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ABSTRACT

We present the results of realistic end-to-end simu-
lations of observations of nearby stars with the pro-
posed global astrometry mission GAIA, recently rec-
ommended within the context of ESA's Horizon 2000
Plus long-term scienti�c program. We show that
under realistic, if challenging, assumptions, GAIA
will be capable of surveying the solar neighborhood
within 100{200 pc for the astrometric signatures of
planets around stars down to V = 16 mag.

The wealth of results on the frequency and properties
of massive planets from GAIA observations will pro-
vide a formidable testing ground on which to confront
the most sophisticated theories on planetary forma-
tion and evolution.

Finally, we suggest the possibility of more sophisti-
cated probabilistic detection techniques which may
be able to detect the presence of Earth-like planets
around stars within 20 pc.

Key words: astrometry; stars: planetary systems;
GAIA.

1. INTRODUCTION

After many years of work, radial velocity searches
have �nally succeeded in �nding a number of Jupiter-
like planets orbiting nearby stars. Currently, there
exist about 10 candidate planets, all found by the
radial velocity technique around stars of solar type
or later (see e.g. Mayor & Queloz 1995, Marcy &
Butler 1996, Butler & Marcy 1996).

However, most candidate planetary systems identi-
�ed thus far seem to defy the prior expectations of
well-established theoretical explanations of the for-
mation and evolution of planets. Giant planets ap-
pear to have either very short periods (Mayor &
Queloz 1995), placing them well outside the freez-
ing zone where their formation was expected to take
place, or have high eccentricity (Cochran et al. 1997),
again in contrast with the planetesimal accretion
model.

Astrometric techniques are complementary to the ra-
dial velocity detection currently employed, in that,
for given mass, the sensitivity of astrometry and ra-
dial velocity techniques respectively increases and de-
creases with period. Thus, astrometric searches will
�nd preferentially planets at several AU from the cen-
tral star, with periods of several years, as opposed to
radial velocity searches which favor planets very close
to the central star.

A GAIA-like satellite, capable of extremely high pre-
cision astrometric measurements, will revolutionize
our knowledge of planetary systems and provide in-
valuable statistical information for theoretical forma-
tion models. With the baseline properties currently
envisioned (Lindegren & Perryman 1996), GAIA will
�nd more than 50 per cent of all Jupiter-like planets
orbiting stars within 100 pc with periods between
1 and 15 years, averaged over eccentricity, inclina-
tion, and orbital phase, as well as lower-mass plan-
ets around more nearby stars. The orbital elements
of many detected systems can be evaluated, includ-
ing mass and orbital radius, unlike radial velocity
detection which leaves signi�cant uncertainty in the
two quantities because of the inclination uncertainty.
If solar-like planetary systems are reasonably com-
mon, we can expect hundreds of thousands of detec-
tions, providing ample material to test both theoret-
ical predictions and detailed models. Even detection
of Earth-like planets could become viable in a statis-
tical sense, under appropriate circumstances.

2. DATA SIMULATION

The simulation code is adapted from that used by
Galligani et al. (1989) for the assessment of the as-
trometric accuracy of the sphere reconstruction in
the Hipparcos mission. We generate catalogs of sin-
gle stars randomly distributed on the sky; each run
produces a sphere of N stars, with the same value of
parallax, total proper motion, magnitude and color.

The simulations presented here are carried out within
the great-circle approximation (Lindegren & Ko-
valevski 1989). We neglect all di�culties related to
the reconstruction and calibration of individual great
circles, di�culties that would be more properly ad-
dressed within the context of a global model of the
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Table 1. Photon and total error for a single observation

(10 elementary exposures).

V mag Photon error Total error (�as)
(�as) (�b = 200 pm) (�b = 20 pm)

0 0.032 5.3 0.53

1 0.050 5.3 0.53

2 0.080 5.3 0.54

3 0.126 5.3 0.55

4 0.20 5.3 0.57

5 0.32 5.3 0.62

6 0.50 5.3 0.73

7 0.80 5.4 0.96

8 1.3 5.5 1.4

9 2.0 5.7 2.1

10 3.2 6.2 3.2

11 5.0 7.3 5.1

12 8.0 9.6 8.0

13 12.6 13.7 12.6

14 20.0 20.7 20.0

15 31.7 32.2 31.8

16 50.3 50.6 50.3

17 79.7 79.9 79.7

18 126.4 126.5 126.4

19 200.3 200.4 200.3

20 317.5 317.5 317.5

Galaxy, and consider as the basic observable the ab-
scissa  along the instantaneous great circle mea-
sured in each observation of each star. The accuracy
expected for individual measurements of  has been
discussed in Casertano et al. (1996), whose basic as-
sumptions we adopt here. The measurement error
expected for individual observations depends on the
instrumental parameters, here taken as in Lindegren
& Perryman (1996), on the magnitude of the star and
on the quality of the metrology control; the results
of Casertano et al. (1996) are reported in Table 1 for
reference.

