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ABSTRACT

Forty eight minor planets have been observed by
the Hipparcos satellite. Pooling their precise posi-
tion may allow to investigate a possible rotation be-
tween the dynamical reference frame and the ICRS-
Hipparcos Reference system. Due to the repartition
of the observations, ill-conditioning of the global sys-
tem and outliers simultaneously occur. So, a di-
rect least-squares fit is potentially misleading and we
resort to the use of robust statistical alternatives.
While it is now clear that no single robust regres-
sion is best, the L1 and Huber-M estimators are cur-
rently attracting attention under the occurence of
contaminated Gaussian errors. Here, we present new
algorithms based on the Spingarn Partial Inverse
proximal decomposition method for L1 and Huber-
M estimation that take into account both primal and
dual aspects of the optimization problem. The re-
sult is a family of highly parallel algorithms attrac-
tive for large scale problems. Implemented on the
Connection Machine CM5, their computational per-
formances on the data under study are reported and
discussed.
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1. INTRODUCTION

Between 1989 and 1993, 48 minor planets were ob-
served by the ESA astrometric satellite Hipparcos.
The observational data were analysed by both con-
sortia FAST and NDAC whose reductions differ in
the treatment of the modulated light signal of an ob-
served body. So, the Hipparcos final catalogue in-
cludes two sets of results: the FAST one concerns
2657 observations of the 48 minor planets, whereas
the NDAC one contains 2837 observations of the
same set of minor planets. These data are related
to abscissa of observed bodies on different reference
great circles.

The comparison between observation and theory
leads to an O-C formulation expressed in terms of

astrometric parameters of interest, as described by
(Bec-Borsenberger et al. 1995). By neglecting the
mass perturbation effect during minor planet close
encounters, the condition equations can be conve-
niently written as:

0 - C=MAw+Bf, with 6 =0+ (t—to) (1)

where O represents the observed position of the mi-
nor planet in the Hipparcos reference frame (best op-
tical counterpart of ICRS reference frame), whereas
the C value is computed by numerical integration of
the equations of motion; JPL-DE200 ephemerides are
used for the of the major planets (Standish 1990).

The astrometric parameters to be estimated are Aubd

and #. They stand respectively for the corrections
to the minor planet orbital elements and to the ini-
tial rotation and spin parameters between the two
reference frames; M, B are the related design ma-
trices. Here, we focus our attention on the qual-

ity of any possible estimation of the parameter 6.
For an extended analysis including some additional
minor planet mass corrections, see (Bange & Bec-
Borsenberger 1997).

To begin, system (1) was solved by using the Least
Square (LS) criterion. It provides highly unstable
solutions, in the sense that small perturbations of
the data induces large changes in the LS estimate.
Futhermore, the observations of 20-Massalia and 27-
Eutherpe Minor planets were noticed as highly in-
fluential on the LS solution. In addition, Variance
Inflation Factors (VIF) were computed (Bougeard et
al. 1996, Table 2): their very large values assert that
many factors are involved in strong multicollinear-
ity. To quantify the level of ill-conditioning, Singular
Value Decomposition (SVD) were computed for each
following design matrix (subscript 46 means that
both Minor planets, 20-Massalia and 27-Eutherpe,
are dropped):

FAST48: 2657 observation-rows, 294 unknowns;
FAST46: 2560 observation-rows, 282 unknowns;

e NDAC48: 2837 observation-rows, 294 un-
knowns;

e NDAC46: 2737 observation-rows, 282 un-
knowns.
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Results are to be found in Table 1. At this stage,
the LS regression through any numerical approach
(singular values or QR decomposition) is statisti-
cally misleading especially in terms of tests and error
variance estimates. A great deal of statistical work
has been devoted to the construction of good regres-
sion estimators when influential and/or collinearity
is present in the model. In the sequel, we consider
alternatives based on robust techniques.

