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ABSTRACT

Exact general relativistic observation equations for
the GAIA concept were derived for a static sphere,
i.e., with only stellar angular coordinates as un-
knowns. These equations were then put to test in
an end-to-end simulation of the current baseline mis-
sion. Although the applicability of the present model
is limited to the case of an observer in the gravita-
tional well of a spherical non-rotating Sun, the re-
sults show that, despite cumbersome formalism, mea-
surements of angular distances among stars good to
� 100 �arcsec (as expected for stars of V = 16 mag)
can be modeled to yield estimates of the relativistic
astrometric parameters with errors of � 20 �arcsec
after only one year of satellite operations.
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data analysis; relativity.

1. INTRODUCTION

The expected precision of the astrometric measure-
ments of GAIA, 10� 20�arcsec down to V = 16 mag
and possibly fainter (Lindegren & Perryman 1996), is
such that signi�cant systematic errors would remain
if both observer and observables are not rigorously
described. Therefore, it is mandatory that the GAIA
observations be modelled as consistently as possible
in a framework which utilizes an advanced theory of
gravitation.

In Hipparcos the observations were pre-corrected for
relativistic e�ects to (v=c)2 'M=R� � 2 mas, where
M = GM�=c

2 (i.e., half of the Schwarzschild radius)
and R� is the Sun-Earth distance. The observation
equations were then formulated in at (Euclidean)
space.

At the level of accuracy at which we will pushed
by the GAIA measurements, Epstein & Shapiro
(1980) have shown that the post-post Newtonian
(ppN) correction to light deection due to the spher-
ical Sun amounts to 12 �arcsec, that from the Sun
quadrupole moment to ' 0:2 �arcsec, and that due

to the Sun's rotation to ' 0:7 �arcsec; all these val-
ues are intended for photons grazing the solar limb.
At 90� from the Sun the ppN contribution is down
to 0.1 �arcsec.

More important for GAIA are the metric perturba-
tions due to the solar system planets. Photons just
grazing the limb of the giant planet Jupiter are de-
ected by �1.7 mas, and the presence of the Earth
gravitational �eld amounts to � 6 �arcsec.

The are di�erent startegies for taking into account
relativistic e�ects when modeling accurate astromet-
ric data. Brumberg (1991) and Klioner & Kopejkin
(1992) use a post-Newtonian (perturbative) formula-
tion of general relativity, while So�el (1989) favours
the PPN formulation, which would allow a more di-
rect comparison among di�erent theories of gravity.

We followed a non-perturbative approach after mak-
ing the following simplifying assumptions:

(a) the space-time is only due to a spherical,
non-rotating Sun; therefore we can use plain
Schwarzschild metric;

(b) the GAIA observer is placed in a spatially circu-
lar orbit around the Sun at R�.

In this paper we �rst describe the logical path fol-
lowed to derive the relativistic observation equations;
we then follow with a brief account of the main re-
sults from our end-to-end simulations. Details of the
mathematical formulation are given by de Felice et
al. (1997).

2. BUILDING A GENERAL RELATIVISTIC
MODEL

2.1. Observables

In principle, observables are the photons reaching
GAIA (the observer) at the same proper time � and
from di�erent directions across the visible sky. In
particular, the angle between a star pair, i.e., between
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directions i and j is:
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where k�i and k�j are the components of the tangents
to the null geodesics of the photons emitted by the
two stars, and h�� is a tensor operator which projects
in the rest frame of GAIA (in the Euclidean sense).
The spatial components of the 4-vector k�i are, by
de�nition, the derivatives:
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where t is the coordinate time.

2.2. Observation Equations

The analytical expressions for the null geodesics in
Equation 1 are given, for example, in de Felice &
Clarke (1990). These are given in terms of the con-
stants of motion of the photons, i.e., total energy
(E), total angular momentum (L), and the azimuthal
component of the angular momentum (l).

To derive the observation equations one needs to
build relations among the constants of motion E, L,
and l of the emitted photons and the Schwarzschild
coordinates of the emitting stars (�i, �i, ri), so that
the star coordinates can be explicitely inserted in
Equation 1.

This is where we used the assumption of a static
sphere: all stars were supposed to lie su�ciently far
from the Sun for the approximation ri � 1 to hold.
Then, the relations seeked for are derived by inte-
grating the two equations:

Z ro

1

dr= _r =
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�i
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and:
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�i
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where _r � k
r, _� � k

�, etc., and �o and ro are the co-
ordinates of the observer (�o = �=2) at the (proper)
time of the observation.