The new element added here is that the instanta-
neous `true' position of each star includes the gravi-
tational perturbation (Keplerian motion) induced by
a single, non-luminous planetary mass orbiting the
star.

3. DETECTION OF JUPITER-LIKE PLANETS

3.1. Star Luminosity and Measurement Error

We consider �rst the case of planets with mass com-
parable to that of Jupiter. Such planets produce a
relatively large astrometric perturbation; at 10 pc
the re
ex motion of the Sun due to Jupiter's motion
would be 500 �as with a period of 11.8 years. We
will parametrize the detection probability by the two
major contributors, the period P and the signature:

� =
Mp

Ms

ap

D
(1)

where Mp, Ms are the masses of the planet and star
respectively, ap the semimajor axis of the planetary
system, and D its distance from us. If ap is in
AU, and D in parsec, then � is expressed in arc-
seconds. We generally assume a single-observation
measurement error � = 10 �as, appropriate to a

star brighter than V � 12 mag (see Table 1), corre-
sponding to the Sun at 200 pc.

We also carried out tests with di�erent measurement
errors, and demonstrated explicitly that the detec-
tion probability depends exclusively on the `signal-
to-noise' ratio:

S=N = �=� 

so that rescaling to di�erent measurement errors is
straightforward.

3.2. Detection Method

Our detection method for Jupiter-like planets is a
classical application of the �2 test. After assigning
each star in the simulation a secondary component,
we solve for the �ve astrometric parameters for that
star as if it had no companion. We then apply a
standard �2 test (with the con�dence level set to
95 per cent) to the residuals  � r, where the  are
the actual measurements, and the  r the great-circle
abscissae recomputed on the basis of the single-star
�t. If the test is failed, that is, the residuals are sig-
ni�cant at the 95 per cent level, the planet is consid-
ered `detected'. Note that this method measures only
deviations from the single-star model and makes no
assumptions on the nature of the residuals, nor does
it give an indication of whether the planet's parame-
ters can be computed.

The simulated data for this case include a sample
of 160000 stars uniformly distributed over the sky.
Each star is assumed to have a planet inducing a re-

ex astrometric motion of amplitude � ranging from
5 to 100 �as, and period P between 0.5 and 20 years.
The remaining orbital elements are distributed ran-
domly in the ranges: 0� � i � 90�, 0 � e � 0:3,
0 � 
 � 2�, 0 � ! � 2�, 0 � T � P .

This means that the detection probability discussed
in this study must be considered as averaged on both
the mission parameters (such as number of observa-
tions vs ecliptic latitude) and on the orbital elements
(e.g. inclination and eccentricity). Detailed investi-
gations of these detection methods and their depen-
dence on those parameters are in progress and will
be presented elsewhere.

Finally, since the `detection' of a planet is indicated
by a �2 deviation signi�cant at the 95 per cent level,
we would expect a 5 per cent incidence of false detec-
tions. As a check, we repeated the simulation with-
out planets, and we did in fact �nd false detections
consistent with the expected 5 per cent.

3.3. Results

The fraction of planets detected { as measured by the
failure of the �2 test for the single-star hypothesis {
is given in Figure 1 as a function of orbital period and
�, for an assumed measurement error of 10 �as. We
note that at relatively low S/N ratios the detection
probability is dominated by sampling of the orbital
period, while at higher S/N values orbital sampling
is less critical and long period planets (up to about
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Figure 1. Planet detection probability as function of the

astrometric signature � and of the orbital period P , for

� = 10 �as. The percentage of detection of each point

is based on 200 random planetary systems uniformly dis-

tributed on the sky.

twice the mission duration) are detectable. For in-
stance, the detection probability reaches about cent
per cent when S/N ! 10.

