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COMPUTING THE TILT OF THE VELOCITY ELLIPSOID FOR A GALAXY MASS MODEL

F. Bancken

Institut d'Astrophysique de l'Universit�e de Li�ege, Belgium

ABSTRACT

Starting with a mass model of the Galaxy, we apply
a scheme developed by Schwarzschild (1979) in or-
der to determine a phase-space distribution function
of stars that is characteristic of the mass model. In
a �rst step, we limit our investigations to the solar
neighbourhood, that is, among the large amount of
stellar orbits required by Schwarzschild's procedure
we only consider nearly circular orbits that occur in
the vicinity of the Sun. Thus, it allows us to compute
a rough estimation of the tilt of the velocity ellipsoid
in the solar neigbourhood.

Key words: Galactic dynamics; distribution function;
velocity ellipsoid.

1. OBJECTIVE

Our aim is to constrain parameters of a Galactic mass
model with the help of new observational data and
especially Hipparcos data. So we have �rst to com-
pute the theoretical quantities for the model to be
compared to these observations. This led us to work
out the tilt of the velocity ellipsoid in the vicinity
of the Sun, for a given Galaxy model, in addition to
other classical quantities such as the rotation curve,
local density, escape velocity, and so on.

2. MASS MODEL

For this �rst run, we adopted a slightly modi�ed
model of Ostriker & Caldwell (1979), whose compo-
nents are:

� a central mass;

� a 
attened disk whose surfaces of equal density
are oblate spheroids

� a spherical bulge-halo;

� a spherical dark halo.

Ostriker & Caldwell's surface disk has been replaced
by a 
attened disk in order to make numerical or-
bit computations easier. It stands to reason that we
chose for that component a density law that repro-
duces by projection on the Galactic plane Ostriker &
Caldwell's surface density. Note that we suppose the
Galaxy to be axisymmetric.

3. DENSITY LAWS

3.1. Flattened Disk

The adopted density is given by:
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3.2. Spherical Bulge-Halo
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where u = j( r
n
)2 � 1j.

3.3. Spherical Dark Halo

The density law reads:

�dh(r) =
�dh

1 + ( r
rdh

)2
(3)

4. ROTATION CURVE

Before dealing with the velocity ellipsoid, we adjusted
the contribution of each component in order to obtain
the best agreement with the observed rotation curve.
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Figure 1. Contributions to the Rotation Curve.

Other parameters in the density laws were left with
their values taken from Ostriker & Caldwell's model.
The observational data for the rotation curve we used
are those derived by Allen & Santillan (1991).

Results as contributions to the rotation curve are
shown in Figure 1.

5. THE POTENTIAL

The potential of each component is calculated numer-
ically from the Poisson's equation �� = 4�G�. The
isopotential contours in the meridional plane and the
potential as a function of cylindric coordinates R and
z are shown hereafter.
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Figure 2. Isopotential contours in the meridional plane.
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Figure 3. The Potential as a function of cylindrical coor-

dinates.

6. THE VELOCITY ELLIPSOID

In order to compute the velocity ellipsoid, we applied
a scheme developed by Schwarzschild (1979): �rst,
we divide physical space into N cells.. Then, we in-
tegrate a large number M of orbits numerically and
store the fraction of time tij our i

th orbit spends in

the jth cell. Finally, we try to reproduce the model
density by assigning each orbit a non-negative num-
ber called occupation number Ci, that satis�es:

MX
i=1

Citij = mj ; (1 � j � N) (4)

where mj designates the mass held in cell number j.
Indeed, one may say that the above equation corre-
sponds to the equality between the density and the
integral over all velocities of the distribution function
of the model.

In our run, we adopted square cells of 1 kpc2 in the
meridional plane, we computed approximately 1300
orbits, and took into account the cells they crossed.
As the above linear system was underdetermined, we
chose to maximize a linear function of the occupa-
tion numbers to select a solution (simplex method
was applied). Note that as we wanted to compute
the tilt of the velocity in the solar neighbourhood,
the maximization function was constructed to give
greater importance to orbits that were con�ned in
the vicinity of the Sun.

Unfortunately, the mean radial and vertical velocities
we found are not as small as they should be. This is
certainly due to the choice of the orbits' sample, and
to the adopted size and shape for the cells.

We show nevertheless in the following tables the ra-
dial and vertical velocity dispersions just as the tilt
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of the velocity ellipsoid in the cells located next to
the Sun.

Table 1. Radial Velocity Dispersion �R.

z

R 0-1 kpc 1-2 kpc 2-3 kpc

6-7 kpc 4.1 33.1 11.8

7-8 kpc 1.7 31.8 42.9

8-9 kpc 2.1 27.6 52.9

9-10 kpc 1.9 21.4 57.5

10-11 kpc 3.7 27.4 46.7

Table 2. Vertical Velocity Dispersion �z.

z

R 0-1 kpc 1-2 kpc 2-3 kpc

6-7 kpc 16.1 33.1 8.7

7-8 kpc 7.6 19.8 19.2

8-9 kpc 2.1 11.7 12.8

9-10 kpc 1.9 4.5 13

10-11 kpc 6.9 15.7 12

Table 3. Tilt of the Velocity Ellipsoid �
2

Rz.

z

R 0-1 kpc 1-2 kpc 2-3 kpc

6-7 kpc - 5.2 270 83.5

7-8 kpc 8.9 -240 393

8-9 kpc 3.1 16 - 48.8

9-10 kpc - 3.1 - 15.4 -478

10-11 kpc -11.1 -206 -392
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