3. THE END-TO-END SIMULATION

The �rst step in the developement of an end-to-end
simulation is to write Equation 1 in an explicit form
relating the measurements to the unknown quanti-
ties (�i, �i), and this was accomplished in the way
described in the previous section.

We then need to adopt a statistical tool to estimate
the Schwarzschild coordinates of the stars from the
measured arcs. For this, we decided to utilize linear
least-squares which, as observation equations, take
the linearized version of cos ij , i.e.

� sin ij � ij = Ai ��i+Bi ��i+Aj ��j+Bj ��j ; (4)

where � ij is the di�erence between the observed,
highly accurate, angle and some a priori knowl-
edge of it derived from approximate values of the
Schwarzschild coordinates and, therefore, of the con-
stants of motion of the associated photons. Corre-
spondingly, the small di�erences �� and �� are the
corrections to the approximate (catalogue) values one
wishes to deduce from the least-squares estimation
procedure (see 3.1.). The coe�cients Ai, Bi, etc.,
can be derived analytically (de Felice et al. 1997) 1

and are calculated, likewise sin ij , from the cata-
logue values of the coordinates.

3.1. Simulating Relativistic Observations

The simulation code is an adaptation of that used in
Lattanzi et al. (1991; see also Galligani et al. 1989)
for the assessment of the astrometric accuracy of the
sphere reconstruction in the Hipparcos mission; the
most relevant changes concerned the calculations of
the relativistic quantities, both observations and co-
e�cients of the linearized observation equations.

We generate lists of 2000 stars randomly distributed
on the (not directly observable) Schwarzschild sky,
i.e., their positions on the Schwarzschild sphere are
uniquely speci�ed using azimuth (�) and colati-
tude (�) only. Perspective e�ects (parallax) and ef-
fects due to relative motions thoughgout the Galaxy
(proper motions) were not considered. Also, stars
were all assigned the same survey limiting magnitude
V=16. The star positions derived from the random
number generators are named true positions. From
these, approximate locations, called catalogue posi-
tions, are generated by perturbing the true values of
2 mas. Such a catalogue simulates our best guess for
where the stars are on the sky before the GAIA mea-
surements. Catalogue values are used to compute
the coe�cients of the linearized equations and the
approximate (catalogue) values of the angles among
star pairs observed by the satellite needed to calcu-
late sin and � on the left-hand side of Equation 4.

The satellite is made to sweep the sky according to a
given scanning law quite similar to that successfully
implemented on Hipparcos; the spin axis precesses
around the Sun at a rate of � 6.4 revolution=year
and with a constant angle of 43�. Table 1 lists some
of the parameters of the reference mission used in
this simulation. Stars that at any given time are

1We stress that such linearization of Equation 1 is not an
approximation imposed on our derivations; it is just a necessity
of the least-squares estimation procedure utilized.
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Table 1. Most relevant parameters of the GAIA simulation. Notice that single-measurement error refers to the error of

one measured angle between two generic stars as observed during one revolution around the spin axis.

parameter numerical value comment

orbital radius (ro) 1.496 � 1011 m same as Earth's orbital radius (R�)
precession angle 43� same as solar aspect angle
satellite spin period 128 min
angles between interferometers 54� (I1-I2), 78�.5 (I2-I3)
coherent �eld of each interferometer 1.6�

mission duration 1 year static simulation
No. of simulated stars 2000
No. of unknowns 4000 only Schwarzschild coordinates estimated
Catalogue error 2 mas error of initial values in linearized observation equations
Single-measurement error 100 �arcsec as expected for V� 16 stars

`seen' within a strip 1.6� wide along the great cir-
cle being scanned are considered observable and are
given further consideration; a great circle (one rev-
olution) is completed in about 2.1 hours. From the
true coordinates of the stars in the strip we derive
the constants of motions of the emitted photons and
from these, utilizing Equation 1 directly, the true
angles between each possible distinct pair that can
be formed with the visible stars. Of these angles,
only those satisfying the relations  ij = 54� � 1:6�

or  ij = 78:5�� 1:6� are retained as observed. These
observability conditions are the result of current ex-
pectations for the GAIA payload. The optical con�g-
uration of the present baseline mission (Lindegren &
Perryman 1996) shows three stacked identical inter-
ferometers (I1, I2, and I3) each with a large �eld of
view and pointing toward widely separated directions
at angles � 60� (I1-I2) and � 80� (I2-I3) (Table 1).