Figure 1 also shows that for S/N! 1 the �2 test
quickly loses its sensitivity. The shallow dip in the
detection probability at P � 1 year is the result of
the coupling between orbital and parallactic motion.

As stated above, the results shown in Figure 1 can
be scaled easily to other measurement accuracies,
whether due to di�erent assumptions on the proper-
ties of the mission or to di�erent stellar magnitudes;
for example, for measurement accuracy � = 1�as,
the detection probability is exactly the same as shown
in the Figure 1, but for an amplitude ten times
smaller { thus maintaining the same S/N ratio.

3.4. Parameters for 50 per cent Detection

Another way to look at these results is to deter-
mine the amplitude of the perturbation needed for
a certain probability of detection, as a function of
the planet's period, and compare this relation with

the Kepler's third law, � / P 2=3, which depends ex-
plicitly on the physical parameters of the planetary
system.

The empirical relations derived from Figure 1 are
shown in Figure 2 for three levels of detection e�-
ciency (25, 50, 95 per cent). Orbital periods shorter
than 5 years are well-matched to the mission length
and sampling law, and therefore the detection prob-
ability is nearly independent of orbital period, with a
detection probability of 50 per cent when S=N � 1.
On the other hand, if the period exceeds the mission
lifetime, the probability of planet detection drops sig-
ni�cantly, and a much higher signal is required for the
planet's signature to be detected. This is in qualita-
tive agreement with the results of Babcock (1994),
who studied the detection and convergence probabil-
ity of a complete orbital model for simulated plan-

Figure 2. Iso-probability contours (solid lines) for 25, 50

and 95 per cent of detection probability, compared with

Kepler's third laws (dotted/dashed lines) for systems

with Jupiter-Sun masses at D = 50, 75, 100 and 150 pc.

Jupiter-like planets (P = 11:8 yr) appear detectable, with

probability � 50 per cent, up to a distance of 100 pc (ver-

tical line).

etary systems as observed by the mission POINTS.
Babcock (1994) did �nd a slightly larger sensitivity
on planet period, manifested in an earlier turn-up
and steeper slope at long periods of the 50 per cent
probability curve; this most likely depends on the fact
that the determination of reliable orbital elements is
more challenging than detection only.

A planet with exactly the same characteristics as
Jupiter (P = 11:8 yr) can be detected with prob-
ability greater than 50 per cent to a distance of
100 pc, while planets with mass similar to Jupiter's,
but shorter orbital periods, can be detected much
further away, to distances exceeding 150 pc for pe-
riods between 2 and 9 yr. Depending on the orbital
period, the number of candidate stars for detection
of Jupiter-like planets may well be several hundred
thousand (see also Casertano et al. 1995).

4. DETECTABILITY OF KNOWN CANDIDATE
PLANETS

As a further test of GAIA's capabilities, we consider
explicitly three candidate planets discovered by the
radial velocity technique, 47 Uma, 70 Vir, and 51
Peg. The parent stars of all three systems are close
by (d � 20 pc) and very similar to our Sun. Accord-
ing to the spectroscopic measurements summarized
in Perryman et al. (1996), the planets orbiting these
stars have minimum masses of � 2:46, � 6:50, and
� 0:5MJ, and orbital periods of about 3 years, 4
months, and 4 days, respectively. This translates in
the following minimum astrometric signatures:

�47UMa � 362 �as
�70Vir � 168 �as
�51Peg � 1.66 �as

The astrometric detection of 51 Peg by a GAIA-like
mission is extremely di�cult, because of the small as-
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trometric signature (short period implies small sep-
aration, thus small re
ex motion) and of the mis-
match between the orbital period and the frequency
of GAIA observations. On the other hand, the de-
tection of the signatures induced on 47 UMa and 70
Vir should be a much easier task for a GAIA-like
satellite.

In the context of a new class of simulations, we
have generated 100 planetary systems on the celes-
tial sphere, respectively identical to 47 UMa and 70
Vir, assuming the stars to be of mass M = M�, and
assuming perfectly circular orbits. The inclination of
the orbital planes, undetermined parameter in the
case of radial velocity measurements, was initially
chosen to be i = 45�.

