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ABSTRACT

The Hipparcos catalogue provides a large amount of
high quality positional and kinematical data of stars
in the solar neighbourhood. In principle, these data
can be used to construct a distribution function for
the orbits of the stars, assuming three integrals of
the motion and an axisymmetric potential of St�ackel
type. Since orbits are not local, the construction of
a distribution function is the better conditioned the
larger the volume covered by the data.

On galactic scales however, the Hipparcos data cover
a fairly restricted volume. To assess to what ex-
tent the distribution function derived from these data
will be useful to determine a (unknown) distribution
function, we generated Hipparcos-like arti�cial data
samples coming from a known (global) distribution
function, and investigate how well this distribution
function can be recovered. The distribution function
is constructed by �tting an analytical, but 
exible
form of the distribution function to the data.

Key words: Milky Way; dynamics; solar neighbour-
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1. INTRODUCTION

The construction of dynamical models for galaxies is
not an easy task. Since most of the galaxies are found
at large distances from us, only projected quantities
can be observed, while observational limitations such
as seeing and pixel size give rise to observational and
interpretative di�culties.

Our Galaxy on the other hand o�ers the opportu-
nity to study a member of the galaxy population in
greater detail. It is possible to obtain data on individ-
ual stars, but the problems here are the quality of the
data needed for dynamical modeling (positions, dis-
tances, velocities), the (relatively) small volume that
can be surveyed, and the number of stars for which
such data are available. Only high quality positional
and kinematical data of large numbers of stars will
be useful in the construction of a dynamical model,
relevant for the solar neighbourhood. With the Hip-

parcos catalogue, data that ful�ll these requirements
are available for the �rst time.

The model for our Galaxy we are going to use, is
based on a distribution function, which is the proba-
bility of �nding a star (with given spectral properties)
at a given position and with a given velocity, anal-
ogous to a Maxwell-Boltzmann equation for a gas.
Since stars move on orbits, this distribution function
is equivalent to the probability densities for the var-
ious orbits.

A distribution function derived from the Hipparcos
data will give information on the orbits in the Galaxy
that pass through the solar neighbourhood. We want
to assess to what extent such distribution function
will be useful to determine a (unknown) distribution
function. We do this by generating Hipparcos-like
arti�cial data samples, drawn from a known global
distribution function, and investigate how well this
distribution function can be recovered.

Section 2 �rst gives a short introduction to dynami-
cal models in general, and then describes the applied
�tting procedure. In Section 3, we give a descrip-
tion of the model used for the simulations. Section 4
discusses the generation of arti�cial samples, and the
results of the �tting procedure. Conclusions are given
in Section 5.

2. DYNAMICAL MODELS AND FITTING
PROCEDURE

2.1. Dynamical Models

The `elementary particle' of a dynamical model is an
orbit. A general classi�cation of orbits is not obvi-
ous, since we need quantities that can be attached to
a particular orbit. Such quantities are integrals of the
motion, which are functions of coordinates and veloc-
ities that, by de�nition, remain constant along an or-
bit. In an axisymmetric system, two of such integrals
are the binding energy E = �V ($,z) � 1

2
v2, with

V ($,z) the gravitational potential, and Lz, the z-
component of the angular momentum. In general, we
do not expect more than 3 such integrals. Stronger
yet, from a theoretical point of view, there is no rea-
son for the existence of a third integral. In reality
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Figure 1. Left panel: Physical space. We consider the kinematics of stars in a sphere with radius 1 kpc, centered around the

Sun, at 8 kpc from the Galactic Center (not drawn to scale!). The parameters �
�

and �+ denote the bounding spheroids,

�+ the bounding hyperboloid (spheroidal coordinates). Orbits can only visit the solar neighbourhood if �
�

� �max and

�+ � �min. Right panel: Three-integral space. In all points `behind' the black surface we can determine the distribution

function when we have kinematic data in the grey volume (left panel). Such data cannot determine the distribution

function in the volumes between the grey and the black surface.

however, there is strong evidence that most orbits
obey a third integral, almost all the time.

St�ackel potentials (de Zeeuw 1985) have the advan-
tage that all orbits have 3 integrals, and that the elu-
sive third integral I3 is a simple quadratic function
of the velocities. All orbits are uniquely determined
by their 3 integrals (E, I2, I3). Since all orbits are
known in such a potential, we know exactly which or-
bits pass through the solar neighbourhood and which
don't. Therefore, we can know in principle to what
degree samples such as the Hipparcos sample deter-
mine the distribution function of stars of a particular
type.

