curvature (or Hessian matrix) of the log-likelihood function. The
realism of the Cramér-Rao limit as an estimator of the variance of a given parameter
must be investigated e.g. by Monte Carlo simulations.

dc magnitude: the magnitude derived from measurements of the zero-level of the image
dissector tube signal.

Dynamic smoothing: see geometric smoothing, and attitude smoothing.

Epoch photometry: the determination of the Hp magnitudes (and in the case of the Tycho
Catalogue, the BT and VT magnitudes) performed at every grid crossing or transit.

Field angles: spherical coordinates defined in analogy with the ‘field coordinates’.

Field coordinates: direction cosines (w, z) of an object in one of the two fields of view,
with respect to the orthogonal unit vectors w and z (see Appendix B).

Field of view: one of the regions of sky, 0.�9 × 0.�9 in size, visible at any given instant to
the Hipparcos payload. The two fields of view (preceding and following), separated by
the basic angle of about 58�, were brought to a common focal surface by means of the
‘beam-combining’ mirror.
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Field-to-grid transformation: the geometrical relationship between the coordinates of an
object on the celestial sphere, as described by the ‘field angles’ or ‘field coordinates’, and
the ‘grid coordinates’ measured at the focal surface of the telescope. The parameters
of the transformation were calibrated during the great-circle reductions, over a time
interval corresponding to that of a reference great circle, or about 12 hours.

Field transit: the transit of a stellar image across the field of view, often referring to the
data collected for that star during this time interval.

First-look analysis: the data analysis set up by the FAST Consortium, at SRON, Utrecht,
to allow a first inspection of subsets of the data within a few days of the generation of
the data by the satellite.

Five-parameter model: the basic model describing the modulated image dissector tube
signal in terms of a general two-harmonic trigonometric function, with five unknown
parameters. The phases determined from the model fitting were used as inputs to the
great-circle reductions. The term may also refer to the standard astrometric model,
whereby the apparent motion of a (single, unperturbed) star is described by the five
astrometric parameters.

Fully observable star: a concept defined in the context of the star observation strategy (see
Volume 2) indicating that a star was within one of the fields of view throughout a given
observation frame (of duration T4 = 2.133 . . . s), i.e. not in the process of entering or
leaving the field. Most observed stars fell into this category (see also partially observable
star).

General parameters: the set of instrumental parameters common to all abscissae deter-
mined during the sphere solution.

Geometric smoothing: the process of improving the knowledge of the satellite attitude by
including a geometric model of the attitude evolution (as adopted by FAST) in contrast
to an attitude model more dependent on a consideration of the dynamical motion of the
satellite (referred to as dynamical smoothing).

Great circle: one revolution of the satellite, roughly corresponding to a great circle pro-
jected on the sky, corresponded to a period of approximately 2.1 hours. Data from
several great circles, comprising a reference great-circle set, were reduced together as
part of the great-circle reductions.

Great-circle reduction: the first step in the ‘three-step’ reduction method, whereby phases
determined by the image dissector tube data processing were brought together (over
about 5 satellite rotations or revolutions, or about 10.7 hours), to derive the along-scan
abscissae of the stars, with respect to an adopted ‘reference great circle’ by the method
of least-squares.

Grid coordinates: orthogonal rectangular coordinates in the tangent plane at the centre of
the main modulating grid, expressed in linear units.

Grid period (or grid step): the period of the main modulating grid. From the great-circle
reductions the mean grid period was found to be 1.207 366 arcsec, with extreme values
(depending on position in the field of view) of 1.207 348 and 1.207 371 arcsec. Where
only an approximate value of the grid period is relevant, the nominal pre-launch value
of 1.208 arcsec is frequently used. Where a more accurate value was appropriate (for
example, to correct slit errors in the sphere solution), a value of 1.2074 arcsec has been
adopted.

Grid-step ambiguity: the along-scan phase measurements were made modulo one grid
period (approximately 1.208 arcsec), so that stars with relatively poor a priori knowledge
in their positions (or as a consequence of the poor instantaneous knowledge of the
satellite attitude) suffered a corresponding uncertainty in the determination of their grid
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coordinates. If different measurements differ within a reference great circle, this fact
can be recognised in the great-circle processing and duly corrected—the effect is then
referred to as a grid-step inconsistency. Once made consistent at the level of the great-
circle reductions, the grid coordinate may still be incorrect by a multiple of the grid step.
This problem is referred to as that of grid-step errors. Such errors do not generally affect
the validity of the great-circle abscissae derivations: they are recognised and corrected
during the sphere solution process, and updated values are used in iterations of the
great-circle reductions to improve the attitude knowledge.

Grid-step error: see also grid-step ambiguity. In the double-star reductions, a grid-step
error may occur for any (or several) stars in a system with poorly known a priori positions,
and especially for new doubles with a large magnitude difference, the separation may be
in error by one or more times 1.2 arcsec (due to differences in the scanning geometry,
the unit is not exactly that of the nominal grid period).

Heliotropic angles: angles within the heliotropic reference frame in which one of the
reference axes was constantly pointing towards the (nominal) Sun. This reference
frame was used in the NDAC Consortium reductions (for defining the instantaneous
deviation of the actual satellite attitude from that given by the nominal scanning law,
and in defining the reference framework for the great-circle reductions).

Hipparcos magnitude: the magnitude, designated by Hp, sensed by the (broad-band)
main detection system of the Hipparcos payload. The payload response was calibrated
as a function of wavelength before launch, and photometric calibration was carried out
throughout the mission by means of the reductions to an adopted system defined by
standard stars.

Hp: see Hipparcos magnitude.

Housekeeping data: auxiliary data generated by the satellite, in addition to the main
mission data, needed for a full exploitation of the satellite information. It included
in-flight calibration data, thermal payload measurements, and instrument status.

ICRS: the International Celestial Reference System, in which the Hipparcos and Tycho
Catalogue positions and proper motions are given. This is consistent with the conven-
tional equatorial system for the mean equator and equinox of J2000, previously realised
by the FK5 Catalogue (see Section 1.2.2 of Volume 1 for further details).

Inclined slits: part of the star mapper grid consisting of four _-shaped slits, and used for
the determination of the transverse coordinate of star images. The apex of the inclined
slits is located in the viewing plane. See also vertical slits.

Instantaneous field of view: the sensitive area of the image dissector tube (behind the
modulating grid) of about 38 arcsec diameter. The image dissector tube allowed a rapid
change of the mean position of the instantaneous field of view, making it possible to
observe several stars in the field of view almost simultaneously.