The �2 test indicated a detection probability of es-
sentially 100 per cent for these planets for a single-
observation error of � = 10�as (a conservative as-
sumption for these relatively bright stars). We were
also able to recover accurately all orbital elements
and to reconstruct the apparent path of the stars on
the plane of the sky. The details of these simulations
will be published elsewhere.

5. DETECTION OF EARTH-LIKE PLANETS

Even for very nearby stars, within 10 pc or so, de-
tection of Earth-like planets will be extremely chal-
lenging. The astrometric signature of the Earth on
the position of the Sun corresponds to about 0:3 �as
at 10 pc, beyond the capabilities currently projected
for GAIA.

The question we address here is whether it may
be possible to establish statistically the presence of
Earth-like planets, even though they cannot be de-
tected directly on an individual basis. Speci�cally, we
consider the possibility that the statistical properties
of the residuals for a few hundred stars might bear a
weak signature of the presence of Earth-like planets,
and that, by combining these data, the evidence for
the presence of such planets might be uncovered.

To this end, we use the least-squares technique in
a non-conventional way. Contrary to what we have
done before, we assume the presence of a planet, and
�t the observations with a model which includes the
semi-major axis, a, of the stellar orbital motion along
with the �ve astrometric parameters. We repeat this
process for di�erent values of the period P . Conver-
gence of the �t, and not the signi�cance of the values
derived for a, is taken as the indicator of a positive
detection.1 Observations for Earth-Sun systems were
simulated with an error � = 1 �as as indicated in
Table 1 for nearby solar stars, in the case of a metrol-
ogy accuracy of 20 pm. As for the case of the �2

test, the same simulations were repeated without as-
trometric signatures in order to assess the probability
of false detections.

We �nd that the probability of convergence does in
fact depend on the presence of the planet. As shown
in Figure 3 for systems at 20 parsec, �tting a system

1As expected, because of the low S/N ratios, the error of the

estimated values of a is usually large and not very signi�cant.

without a planet or with the incorrect period results
in a smaller convergence probability than if the planet
is present and the period correct. For an initial value
a0 = 0:34�as, the �t converges only 25 per cent of
the time if there is no planet or if the planet has
a period di�erent by as little as 0.05 yr from the
period used in the �t. On the other hand, if a planet
with the correct period is present, the �t converges
about 45 per cent of the time. This indicates that
a statistical signature of the presence of an Earth-
like planet is indeed present, albeit weak. Of course,
this cannot lead to the actual detection of individual
planets.

However, given a su�cient number of candidates {
there are about 400 eligible stars within 20 pc { this
method might be used to detect whether, and how of-
ten, Earth-like planets may be present, even though
the S/N of the signature of individual planets may be
insu�cient for a more formal detection. Of course,
there will be little or no information on the detailed
orbital parameters of such planets, but the interest,
scienti�c and not, of the detection of Earth-like plan-
ets is such that even probabilistic detections are de-
sirable.

The current analysis is still too simplistic to assess
whether this method, or variants thereof, can be suc-
cessful. We need to investigate further the e�ect of
the other parameters { initial phase, inclination, ec-
centricity, etc. { which for now have been assumed
`known'; initial phase may have an especially large ef-
fect on the convergence of the �t. Similarly, a method
based on the statistical analysis of low S/N cases will
only be successful if the error properties of the mea-
surements are extremely well-known, and if the pos-
sible presence of other planets does not a�ect the
convergence of the �t. On the other hand, the ability
to `detect' planets with S=N < 1 is very tantalizing,
and well worth of further study.

6. SUMMARY AND CONCLUSIONS

Detailed simulations of observation of star-planet sys-
tems within the baseline framework of the proposed
GAIA mission indicate the probable discovery of a
very large number of massive, Jupiter-like planets
around stars as far away as 100{200 pc, thus en-
abling a qualitative jump in the statistical study of
planetary systems and new understanding of their
formation. Speci�c simulations of known candidate
planetary systems, discovered by the radial velocity
technique, indicate that such systems will be easy
to discover and their orbital parameters will be de-
termined accurately by GAIA, with the exception of
very short-period systems such as 51 Pegasi.
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Figure 3. Convergence probabilities for Sun-Earth planetary systems (solid curve) at 20 pc as function of the initial

guesses on the one-year period. The dashed curve shows the number of false detection. Panels refer to di�erent starting

values of the orbital radius a0; the correct value is a = 0:17 �as. The 22 data points used to plot both graphs are based on

100 stars each.
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