What happens, for instance, when we only consider
the kinematics of stars, located within a certain dis-
tance from the Sun? In general, orbits in St�ackel
potentials are bounded by 2 spheroids, indicated in
spheroidal coordinates by �

�

and �+, and one hy-
perboloid of 2 sheets, indicated by �+ (Figure 1, left
panel). Denoting the 2 spheroids bounding our Sun-
centered volume as �min and �max, only orbits with
�
�

� �max and �+ � �min visit the solar neighbour-
hood. It is only for these orbits that the distribution
functions that we will determine contain valid infor-
mation, if the construction of it was based on kine-
matical data of stars in the (�

�

,�+)-volume. (The
volume is also bounded by a hyperboloid, which could
be indicated by �max, but this bound does not place
any restrictions on the accessible orbits, because of
the position of the Sun in the Galactic Plane.)

Figure 1 shows how the bounds �min and �max in
physical space translate into planes in three integral
space, thereby restricting the volume in three integral
space inside which the distribution function can be
recovered.

2.2. The Fitting Procedure

During the �tting procedure, the real distribution
function will be approximated by a sum of modi�ed
Fricke components. These are an extension of simple
powers in the integrals of the motion E, Lz (or I2)
and I3, designed to reproduce certain features present
in the data (bulge-like components, thin disks, etc.
see Van Caelenberg & Dejonghe (1997)). The coef-
�cients of the terms in the sum are determined by
a Quadratic Programming method, that �ts to the
observed data by minimizing a �2-variable. During
the process, the positivity of the resulting distribu-
tion function is assured. A full explanation of this
technique can be found in Dejonghe (1989).

The data needed by the program are typically mo-
ments of the distribution function such as mass den-
sity, velocity components and velocity dispersions.

The advantages of this approach are threefold.

1. By using this procedure, useful results can be ob-
tained from incomplete kinematical information:
one does not necessarily need all three velocity
components together with the positions, which
would be necessary in order to construct the or-
bit. Of course, the more complete the data, the
better! In our case, the kinematical information
we used in the simulations consisted in proper
motions, without radial velocities, and the 2 cor-
responding velocity dispersions (Section 4).

2. Axisymmetric distribution functions of the kind
we consider work well for the older stellar popu-
lations (e.g. Dejonghe 1992, Durand et al. 1996,
Sevenster et al. 1995).

3. Working in three integral space implies that the
solution space can be 3-dimensional, instead of
6-dimensional (in phase space) if one uses direct
orbit calculations.
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Figure 2. Some of the characteristics of the adopted distribution function, with ($,�,z) cylindrical coordinates and the z

coordinate perpendicular to the Galactic plane. The Sun is at 8 kpc from the Galactic Center. Left panel: Log of the mass

density in the meridional plane. Middle panel: Rotational velocity v� in the Galactic Plane. Right panel: Dispersions �$
and �z for the velocity components v$ and vz, with �$(0) = �z(0) = 90 km s�1 and �$(10) = 9 km s�1.

3. THE MODEL USED FOR SIMULATIONS

For the potential we have chosen an axisymmetric
St�ackel potential with a halo-disk structure, con-
structed to be compatible with all known parameters
of the Galactic potential in the solar neighbourhood
(Batsleer & Dejonghe 1994). The distribution func-
tion we used to generate our data points consists of
two components with di�erent characteristics. The
�rst (and most important) one represents a thin 3-
integral stellar disk, the second one is a model for
the bulge. As can be seen from Figure 2, the distri-
bution function reproduces (1) a bulge-disk galaxy,
(2) a 
at rotation curve, with a rotation of about
210 km s�1 in the solar neighbourhood, and (3) a
ratio �z/�$ = 1/2 in the solar neighbourhood, with
�z and �$ the velocity dispersions in the z and $
direction respectively, and ($,�,z) cylindrical coor-
dinates.

4. SAMPLE GENERATION AND RESULTS OF
THE FITTING PROCEDURE

In order to investigate to what degree stellar samples,
extracted from the Hipparcos database, make it pos-
sible to recover (a part of) the distribution function
of the Galaxy, we will have to generate samples with
the same kind of data and the same characteristics
as present in the Hipparcos data.

At any given position (speci�ed by galactic longitude
l, galactic latitude b and distance r from the sun), the
adopted distribution function enables us to specify:

� the number density �(l,b,r);

� the mean streaming in proper motion parallel to
galactic longitude, �l(l,b,r), and galactic latitude
�b(l,b,r);

� the corresponding velocity dispersions �l and �b.

A typical data sample consists of a set of positions,
with the corresponding densities, proper motions and
velocity dispersions. Any star sample drawn from

such a distribution function will produce values that
deviate from the exact ones because of statistical 
uc-
tuations. These 
uctuations are taken to be Gaus-
sian, and are accounted for in our samples. We sup-
pose that n? stars are available in the immediate
neighbourhood of any given position. The obtained
data were then used by the Quadratic Programming
�tting routines to construct a �t.