Instantaneous scanning great circle: see viewing plane.

Intensity transfer function: the description of the relation between the measured photon-
counts (in de-compressed form) and a linear intensity scale.

Julian Year: 365.25 × 86 400 s (exactly).

Large-scale distortion: the component of the field-to-grid transformation (originating
from the payload optics) which was calibrated during the great-circle reductions.

Longitudinal: this prefix usually signifies a quantity measured or counted in the direction
of scanning (i.e. perpendicular to the slits of the main grid), as opposed to the transverse
quantity (normal to the scan)—e.g. longitudinal field angle.
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Main grid: the main modulating grid of 2688 parallel slits, each of width 3.13 µm, and
separated by 8.2 µm, or approximately 1.208 arcsec on the sky. The grid, engraved on
the spherical surface of a piece of glass matching the telescope’s focal plane curvature,
was built up from 168 by 46 elements (each containing 16 lines), referred to as ‘scan
fields’. With the scanning of the telescope, stellar images moved across the focal plane
roughly perpendicular to the grid lines, resulting in a very regular modulation of the
light observed from behind the grid.

Main mission/main experiment/main grid: sometimes used to refer to the Hipparcos
Catalogue related aspects of the satellite or mission, in contrast to the ‘star mapper’ or
Tycho Catalogue related aspects.

mas: milliarcsec (0.001 seconds of arc).

Medium-scale distortion: the component of the field-to-grid transformation (originating
from the method by which the modulating grid was fabricated in 46 × 168 scan fields—
see Volume 2) which was calibrated on ground, and used as input to the data reductions
as a matrix of calibration points, depending on the location of the star image on the grid
at the instant of observation.

Modulating grid: see main grid.

Modulation phase: the phase of the first harmonic in the five-parameter model which
increased cyclically from 0 to 2π radians as the satellite rotated. The value of the
modulation phase at a specific instant was derived by the process known as ‘phase
extraction’.

Nominal scanning law: see scanning law.

Observational frame: the basic time unit of 32/15 s, also referred to as T4, used to fit the
photon counts to the five-parameter model.

Off-line tasks: a collective name given to those reduction tasks which strictly did not fall
within the main (three-step) reduction chain: the photometric reductions, the double
star and minor planet treatment, simulations and instrument modelling, calibrations
and first-look activities, and the link to the quasi-inertial reference systems.

On-ground attitude determination: see attitude determination.

Optical transfer function: the description of the modulation coefficients and the phase
differences between the first and second harmonics in the modulated signal for the main
grid, as a function of field of view, position in the field of view, and star colour.

Orbital period (of the Hipparcos satellite): the interval between perigee passages. In its
geostationary transfer orbit, the orbital period of the Hipparcos satellite was approxi-
mately 10.7 hours.

Ordinate: the angular distance of a star from the reference great circle, reckoned positive
towards the great-circle pole. See also abscissa.

Parallax: the Hipparcos and Tycho Catalogues provide the annual parallax, π, from which
the coordinate distance is (sin π)−1 astronomical units, or with sufficient approximation,
π−1 parsec if π is expressed in arcsec. The parallax determinations are trigonometric, ab-
solute (in the sense that the parallax determination of a given star is not dependent upon
either the parallaxes, or assumptions concerning the parallaxes, of other stars—including
stars close by on the sky), and independent of any previous distance determinations.
Analyses place a limit on the global parallax zero-point offset of less than 0.1 milliarcsec,
and give confidence that the published standard errors are a reliable indication of their
true external errors.

Partially observable star: a concept defined in the context of the star observation strategy
(see Volume 2) indicating that a star was in the process of entering or leaving the
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field during a given observation frame (of duration T4 = 2.133 . . . s). Bright partially
observable stars were included in the star observations in order to improve the attitude
determination during the observation frame.

Passive star: see active star.

Phase extraction: the derivation of phases from analysis of the image dissector tube data,
by fitting of the experimental data to the three- or five-parameter signal model.

Position: the Hipparcos and Tycho Catalogues provide the barycentric coordinate direc-
tion, specified as right ascension, α, and declination, δ .

Precision: the uncertainty of a measured quantity due to accidental errors. The term
‘precision’ is often used synonymously with ‘internal (or formal) standard error’ as
derived e.g. from a least-squares solution (cf. accuracy).

Primary grid: the main modulating grid of 2688 parallel slits, separated by 8.2µm, or
1.2074 arcsec on the sky, located at the focal surface of the combined field of view of
the telescope, on which the main Hipparcos measurements were based.

Primary reference star: a star selected to be included in the sphere solution due to its
appropriate properties (bright, single, etc.). These stars (which numbered around
40 000) defined the relative origins of the 2000 or so reference great circles generated
throughout the mission. The secondary reference stars were subsequently fitted into
the resulting reference system.

Programme star: one of the stars (approximately 120 000) contained in the Hipparcos
Input Catalogue, and observed by the main detector. The observing programme was
defined before launch and remained essentially fixed for the entire mission duration.

Proper motion: the Hipparcos and Tycho Catalogues provide the rate of change of the
barycentric coordinate direction expressed as proper motion components µα� = µα cos δ
and µδ , in angular measure per unit time (milliarcsec per Julian year).

Real-time attitude determination: see attitude determination.

Reference great circle: a reference plane chosen to correspond to the mean scanning
motion of the satellite during several hours, and signifying also the collection of obser-
vations during this time-interval. In practice the maximum duration of observations
constituting the reference great circle was limited by the satellite’s orbital period, cor-
responding to about 5 great-circle scans, or about 10.67 hours—typical lengths of the
reference great circles were somewhat shorter. Star abscissae were projected onto the
reference great circle (through a knowledge of the three-axis attitude of the satellite) and
solved for during the great-circle reductions.

Scan field: elements of the mosaic in which the main grid and star mapper grids were
manufactured. The main grid consisted of 46 × 168 scan fields, and the star mapper
grids of 102 scan fields on either side of the main grid (68 for the chevron slits and 34
for the vertical slits). See also medium-scale distortion.

Scanning law: the three-axis attitude of the satellite, determining where the two fields
of view of the satellite were directed, at any instant of time. The nominal scanning
law is a deterministic scanning motion which defined the required satellite attitude. By
comparing the target and actual attitude on-board, by means of the star mapper transits,
corrections to the actual attitude were effected by means of regular (roughly every 400 s)
three-axis gas jet actuations, which brought the attitude back to its target one. In this
way, deviations between the actual and nominal scanning law were kept to within about
10 arcmin throughout the mission.