2. TOWARDS ROBUST ESTIMATION

2.1. Statistical Background and Modelisation

In the past few years, robustness is one problem that
has been given much attention in statistical litera-
ture. There has been a significant increase in the
interest concerning robust estimation methods as an
alternative to the LS fit. Although it is now clear
(see for instance Hampel et al. 1986) that no sin-
gle robust procedure is the best (depending on the
mean square error or other adequate criteria), the L1
(least absolute value) and the Huber-M estimators
are currently attracting considerable attention when
the errors have a contaminated Gaussian or thick-
tail distribution. They are often recommended in
practice as a starting point for iteratively weighted
least-squares procedures.

In this framework, finding M-estimators (whose name
derive from their similarity to maximum-likelihood
estimate) consists in solving the optimization prob-
lem:

n

(Re) Find € argmin () _ po((Az — b);)

i=1

where r; is the ith component of the vector r = Az—b
and p is some convex cost function. The vectors r,
and b are of dimension n, m and n (n > m) respec-
tively and the matrix A is of size (n x m). Since A is
not necessarily of full rank, the symbol At will stand
for its Moore-Penrose inverse. Here, the convex cost
function p. stands for the c-Moreau-Yosida regulari-
sation of the absolute value function as defined by:

. 1
Ywe R, p.(w) =infyenlly| + 2—c|y —wl?])

still equal, up to a multiplicative factor 1/¢, to the
Huber-M cost function introduced in his famous Pa-
per published in the 1964 Annals of Statistics:

2

= if lw| <e¢

w =
PHub,c(W) clw| — § elsewhere

This estimator was proved by Huber to be convenient
when the errors are ‘contaminated Gaussian’.The
tuning constant ¢ depends on the level of contami-
nation (by outliers). The limiting case (¢ = 0) cor-
responds to an L1 fit, whereas (¢ = o0) is simply a
least-square fit.

Nevertheless, problem R, cannot be solved directly,
since there is no simple analytical representation of

the solutions. Finding efficient algorithms to produce
such estimates in the case of large data sets is still a
field of active research. In (Bougeard & Caquineau
1996), new algorithms were derived, based on the Sp-
ingarn Partial Inverse proximal approach that takes
into account both primal and dual aspects of the M-
estimation problem. We briefly recall the main lines
of the approach.

2.2. Re-Parametrization of the Problem

To bring into evidence the linear subspace Range(A),
we introduce a reparametrization of problem R, as:

() - ‘ Minimizegepe  ®.(€) = S0, pel€ — bli

subject to ¢ € Range(A)
Setting ¢ = 0 provides the L1-fit formulation. Since
pe is the inf-convolution between the absolute value
function and the Moreau-Yosida regularization kernel
3-|.|%, the Fenchel dual of (P.) takes the form:

(D) Minimizeyeqn  5||p|[*+ < p, b >
¢ subject to Atp =0 and 7 (p) < 1

where v, stands for the Chebychev norm. When-
ever ¢ > 0, due to the strict convexity of the objec-
tive function to be minimized, D, admits an unique
optimal solution. As ¢ goes to zero, convergence is
expected towards a solution of smallest norm of Dy.
For ¢ = 0, Dy is a Linear Programming problem (LP)
that has become the basis for some of the best L1-
algorithms. The advantage of our formulation is to
take into account at the same time the L1 and Huber-
M estimations.

According to (Rockafellar 1970), a vector ¢ is an op-
timal solution for (P,) and a vector p is optimal for
(D.), if and only if the following optimality condi-
tions (O.) hold:

¢ € range(A)
Alp =0
§ € {ep+b}+ Na..(p)

Where Np_ stands for the Normal cone to the
Chebychev unit ball By,. Given £, the third con-
dition of (O.) belongs to the variational inequality
class where both ¢ and p are unknown. To solve the
above duality scheme, let us consider the Spingarn
proximal approach that takes into account both pri-
mal and dual aspects.