As for the samples, we considered two di�erent cases.

4.1. Case 1: Stars Uniformly Distributed in a
Sphere Around the Sun

For the �rst series of samples, we suppose we are
dealing with data from stars uniformly sampled in a
sphere with radius 1 kpc around the Sun, and thus
without any sampling bias. We investigated the dif-
ference between the original distribution function and
the �t, as a function of the available number of stars
n? per position. We consider 40 positions, or about
1 every 460 pc, with n? ranging from 20 to 1000. Be-
cause of the restriction of uniform coverage and ho-
mogeneity in astrophysical properties, the total num-
ber of stars was always kept much smaller than the
number of stars available in the Hipparcos catalogue.

Figure 3 gives us an idea of the goodness of the �ts,
with increasing number of stars per position. The
di�erences shown do only apply to the deviation be-
tween the original distribution function and the �t in
the solar neigbourhood. Clearly, the �ts become bet-
ter with increasing number of stars per position, as
could be expected. An unbiased and volume-limited
sample will reproduce our distribution function when
there are more than 100 sampled stars per position.
This assumes that the velocity distribution does not
vary too much with position.

4.2. Case 2: Stars Uniformly Distributed Within a
Limited Area

For the second series of samples, the stars are uni-
formly distributed as well, but only within a limited
area on the sky, centered around the direction of the
Galactic Center. All stars are still within 1 kpc from
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Figure 3. Results of the �tting procedure, for samples

belonging to case 1 (an unbiased and volume-limited sam-

ple): the relative di�erence between the original distri-

bution function and the �t (triangles), as a function of

n?, the available number of stars per position. Error bars

denote the dispersion on this value. Fits become better

with increasing n?, and form a good approximation for the

original distribution function when more than 100 stars

per position are available.

the Sun. Here we investigated the di�erence between
the original distribution function and the �t, when
the area was allowed to vary. We worked with a �xed
number of stars per position and a sky density com-
parable to that of Hipparcos (i.e. about 3 stars per
square degree), and tried to �gure out what the min-
imum area is in order to get a reasonable �t. For this
case we assumed 100 sampled stars per position. The
adopted star density and total area then �xes the to-
tal number of stars to be considered, which in turn
determines the number of positions to be sampled.
The generation of the data points then is similar to
case 1.

Figure 4 represents the results of the �ts for star sam-
ples of case 2. The area on the sky in which the
sample stars are located varies from 400 up to 2400
square degrees. Obviously, �ts become better with
larger areas on the sky. The results show that a sam-
ple, that is unbiased and volume-limited over an area,
reproduces the distribution function su�ciently well,
if the area is at least 1500 square degrees.

5. CONCLUSIONS

We investigated to what extent star samples such as
the Hipparcos database can be used to construct a
distribution function for the orbits of stars in the so-
lar neighbourhood. We generated arti�cial data sam-
ples by using a galactic model, that consists of an
axisymmetric St�ackel potential and a three integral

Figure 4. Results of the �tting procedure, for the sam-

ples from case 2 (unbiased and volume-limited over an

area): the relative di�erence between the original distri-

bution function and the �t (triangles), this time as a func-

tion of area on the sky. Error bars denote the dispersions

on the deviations. The original distribution function is

recovered if one uses an area of at least 1500 square de-

grees.

distribution function, chosen to represent features ob-
served in the solar neighbourhood. Quadratic Pro-
gramming routines were used to perform the �tting
procedures. For samples that are unbiased and vol-
ume limited in a sphere with radius 1 kpc around the
sun, we were able to recover the original distribution
function, when the number of stars per position is
su�ciently high (n? � 100, when working with 40
positions). Unbiased samples that are volume lim-
ited toward a certain direction on the sky, within 1
kpc, also enable us to recover the distribution func-
tion, when the area on the sky in which the sample
stars are distributed is large enough (at least 1500
square degrees, given n? = 100 and a Hipparcos-like
density of 3 stars per square degree).

REFERENCES

Batsleer, P., Dejonghe, H., 1994, A&A, 287, 43

Dejonghe, H., 1989, ApJ, 343, 113

Dejonghe, H., 1992, in Galactic Bulges, IAU Sympo-
sium 153, eds. H. Dejonghe & H. Habing (Dor-
drecht: Reidel), p.73

Durand, S., Dejonghe, H., Acker, A., 1996, A&A,
310, 97

Sevenster, M.N., Dejonghe, H., Habing H.J., 1995,
A&A, 299, 689

Van Caelenberg, K., Dejonghe, H. 1997, in prepara-
tion

de Zeeuw, T., 1985, MNRAS, 216, 273