Secondary reference star: see primary reference star.

Set solution: an alternative name given to the great-circle reduction process.
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Small-scale distortion: the component of the field-to-grid transformation (originating from
the method by which the modulating grid was fabricated—see Volume 2) which was
uncalibrated on the ground, and uncorrected in orbit (see also large- and medium-scale
distortion). Typically, the small-scale distortion resulted in a negligible degradation on
the phase measurements.

Solar system objects: the 48 minor planets and three natural satellites observed in the
Hipparcos programme.

Sphere solution: the second step of the ‘three-step method’, which combined the great-
circle data for a number of reference stars and determined the ‘great-circle zero-points’.
These zero-points defined the interconnection between the reference great-circle refer-
ence systems leading to the global Hipparcos reference system.

Star mapper: the detection chain (including aperiodic vertical and inclined grids, relay
optics and detectors) located on each side of the main grid (two were provided for
redundancy reasons). The prime purpose of the star mapper was to provide three-
axis (hence, the inclined slits) attitude information to the satellite, in real-time, on the
basis of the time of transits of some 40 000 bright reference stars distributed over the
sphere. It was also used for the Tycho experiment, and included, for this reason, two
photometric channels (BT and VT ), each sampled by their own photomultiplier tube
detectors. In contrast to the detector used for the main field of view, the star mapper
detectors sampled the entire signal generated simultaneously by star transits over the
entire star mapper grid.

Star mapper grid: the arrangement of four vertical and four inclined grids, arranged
aperiodically at one side of the main grid, used for the satellite real-time attitude deter-
mination and the Tycho measurements.

Star observing strategy: the on-board algorithm which determined the cycle of star ob-
servations on the main grid, on the basis of the satellite attitude, and the information
contained in the programme star file.

Telemetry format: 32/3 = 10.66 . . . s = 5 observation frames (= 256 telemetry frames).

Telemetry frame: 1/256 of a telemetry format (= 25 star mapper samples = 50 image
dissector tube samples = 1/24s).

Three-parameter model: a constrained form of the image dissector tube signal model,
involving only three unknown quantities (as compared with the more general five-
parameter model) and which was valid for single stars.

Three-step method: the break-down of the (directly) intractably large Hipparcos reduc-
tion problem (to estimate simultaneously more than 600 000 astrometric parameters
along with large numbers of additional satellite attitude unknowns and time-dependent
geometrical calibration terms) in three partial steps. The first step is the ‘great-circle
reduction’, the second step the ‘sphere solution’ and the last step the ‘astrometric pa-
rameter determination’.

Transverse: a prefix used for quantities measured in a direction normal to the scan
(i.e. along the slits of the main grid), as opposed to the longitudinal (along-scan)
direction—e.g. transverse field angle.

Tycho magnitudes (BT , VT ): the magnitude system defined by the Tycho instrument,
in reasonable correspondence with the usual Johnson B and V magnitude system.
Transformation equations between the various systems are provided.

Veiling glare: phase perturbations on the measurements of programme stars on the main
grid in the presence of nearby bright stars, from either field of view, caused by the profile
of the image dissector tube response.
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Vertical slits: part of the star mapper grid consisting of four slits perpendicular to the
scanning motion of the satellite, used for the determination of the along-scan attitude
angle. See also inclined slits and attitude determination.

Viewing directions: the two directions in space towards which the telescope pointed at a
given time. The directions refer, more precisely, to the centres of the two fields of view
(preceding and following): the angles between them is known as the basic angle.

Viewing plane: the plane containing the two viewing directions. Its intersection with the
celestial sphere is known as the viewing great circle or instantaneous scanning great
circle.

VT : see Tycho magnitudes.
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NOTATION

It was not practicable to employ a completely uniform system of notations throughout
this Volume. The reasons for this were partly historical—certain conventions had devel-
oped in the Hipparcos literature and documentation and could not easily be disregarded.
There were also practical considerations: strict observance of a general system, if at all
possible, would often lead to a profusion of suffixes and mathematical accents obscur-
ing the particular relationships relevant in a given context. Nevertheless, an attempt
was made to simplify the cross-referencing of the various chapters by using, as far as
practicable, similar notations for quantities with a similar meaning. This Appendix lists
a number of notations that had a more than ‘local’ usage, or at least a meaning outside
the specific context in which they were introduced.

Throughout this Volume, the prime symbol (0) associated with matrices and vectors
denotes transposition. In particular, for vectors, it denotes scalar multiplication: thus
a0b is equivalent to the scalar product of a and b. The angular brackets, when applied
to a vector, denote normalisation of the vector length: thus hai = ajaj−1 is a unit
vector in the direction of a. For scalar quantities the angular brackets denote averaging.
The asterisk has a special meaning in entities like µα� and σλ�, where it signifies an
implicit cosine factor, i.e. µα� = µα cos δ and σλ� = σλ cos β. Suffixes F, N and H are
often employed to distinguish quantities related to FAST, NDAC, and the Hipparcos
Catalogue. Similarly p and f may denote the preceding and following fields of view, while
obs and calc usually refer to observed (derived from data) and calculated (theoretical or
fitted) quantities.
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A the astronomical unit (Table 12.1)

Ak in double-star treatment: same as Ik
a1 . . . a5 (1) the astrometric parameters as components of the vector a

(2) harmonic coefficients of the main detector signal (FAST)

ap
i j , af

i j instrument parameters for field-to-grid transformation in preceding and following

field (FAST)

a (1) vector of the (five) astrometric parameters of a star, α , δ , π, µα�, µδ , or their

differential corrections ∆α�, etc.

(2) vector of signal parameters a1 . . . a5 (FAST)

α (1) right ascension

(2) solar phase angle for solar system object

α0 (1) barycentric right ascension at catalogue epoch T0

(2) geocentric right ascension of the reference point for an observation of a solar

system object

α j in double star treatment (FAST): spatial frequency of the grid in the direction

of increasing right ascension during transit j (cf. fx , fy , fp)

αR right ascension of reference great circle pole

B magnitude in the (Johnson) UBV photometric system

B − V colour index in the (Johnson) UBV photometric system, also written (B − V )J

BT Tycho magnitude in the ‘blue’ spectral band of the star mapper

b galactic latitude

b1 . . . b5 harmonic coefficients of the main detector signal

bp
i j , af

i j chromatic instrument parameters for field-to-grid transformation in preceding

and following field (FAST)

b (1) general barycentric position

(2) vector of signal parameters b1 . . . b5

bE barycentric position of the Earth

bS barycentric position of the Sun

β ecliptic latitude

βR ecliptic latitude of reference great circle pole

β1 . . . β5 parameters of the main detector five-parameter model (NDAC)