Finally, for this investigation it is su�cient to say
that the GAIA detection system is capable of measur-
ing those wide angles with an error of � 100 �arcsec
when both stars are of magnitude V = 16 mag. This
is the error that is added to the true angles which
passed the observability conditions for the generation
of the observed angles to be used in the observation
equations.

The simulation of one year of uninterrupted obser-
vations yielded 78050 observed arcs which were then
used for the estimation of 4000 (two coordinates for
each of the 2000 simulated stars) stellar unknowns.
Each star has, on average, �40 connections; however,
the scanning law favours stars at colatidudes near 43�

and 137� with more than twice as many observations
as the stars near the `equator' (� � 90�).

4. RESULTS AND CONCLUSIONS

The numerical code used for the solution of the sys-
tem of equations resulting from the simulations just
described is, a part for minor changes to update it
to faster machines, the one described in Galligani et
al. (1989) and utilized on simulated as well as real
Hipparcos data. The code implements an iterative
algorithm which uses the conjugate-gradient method
to solve, in the least-squares sense, large and sparse
overdetermined systems like ours (the number of non
zero elements represents ' 0.1% of the total).

This iterative method has also a `built-in' way of deal-
ing with rank-de�cient matrices. In the presence of

Table 2. Mean and standard deviation of the true errors

of the least-squares adjustment.

� � No. of stars
(�arcsec) (�arcsec)

��̂ < 1 �arcsec 36 1971 (98.6%)

��̂ < 1 �arcsec 21 1986 (99.3%)

rank de�ciency the solution returned by the program
is that of minimum norm, i.e., among the in�nite m-
dimensional vectors (m is the number of rows of the
desing matrix) satisfying the system of m equations,
that with the smallest modulus is chosen.

Table 2 show the results of a typical sphere adjust-
ment run on a set of simulated data.

The individual di�erences used to compute the aver-
age values in Table 2 are the true errors de�ned as

��̂i = �i(true)��i(adj) (and similarly for ��̂i), where
�i(true) is the true Schwarzschild azimuth of star i
and �i(adj) is the value derived from the results of
the least-squares adjustment; it is:

�i(adj) = � ~�i + ~�i

where � ~�i is the least-sqares estimate for star i and ~�i
the corresponding initial, catalogue, value used in the
calculation of the coe�cients of the linearized equa-
tions.

The third column of Table 2 shows that there were
few outliers that were removed before calculating the
average errors. These are typically stars with a crit-
ically low number of connections.

In the absence of correlations among observations one
would anticipate average errors on �(adj) and �(adj)

of the order of
p
2 100p
40

' 23 �arcsec, where the fac-

tor 100 �arcsec is the single-measurement error and
the value 40 is the typical average number of connec-
tions per stars (see previous section). On the other
hand, because of the geometry of the arcs observed
by GAIA, the � error is expected to be larger than
the � error. From the values in Table 2 we derive the
empirical value ��=�� ' 1.7. This is in quite good
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agreement with the theoretical prediction ��=�� '

1.6 derived by Betti and Sanso' (1985) in similar cir-
cumstances but in the context of the Hipparcos mis-
sion.

The very small values obtained for �� and �� suggest
that the reconstructed Schwarzschild sphere de�nes,
on average, a set of spherical coordinates very close
to the original, true, set. In a Newtonian framework,
we would have said that the reconstructed sphere de-
�nes a coordinate system closely related to that of the
true positions, thus pointing to the absence of overall
residual distortions in the reconstructed sphere.

Despite the complications of the model and its lim-
itations, the principles of global astrometry success-
fully implemented with Hipparcos appear to work in
a relativistic scenario. We should therefore be able
to fully exploit the precision promised by GAIA for
�10 �arcsec astrometry.

We anticipate that, if the spherical non-rotating Sun
is retained as the only cause for the space-time cur-
vature, fully dynamical equations (i.e., including per-
spective e�ects { parallax { and intrinsic motions of
the stars -d�i=dt and d�i=dt) can be derived in a way
similar to that described here.

Future work will address the complications of a more
general expression for the adopted metric.
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