(OC) :

2.3. Spingarn Proximal Method

By letting M =Range(A), the above optimality con-
ditions can be expressed as:

(**) find £ € M and p € M* such that p € T(¢)
2

where M is a linear subspace of a certain Hilbert
space H, M+ denotes the orthogonal complementary

of M and T : H —= H is a maximal monotone mul-
tifunction in the sense of Brezis (1973). A convenient
resolution method to deal with this general duality
scheme is the partial inverse method developed by
Spingarn (1983). It acts as follows:
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Table 1. Singular Value Decomposition of global design matriz as given by their singular eigenvalues.

eigenvalues FAST 48 FAST 46 NDAC 48 NDAC 46
AL = Amax 10405.5 10141.4 10519.1 10290.6
A2 9315.4 9249.8 9348.8 9433.6
A3 7965.4 7827.3 8207.7 8041.9
A4 39.3 39.2 42.7 42.7
s 39.0 38.8 40.4 40.0
X6 34.7 34.7 37.0 35.9
A7 32.4 32.3 36.1 34.7
Amin 4 x10~5 4 x10-53 14 x 105 14 x 105
23 eigenv. < 0.1 23 eig. < 0.1 20 eig. < 0.1 20 eig. < 0.1

Condition number 26 x 107 25 x 107 7 x 107 7 x 107

e initialization stage : Starting from an arbitrary
point (£°,p°%) € (M x M*), Spingarn’s method
generates a sequence according to the updating
rules at step k: (€%,p*) € (M x M*)

e stage 1: prozimal steps: find (£'*,p'*) such that:

=&k +p* and

p'* e T (&) or equiv. &'F € T—1(p'*)

H é-lk +p
o stage 2: projections steps onto the subspaces
M,M*

£k+1 — PT‘OjM(flk)
M= Projy.(p™)

The method can be viewed as producing:
¢* = Proxr (€ +p*), p* = Prozp1 (€ +p*)

that proves the existence and uniqueness of the inter-

mediate variables p'*, ¢'*. Consequently, Spingarn’s
method can be computer-implemented provided ei-
ther the proximal mapping Proxr = (Id +T)~! as-
sociated with T or with its inverse can be evaluated.
Because the algorithm is a special instance of the
proximal process and provided that the optimal so-
lution set is not empty, the algorithm was proved to

be always convergent.

2.4. Proximal-Projection Algorithms for Robust
Estimation

Transposing the Spingarn approach by evaluating
the specific proximal mappings related to the duality
scheme O, (for details see: Bougeard & Caquineau
1996) leads to the following computational algo-
rithms parametrized by the tuning constant ¢ > 0.
The Proximal-Projection c-algorithm consists of:

e Initialization: Start from a vector 2° randomly
chosen, a vector p° such that A’p® = 0 (for in-
stance 2° = 0 and p° = 0) and assign £° = Az".
Then, given the kth iterate (&%, p*) satisfying re-
spectively to &% € range(A4) and ATpk = 0, eval-
uate the next iterate using the following lines.

e Proximal Phase (in dual form): Set m =1+ ¢
and z; = £¥ + p* — b, then:

k k
calculate p”c = Projp_ [S-32=Y]that is:

(1+¢)
Vj=1,-
if |(Zk)|y < mooset (p%); = (a);/m
if (2x); > m  set (p*);=1
if (2 ) < -m set (p'*¥);=-1
then set ¢’k = (&b + pk) — p'*

e Projection Phase (onto M =
complement M=)

£k+1 —

range(A) and its

Proja(€%)
€k+1

It can be noticed that the process leads to quite sim-
ple computational steps and allows parallel computa-
tions that can be of importance for large-scale prob-
lems. Moreover, it simultaneously generates two se-
quences, (&%) and (p*), globally converging respec-
tively to a primal and a dual solution, whenever the
set of solutions is nonempty. In addition, since the
algorithm provides a dual solution, this allows us
to deduce (from relation O,) all the optimal-primal
solutions and to conclude about a possible non-
uniqueness of the estimate so far performed (Mich-
elot & Bougeard 1994). Once regression coefficients
obtained for the reparametrized model, a transfor-
mation is made back to the original model. It is not
true, however that we totally overcome the inherent
ill-condition of the initial astrometric model, due to
this last transformation.