β j in double star treatment (FAST): spatial frequency of the grid in the direction

of increasing declination during transit j (cf. fx , fy fp)

� vector of the signal parameters β1 . . . β5 (NDAC)

C (centred) colour index, e.g. (V − I ) − 0.5

Cj , S j coefficients of the 6th harmonic of abscissa error for reference great circle j

c speed of light (Table 12.1)

c j abscissa zero point correction for reference great circle j

ci j chromatic instrument parameters for field-to-grid transformation (NDAC)

D in double star treatment: a measure of the ‘difficulty’ of resolving a double star

d1 . . . d4 relative positions of the four slits in a star mapper slit group

di j chromatic instrument parameters for field-to-grid transformation (NDAC)

d vector of instrument parameters in great-circle reduction

δ declination

δ0 (1) barycentric declination at catalogue epoch T0

(2) geocentric declination of the reference point for an observation of a solar

system object

δR declination of reference great circle pole

δG medium-scale distortion in the G coordinate on the main grid

δg small-scale distortion in the G coordinate on the main grid

∆G (1) (large-scale) distortion in the G coordinate on main grid or star mapper

(2) in great-circle reductions: observed minus calculated grid coordinate
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(3) in double-star treatment: component separation projected on grid coordinate

∆H distortion in the H coordinate on the main grid

∆Hp (1) magnitude difference in a double star (also written ∆m)

(2) difference Hpac − Hpdc, indicator of duplicity or an extended object

∆m magnitude difference in a double star (also written ∆Hp)

∆γ0, ∆γ1 instrument parameters representing corrections to the nominal basic angle (FAST)

∆φ difference in modulation phase between components of double star

E residual sum of squares in great-circle reduction

E extragalactic reference frame, [ xE yE zE ]

e noise (error) vector in great-circle reduction

� (1) obliquity of ecliptic (Table 12.1)

(2) ‘cosmic error’ in stochastic solution

(3) a priori correction of relative intensity in photometric calibration (FAST)

(4) general noise term

ε0x , ε0y , ε0z equatorial components of the orientation vector " at the reference epoch T0

" orientation difference between two reference frames, in particular the provisional

Hipparcos reference frame with respect to the extragalactic reference frame

η (1) longitudinal field angle, see η, ζ

(2) local rectangular coordinate on sky, ~ ∆δ

(3) general noise term

η, ζ field angles along and normal to the nominal scan direction

η0 reference position for star mapper slit group (FAST)

F (1) statistical index indicating modulation of the main detector signal

(2) statistical index for great-circle reductions

F35 statistical index indicating non-single star (FAST)

f field of view index (±1 for preceding/following field)

fx , fy fp derivatives of modulation phase with respect to α�, δ , π

g star mapper slit-group index (0, ±1 for vertical, upper/lower inclined slit groups)

g0 reference modulation phase on main grid

g1, g2 modulation phases on main grid of first and second harmonic

gi j instrument parameters for field-to-grid transformation (NDAC)

gα�, gδ acceleration components in α and δ of binary photocentre from orbital motion

g (1) general geocentric vector

(2) vector of gyro readings (NDAC)

g0 geocentric position of Hipparcos

G grid coordinate on the main grid

GE geocentric gravitational constant (Table 12.1)

GS heliocentric gravitational constant (Table 12.1)

Γ generic global parameter in sphere solution

� vector of global parameters in sphere solution

γ (1) basic angle of the Hipparcos instrument (' 58� 000 3000)

(2) parametrised post-Newtonian (PPN) parameter of the heliocentric metric

(3) in double-star treatment: local position angle of scan

H hypothesis for statistical testing

H coordinate perpendicular to the nominal scan direction

H Hipparcos reference frame, [ xH yH zH ]

Hp magnitude in the Hipparcos main detector photometric system

Hpac, Hpdc Hp magnitudes derived from the modulated (AC) and mean (DC) detector signal

Hpmax Hp magnitudes of variable star at maximum luminosity

Hpmin Hp magnitudes of variable star at minimum luminosity (note: Hpmin ≥ Hpmax)

hi j instrument parameters for field-to-grid transformation (NDAC)

h0 heliocentric position of the Hipparcos satellite
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hE heliocentric position of the Earth

I magnitude in Cousins’ system; see V − I

Ib background count rate (intensity) of the main detector

Ib,c background count rate (intensity) of the star mapper in channel c = BT or VT

Ik expected count (intensity) for sample k of the main detector

Ik,c expected count (intensity) for sample k of the star mapper in channel c = BT or VT
Is mean stellar count rate (intensity) of the main detector

Is,c peak stellar count rate (intensity) of the star mapper in channel c = BT or VT
Ixx . . . Izz elements of the inertia tensor I in body coordinates

iG longitudinal scan field index (main grid)

iH transverse scan field index (main grid)

I inertia tensor of the Hipparcos satellite

ι imaginary unit =
p

−1

κ (1) condition number of least-squares equations

(2) correction factor for photometric standard errors of bright stars

l galactic longitude

λ ecliptic longitude

λR ecliptic longitude of reference great circle pole

λ� ecliptic longitude of the Sun

M in double-star treatment: same as M1

M1, M2 modulation coefficients for the first and second harmonics of the main detector signal

µα� proper motion in right ascension, including cos δ factor

µβ proper motion in ecliptic latitude

µδ proper motion in declination

µλ� proper motion in ecliptic longitude, including cos β factor

N in double-star treatment: same as M2

N (0, 1) normal (Gaussian) distribution with mean value zero and unit variance

Nk photon counts for sample k of the main detector

Nk,c photon counts for sample k of the star mapper in channel c = BT or VT
N vector sum of external torques acting on the Hipparcos satellite

Ni binned photon counts of the main detector

ν in statistical tests: the number of degrees of freedom

ν, ξ, Ω heliotropic angles describing the scanning law and instrument attitude (NDAC)

o ‘orbit number’, sequential numbering of perigee passages and data sets

ω (1) scan velocity of the grid on the sky (' 168.75 arcsec/s)

(2) angular frequency of main detector signal modulation (' 878 rad/s)

ω(x) influence function for robust estimation

ωx , ω y , ωz (1) components of instrument spin vector ! in body coordinates

(2) components of reference frame spin vector in equatorial coordinates

! (1) inertial spin (angular velocity) of instrument

(2) spin difference between two reference frames, in particular the spin of the

provisional Hipparcos reference frame with respect to the extragalactic reference frame

Ω heliotropic spin phase (NDAC); see ν, ξ, Ω
P period of photometric variability

P unit vector towards the abscissa origin on the reference great circle

pk grid modulation phase for sample k relative to the mid-frame time

p unit vector in the local direction +α , see [ p q r ]

[ p q r ] normal triad at r relative to the equatorial or ecliptic frame

π trigonometric parallax

Φ(b) normalised galactic luminosity profile (FAST)

φ (1) attitude angle; see ψ, θ, φ

(2) modulation phase of first harmonic of main detector signal (also written g1 and a3)
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ψ (1) attitude angle; see ψ, θ, φ

(2) modulation phase of second harmonic of main detector signal (also written a5)

ψ, θ, φ attitude angles for instrument in reference great-circle frame

Ψ(%) attenuation profile of the instantaneous field of view

q unit vector in the local direction +δ , see [ p q r ]

Q unit vector towards the point v = 90� on the reference great circle

Qy in great-circle reductions: variance-covariance matrix of the vector y

r (1) ordinate of a general direction in the reference great-circle frame

(2) in double-star treatment: intensity ratio of components

r1 . . . r3 parameters of the main detector three-parameter model (NDAC)

r general vector or direction; in particular the barycentric coordinate direction to an

object, see [ p q r ]

R ratio of modulation coefficients, M2 /M1 or N /M

Rq single-slit response function of the star mapper

R reference great circle triad [ P Q R ]

R unit vector defining the pole of the reference great circle

Ri 3 × 3 matrix describing a rotation around axis i

ρ (1) general statistical correlation coefficient

(2) angular diameter of solar system object

ρδ
α� (etc.) correlation coefficients among the astrometric parameters of a star

% angular separation of stars, in particular in double stars

S0 nominal scale of the field-to-grid transformation (= 170749.01 slits/rad)

S j see Cj , S j
s grid step (' 1.2074 arcsec per slit interval)

s general satellitocentric vector

σx (estimated) standard error of the estimated value of the generic variable x

t general time variable, in particular relative to a given reference epoch

T (1) astronomical time, in particular Terrestrial Time (TT)

(2) statistical index indicating failure of five-parameter model of main detector signal

T0 reference epoch of the Hipparcos Catalogue, T0 = J1991.25(TT)

T1 main detector sampling interval (1/1200 s)

T2 main detector repositioning period (8T1 = 1/150 s)

T3 observing schedule interlacing period (20T2 = 2/15 s)

T4 observation frame period (16T3 = 32/15 = 2.133 . . . s)

τ star mapper transit time

Θ1 . . . Θ3 Tait-Bryan angles used in real-time attitude determination

θ (1) position angle of secondary component in double star

(2) position angle of scan across a solar system object

(3) attitude angle; see ψ, θ, φ

θp, θ f transverse attitude components in preceding and following field of view (NDAC)

� vector for the orientation error of the reference great-circle frame R
U magnitude in the (Johnson) UBV photometric system

U (x) complex visibility of an extended object in the scan direction

u unit weight error (u2 = unit weight variance)

ū isotropic coordinate direction to an object

û natural direction to an object

V magnitude in the (Johnson) UBV photometric system

V − I colour index in Cousins’ system; also written (V − I )C

VR radial velocity

VT Tycho magnitude in the ‘visual’ spectral band of the star mapper

v abscissa of a general direction in the reference great-circle frame

vq local scan velocity across a star mapper slit group
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v� abscissa (in R) of the Sun

V barycentric velocity of the Hipparcos satellite

w relative weight of the second harmonic of the main detector signal (FAST)

w, z field coordinates along and normal to the nominal scan direction

w̄, z̄ normalised field coordinates for field-to-grid transformation (NDAC)

w unit vector in scanning direction

χ2 general goodness-of-fit statistic

X , Y relative Cartesian coordinates of secondary component in double star

x, y field angles (FAST)

x̄, ȳ normalised field angles for field-to-grid transformation (FAST)

x, y, z body coordinates fixed in Hipparcos satellite, along axes x, y, z

x in great-circle reductions: vector of unknowns

x, y, z (1) orthogonal axes of the equatorial reference frame

(2) orthogonal axes fixed in instrument or satellite

xE yE zE orthogonal axes of the extragalactic reference frame E
xH yH zH orthogonal axes of the Hipparcos reference frame H
ξ (1) local rectangular coordinate on sky, ~ ∆α cos δ

(2) revolving angle (~ 43�); see ν, ξ, Ω
Y see X , Y

y see x, y

y (1) axis in equatorial or instrument frame; see x, y, z

y (2) in great-circle reductions: vector of observations

Z test statistic for the distribution of epoch photometry

z transverse field coordinate; see w, z

z direction of telescope nominal spin axis; see also x, y, z

ζ (1) transverse field angle; see η, ζ

(2) radial velocity divided by distance, ζ = VRπ /A
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Arenou, F., Lindegren L., Frœschlé M., Gómez A.E., Turon C., Perryman M.A.C., Wielen
R., 1995, A&A, 304, 52.

Argue, A.N., 1989, in Perryman, M.A.C., et al. 1989, The Hipparcos Mission, ESA SP-
1111, Volume II, 199.

Argue, A.N., 1991, in Hughes, J.A., Smith, C.A., Kaplan, G.H. (eds.) Proc. IAU Coll. 127,
Reference Systems. US Naval Observatory, Washington, 63.

Argue, N., Bunclark, P.S., Irwin, M.J., Lampens, P., Sinachopoulos, D., Wayman, P.A.,
1992, MNRAS, 259, 563.

Argue, A.N. et al., 1984, A&A, 130, 191.

Arias, E.F., Charlot, P., Feissel, M., Lestrade, J.-F., 1995, A&A, 303, 604.

Baarda, W., 1968, Neth. Geodetic Commission, Publ. on Geodesy. Vol. 2, 5.

Baarda, W., 1973, Neth. Geodetic Commission, Publ. on Geodesy. Vol. 5, 1.

Barraclough, D.R., 1985, Pure Appl. Geophysics, 123, 641.