2.5. Implementation for the CM5 Family

The above algorithm was implemented on the
CNCPST CMS5 that is a parallel computer. The al-
gorithm is clearly data regular so we chose to use the
global data-parallel CM Fortran (CMF) language.
For details, we refer to the 1996 Paper by the two first
authors. The CM5 is a collection of Vector Units (512
VU at the CNCPST) hooked up to a very fast net-
work. A sparc processor drives 4 VUs leading to 128
processing nodes. The CM-runtime system splits the
giant matrices (or vectors) by partitioning the matrix
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Table 2. Solutions FAST and NDAC (8 in mas, w in
mas/yr).

FAST 48 FAST 46
c: 00 0 00 0 0.01 0.1
(svd—1s) (L1) (svd—1s) (L1)
01 19.8 1.9 3.7 1.3 1.2 1.5
02 8.2 -12.1 -11.9  -12.3  -12.3  -12.3
03 -41.3  -15.0 -12.6  -13.3 -13.3 -13.5
wq 2.7 3.5 4.3 3.7 3.8 3.8
ws -18.4 -8.5 -9.5 -8.0 -8.0 -8.2
we 4.0 14.3 14.9 12.6 12.7 13.1
NDAC 48 NDAC 46
c: 00 0 o0 0 0.01 0.1
(svd —1s)  (L1) (svd —1s) (L1)
01 0.6 3.7 6.5 3.7 3.7 3.9
02 15.7  -12.2 -25.2  -17.1  -17.2 -16.6
03 -48.1  -16.9 7.1 -5.1 -5.0 -5.1
wq 17.3 1.4 4.2 2.7 2.7 2.4
ws -20.9 -8.4 -12.2 -9.9 -9.9 -10.2
we 19.1 14.3 17.2 16.4 16.4 16.7

data across the VU pool making none of them idle.
All the computational resources are used if we use
large data sets. The main difficulty is numerically
solving the ‘projection step’ by computing the pro-
jector onto the range of matrix A. To be protected
against all possible ill-conditionning of the A design
matrix, our approach is first to perform a Singular
Value Decomposition (SVD).

Then, the projector onto the range of A is given by
Projy = A.AT = A (At A)*.A? whereas the gener-
alized least-squares solution of the system of linear
equations b = Az is given by zT = AT.b. This will
allow to compare the behaviour of the solutions for
different c-fits to the SVD least-squares estimate z™.
We are now ready to deal with the astrometric prob-
lem under study.

3. APPLICATION TO HIPPARCOS MINOR
PLANET DATA

The astrometric system (1) was solved: by a SVD
least-squares fit (¢ = 00); and by computation of M-
estimations for different c-values. According to dif-
ferent values of the ¢ parameter, it is possible to eval-
uate the sensitivity of the adjustment with respect to
potential outliers. As shown in Table 2, least-squares
solutions are ‘unstable’ (in the sense where they sig-
nificantly differ for 48 and 46 minor planets), whereas
solutions obtained with ¢ = 0 and ¢ near 0 are coher-
ent. Thus, the least-squares solution for the rotation
parameters is of poor confidence. This result was ex-
pected after the study of the system condition num-
bers. The L; solution give some more ‘stable’ results.
However, an extensive study of outliers is needed in
order to improve the estimation.

4. CONCLUSION

We have been concerned with the evaluation of a
potential rotation between the dynamical reference
frame and the ICRS-Hipparcos Reference system
from the Hipparcos observations of minor planets.
Due to the repartition of the observations, influential
points and collinearity were proved to be present in
the astrometric model. So, alternatives to LS fit have
been considered based on robust estimation.

New algorithms were defined in Section 2 for solving
both L1 and Huber-M estimation problems. As spe-
cial instances of the partial inverse proximal method,
they take into account at the same time, the pri-
mal and dual structures of the optimization prob-
lem; generated sequences are globally convergent.
Their implementation on the Connection Machine
CMS5 has been performed in such a way that allows
a direct comparaison to the SVD LS solution in case
of ill-conditioning of the design matrix. These algo-
rithms refer explicitly to the tuning constant ¢ that
depends on the level of contamination by outliers;
its true value is unfortunately unknown in practice.
Section 3, introductory experiments were presented.
The FAST46, NDAC46 solutions were proved to be
more ‘stable’ and meaningful. Additional work is in
progress in this encouraging direction.
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