Bastian, U., 1985, in Kovalevsky J. (ed.) Proc. Marseille Coll., Processing of Scientific Data
from Hipparcos, Second FAST Thinkshop, 295.
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Söderhjelm, S., Evans, D.W., van Leeuwen, F. & Lindegren, L., 1992, A&A, 258, 157.
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Aberration, stellar 223-228, 309

Abscissae 497

—, zero points 195

ac magnitude 65, 278, 497

Accelerations, satellite 140, 223

Accuracy, see standard errors

Active stars 152, 169, 497

Ageing of optics 279

AGK3R Catalogue 29

Analogue mode 50

Announcements of Opportunity xiii, 2

Astrolabe observations 432

Astrometric binary 497

Astrometric model 485

Astrometric parameters 35, 195

—, determination 497

—, in FAST 212-215

—, in NDAC 211-212

Astrometric programmes 27

Astrometry, comparisons with ground 415-432

—, future prospects 483-495

Astronomical unit 229

Astrophysical programmes 27

Attitude determination 497

—, FAST 112

—, NDAC 99

—, real-time 105

Attitude model 486

—, FAST 112

—, NDAC 107

Attitude reconstruction 97-123

—, principles 98

Attitude smoothing 148, 153-154, 158, 498

Attitude, satellite physics 100

B-splines smoothing 148, 167

Background 280

—, determination in FAST 82-87

—, determination in NDAC 80-82

—, intensity over orbit 86

—, levels 16-17

Barycentric velocity 128

Basic angle 42, 498

—, calibration 112

Beam-combining mirror 498

Calibrations 15, 37, 39, 42

—, attitude 123-146

Catalogue content 27

CCD observations 478

CDS Strasbourg 23-24

Celestial directions 221-232

CHARA Catalogue 472-481

Cholesky factorisation 151

Chromaticity 201, 279, 332-333

—, in sphere solution 329

Coils current calibration matrix 48

Comparisons 9-10

—, attitude 119

—, attitude reconstruction 37

—, double star reductions 37

—, great-circle reduction 37

—, image dissector tube 37

—, orbital parameters 37

—, photometric reductions 37

—, sphere reconstruction 37

—, sphere solutions 343

—, star mapper reductions 37

—, variability investigations 37

Completeness 25

Constant stars 456

Constants, fundamental 229

Contents, catalogue 27

Coordinate direction 224–25

—, of minor planet 309

Correlation coefficient, parallax differences 363

Cosmic error 378-380

Cousins’ system, see photometry
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Cramér-Rao limit 498

Data analysis, organisation 6-7

—, organisation in FAST 38-44

—, organisation in NDAC 44-45

Data analysis, overview 33-45

Data distribution 5

Data gaps 19

Data management and command system, see FAST

Data quality 13

Data return 20-21

Data rights 12

Data sampling 73

Data snooping 167

dc magnitude 278, 498

DE200, see solar system ephemerides

Decompression of photon counts 51

Delays, satellite/ground 128

Detector thermal noise 280

—, non-linearity 51

—, Poisson noise 51

—, see also image dissector tube/star mapper

Direction, coordinate 224

—, natural 225-227

—, proper 224-228

—, celestial 221-232

—, comparisons 226, 232

Distortion, large scale 175

—, medium scale 175

Documentation Working Group 11

Double and multiple stars, see double stars

Double stars 43, 233-272, 471-481

—, absolute astrometry 250

—, analysis 34-36

—, annex 239, 268

—, case history files 252-256

—, CCD observations 268

—, comparison FAST/NDAC 270

—, comparisons 263

—, cross-identifications 473

—, detection 234

—, discrepant solutions 267

—, global fitting method 250

—, imaging approach 268

—, neutral point 265

—, new systems 262

—, photometric solution 243

—, pre-launch simulations 258

—, relative astrometry 240, 472, 478

—, scanning angle functions method 248

—, separations 246

—, speckle 243

—, systematic differences 268

—, verification of 471-481

Earth ephemeris 229

Earth magnetic field, see torques

Earth-Moon barycentre 221

Eclipse duration 126

Ecliptic, obliquity 195, 229

Ephemerides, solar system 221-232

—, satellite 128

Ephemeris, Earth 221, 229

—, Moon 221

—, satellite 223

—, Sun 222

Epoch photometry 51, 498

—, annex 273, 278, 295-296

—, annex extension 285

Error sources 6

ESOC 3, 13, 33

ET, see time

Europa 305

Evolution, FAST instrument parameters 186-191

—, NDAC instrument parameters 180-185

—, of instrument parameters 173-194

Exposure factor 126

External torques, see torques

Extragalactic frame 387

Extragalactic reference system 25

Extragalactic system link 387-413

—, see also link

Faint stars 280

FAST Consortium 1-2

—, data management and command system 39-40

—, Software Advisory Group 39

Field coordinates 174, 498

Field of view 498

Field transit 499

Field-to-grid transformation 175, 499

First look 39, 41, 223, 499

Five-parameter model 52, 499

Five-parameter solution, statistical tests 66

FK5 27, 29, 415-416

—, difference with Hipparcos 419-421

—, epoch transformation 418

—, global rotation 417

Frame, see telemetry/observation frame

Fully observable stars 499

Fundamental constants 229

Future prospects 483-495

GAIA 483-485
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GCTSP, comparison with Hipparcos parallaxes 439

General parameters 499

General Relativity 202, 225, 231, 366

Geneva system, see photometry

Geocentric gravitational constant 226, 229

Geometric smoothing 499

Global content 27

Global iterative solution 488, 490-494

Global parameters, sphere solution 201

Global reduction algorithms 6

Glossary 497

Goldstone 14, 129

Goodness-of-fit statistic 378

Gravitational constant 226

—, geocentric 229

—, heliocentric 229

Gravitational deflection 202, 226-228, 309-310, 366

—, FAST 337

—, NDAC 331

Gravity gradient torques, see torques

Great circles 499

—, accuracy 157

—, comparisons 168-171

—, first harmonic 170

—, Fisher test-statistic 167

—, instrument parameters 163

—, least-squares residuals 164-168

—, least-squares solution 150

—, minimum norm solution 154

—, observation equations 148

—, projection error 161

—, rank deficiency 154

—, reductions 35, 147-171, 499

—, residuals 192-193

—, second harmonic 170

—, slit errors 151

—, statistical tests 152

—, validation 152

—, variance of the star abscissae 157

Grid 47

—, coordinates 174, 499

—, period 50, 233, 499

Grid-step ambiguity 499

—, errors 211, 500

—, inconsistencies 213

Ground station coverage 14, 18

Ground-based comparisons, 415-432

—, see also FK5/PPM

Gyros, calibration 131-135

—, de-storage 18, 145

—, drifts 15, 132

—, failures 20

—, heaters 132

—, orientations 15

—, torques 104

Heliocentric gravitational constant 226, 229

Heliotropic angles 106-107, 500

Hertzsprung-Russell diagram 445

Hipparcos Input Catalogue 23-31

—, candidate stars 28

—, selected stars 28

Hipparcos magnitude 500

Hipparcos Science Team xiii, 2-4

Hp magnitudes 273-275, 465, 500

Hubble Space Telescope 25, 27

—, see also link

Iapetus 305

ICRS, see International Celestial Reference System

Identification errors 31

Image dissector tube, analogue mode 50

—, analysis 47-72

—, analysis, FAST flow chart 56

—, binning techniques 61-62

—, comparisons 72

—, modulation phases 57

—, phase difference 70

—, phase model 59

—, photon counting mode 50

—, sampling period 127

INCA Consortium 1-2

Inclined slits 77

Inertia tensor 101, 137-145

Inertial frame 410

—, see also link

Infinitely overlapping circles 219, 364

Input Catalogue, see Hipparcos Input Catalogue

Input Catalogue Consortium, see INCA

Input data stream 33

Instantaneous field of view 48, 500

Instrument calibration 15

Instrument model 487

Instrument parameters, evolution 173-194

—, evolution (FAST) 186-191

—, evolution (NDAC) 180-185

—, geometrical 174

—, relation FAST/NDAC 177-179

Intensity transfer function 500

Interlacing period 127

Intermediate astrometric data 385

International Celestial Reference System 387-388,

415, 500

International Earth Rotation Service 388
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IRS Catalogue 27, 29

Johnson system, see photometry 464

Julian Year 500

Kourou 14, 128

Large-scale distortion 175-176, 500

Light bending, see gravitational deflection

Link to extragalactic system 387-413

—, 3C273 (HIP 60936) 409

—, Bonn link solution 398

—, catalogue of faint stars (KSZ) 397

—, Earth orientation parameters 391, 399, 403

—, equations 389

—, graphical summary 411

—, Heidelberg analysis 397

—, Hubble Space Telescope 396

—, inertial frame 410

—, Lick NPM fields 393

—, Lick proper motion program 396

—, Magellanic Clouds 409

—, MERLIN 394

—, optical determination of the orientation 402

—, orientation vector 400

—, photographic catalogues referred to galaxies 402

—, Postdam solution 399

—, quasars 395

—, radio stars used 393

—, radio techniques 402

—, results for orientation vector 411

—, results for spin vector 411

—, Schmidt telescopes 395

—, solution for orientation 401, 407

—, solution for orientation and spin 408

—, solution for spin 401, 407

—, solution results 405-408

—, spin vector 400

—, stars 29

—, stellar kinematics 410

—, synthesis of solutions 403

—, verification 409

—, VLA 395

—, VLBI observations 392-394

—, Yale analysis 396

—, Yale/San Juan SPM 393, 398

LMC, see Magellanic Clouds

Lorentz transformation 225

Lunar occultations 29

Magellanic Clouds 25, 27, 30, 388, 434, 441

Magnetic moments, of satellite 140-143

Magnitude effects, in sphere solution 355

Magnitude limit 24-25

Magnitude scale 464

Main grid 501

Mark III interferometer 427-429

Matra Marconi Space 4

Medium-scale distortion 78, 175-178, 501

Memorandum of Understanding 5

Merging 369-385

—, abscissa residuals 370

—, auto/cross-correlation functions 382

—, correlation between abscissae 374

—, correlation coefficient 369

—, correlation coefficient FAST/NDAC 376

—, cosmic error 378-380

—, covariance matrix 369

—, goodness-of-fit statistic 378

—, intermediate astrometric data 385

—, least-squares solutions 375

—, scaling corrections 372

—, solutions 342

—, solutions of non-single stars 377

—, stochastic model 378

—, unit-weight errors 373

Meridian circle observations 431

Metric 224

—, PPN 202, 331, 483

—, see also General Relativity

—, see also gravitational deflection

Micrometeoroids 18, 105, 145

Milky Way 283-284

Minor planets 43, 222, 305-321

—, apparent diameter 308

—, aspect data 320-321

—, brightness variations 318

—, comparison FAST/NDAC 314

—, coordinate direction 308

—, magnitude aspect 317

—, observed 319

—, proper direction 308

—, solar phase angle 317

—, Tholen’s classification 319

Mission products 9

Modulation coefficients 42

Modulation phases 57, 177

Multiple stars, see double stars

Natural direction 225-227

NDAC Consortium 1-2

—, organisation of data reductions 44

Negative parallaxes 341, 349

—, in FAST 347
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—, in NDAC 345

NGC 188: 25

Nominal scanning law 19, 501

Normal place 311

Notation 505-510

NPZT Catalogue 29

Obliquity of ecliptic 195, 229

Observation frame 127, 501

Observing programme 5, 23-31

Observing strategy 50

Occultations 16, 21, 221

Odenwald 14

On-board time 127-131

—, see also time

Open clusters 27, 442

Operational phase, routine 16

Operations time-line 13-21

Optical transfer function 501

—, calibration 68

Optics, ageing 279

—, chromatic dependence 279

Orbit 123

—, eccentricity 124

—, period 124, 501

Organisation of data analysis 6-7

—, FAST 38-44

—, NDAC 44

Oscillator frequency 127

Overview of data analysis 33-45

Parallaxes 501

—, see also negative parallaxes

—, see also USNO/VLBI/Yale

—, comparison Hipparcos/USNO 435

—, differences NDAC/FAST 358

—, FAST sphere solutions 347

—, NDAC sphere solutions 345

—, unit-weight error 441

—, verification 433-445

—, zero point 353, 366, 434, 441

Partially observable stars 50, 501

Passive stars 502, 152, 169

Periods, variable stars 454-456

Perth 14, 129

Phase A study 2

Photocentre 234

Photometric calibrations 36

—, FAST 282

—, NDAC 282

Photometric parameters 65

Photometric reductions 34

Photometric system 274-277

Photometric transformation 276

Photometric treatment 273-304

Photometry 43, 442

—, ageing corrections 287

—, background model (NDAC) 281

—, bit settings 296

—, brightest stars 465

—, colour correction 290

—, constant stars 456

—, correlations FAST/NDAC 294

—, Cousins’ system 274

—, data properties 297

—, dependence on ecliptic latitude 303

—, distribution of unit-weight variance 451

—, distribution over time 298

—, errors on medians 301

—, field distortion corrections 289

—, Geneva system 274, 464

—, Johnson system 274, 464

—, magnitude corrections 291

—, magnitude homogeneity 466

—, magnitude scale 464

—, merging 292

—, number of observations 298

—, parasites 290

—, parasitic transit detections 290

—, passband 274

—, precision 466

—, residuals (Geneva – Hp) 468

—, residuals (Johnson – Hp) 468

—, see also epoch photometry

—, solar system objects 315

—, stability of system 456

—, sun-pointing observations 296

—, timescale 278

—, transits 303

—, unit-weight standard errors 302

—, validation 447-470

—, Walraven system 461

—, zero-point corrections 287

Photon counting mode 50

Photon counts 34

Planetary satellites 305-321

Position 502

—, improvement 341

PPM Catalogue 421-427

—, difference with Hipparcos 424-425

—, global rotation 422

—, regional differences 423

PPN, see metric

Pre-launch preparations 2
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Primary reference stars 203, 502

Products of mission 9

Programme star 502

Proper direction 224-228

—, of minor planets 308

Proper frame 225

Proper motions 502

—, FAST/NDAC differences 357

—, improvement 341

Proposals 25

Pseudo-colour 288

Quality flag 75

Quasar, 3C273: 388

Radial velocities 11

Radio stars 29

Rank deficiency 195, 215

—, numerical experiments 217

Real-time attitude determination 105

Reduction algorithms, global 6

Reference great circles 148, 175, 502

Reference great-circle frame 198

Reference system 388

—, see also link

References 511-516

Refocusing 16

Results data base 9-10

Routine operational phase 16

Satellite, barycentric velocity 128

—, ephemerides 128

—, ephemeris 223

—, ground station delays 128

Scan field 502

Scan velocity 80

—, computation of 60

Scanning law 105, 502

Scanning velocity 57

Schmidt plates 429

Scientific proposals 24

Scientific selection committee 26

Secondary reference star 502

Sensitivity profile 49

Set solution 502

SIMBAD 23-25

Simulations 26

Single-slit response functions 76-77

Sixth harmonic 201

Sky distribution, differences in parallax 362

—, differences in position 360

—, differences in proper motions 361

—, mean number of abscissae 362

Slit errors 151

Slit spacings 77

Small-scale distortion 503

SMC, see Magellanic Clouds

Smoothing of attitude 148

Software Advisory Group, FAST 39

Solar phase angle, minor planets 317

Solar radiation pressure 139-140

Solar radiation torques, see torques

Solar system barycentre 222

Solar system ephemerides, DE200 309

Solar system objects 24, 222, 305-321, 503

—, photometry 315

Space time coordinates, see metric

Specifications 3

Speckle comparisons 243, 474-478

Spectral types 11, 30

Speed of light 229

Sphere solutions 35, 195-219, 503

—, absissa projection error 325

—, chromaticity 329, 332-333

—, colour 355

—, comparisons 343

—, convergence properties 215

—, designation 326

—, differences NDAC/FAST 356

—, direct 488

—, F12, F12R: 335

—, F18, F18.1: 335

—, F30: 336

—, F37, F37.1, F37.3: 336

—, FAST 334

—, FAST iterations 334

—, General Relativity 331

—, global iterative 488, 490-494

—, global parameters 201, 338

—, gravitational deflection 331, 337

—, grid-step errors 202

—, harmonic terms 330

—, large-scale differences 351

—, light deflection 331

—, magnitude effects 355

—, merging 342

—, metric 331

—, N0R: 327

—, N12, N12R: 327

—, N18: 328

—, N30: 328

—, N37.1: 328

—, N37.5: 328

—, NDAC 327
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—, observation equations 198-203

—, outliers 213

—, parallax zero points 353

—, principles of iterations 324

—, random differences 350

—, rank deficiency 215

—, rotation differences 343

—, small-scale differences 353

—, standard errors 337

—, successive 323-367

—, weighting scheme 213

SRS Catalogue 29

Standard errors

—, astrometric parameters 338

—, FAST 18 month solutions 339

—, FAST 30 and 37 month solutions 339

—, FAST parallaxes 347

—, FAST position 346

—, in FAST sphere solutions 342

—, in NDAC sphere solutions 341

—, NDAC parallaxes 345

—, NDAC positions 344

—, parallaxes 349

—, parallaxes versus magnitude 381

—, positions 348

—, proper motions 348

Star mapper 503

—, astrometry 93

—, background levels 17

—, comparisons 93

—, data analysis 73-95

—, geometric calibration 112

—, geometry 74

—, grid 42, 503

—, inclined slits 77

—, intensity determinations by NDAC 90

—, intensity estimation 91

—, medium-scale distortion 78

—, photometry 93

—, sampling period 127

—, signal 84

—, slit response 74

—, slit spacings 77

—, slits 73

—, transit signal 79

—, transit time 90-91

—, vertical slits 77

Star observing strategy 503

Statistical tests, five-parameter solution 66

Stellar aberration 223-228, 309

Stochastic model 378

Success, priority 1 stars 29

—, survey stars 29

Sun 222

Sun-pointing observations, photometry 296

Sun-pointing periods 19

Survey 24

Survey stars, success 29

SYBASE 10

Systematic differences, FAST/NDAC 365

Tait-Bryan angles 107

TDAC 1-2

TDT, see time

Telemetry format 127, 503

Telemetry frame 127, 503

Terrestrial Time (TT), see time

Thermal anomalies 20

Thermal variations 202

Three-parameter model 54, 503

Three-step method 503

Three-step reduction scheme 33

Thruster firings 18, 97, 135-137

Thruster torques 104, 136

Time 221-232

—, clock drift 129

—, ET 224

—, long-term variations on-board 130

—, short-term variations on board 131

—, TDT 224

—, Terrestrial Time (TT) 221, 224

—, units 127

—, UTC 128

Time-line, operations 13-21

Timescales, see time

Timing 123-146

Titan 305

Torques, calibration 137-145

—, earth magnetic field 100

—, external 100

—, gravity gradient 100-103

—, gyro-induced 104

—, magnetic 103-104, 140

—, solar radiation 100-102, 139-140

—, thruster 104, 136

TT, see time

Tycho 73

Tycho Catalogue reductions 37

Tycho magnitudes 503

Tycho, see also star mapper

USNO parallaxes 435

UTC, see time
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Van Allen belts 16, 280, 283-284

Variable stars 454-456

Veiling glare 49, 503

—, corrections 67

Verification, double star results 471-481

—, parallaxes 433-445

—, photometry 447-470

Vertical slits 77, 504

Viewing directions 504

Viewing plane 504

VLBI 27, 388

—, parallaxes 436

Walraven system, see photometry

Yale parallaxes 437

Zero point, parallax 434, 441, 353

Zodiacal light 280, 283-284


