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ABSTRACT

Using Hipparcos parallaxes and proper motions to-
gether with radial velocity complementary data
(Coravel for late type stars and new ground-based
data for early type stars) for several thousand B-F
type stars, the velocity ellipsoid has been determined
as a function of age. The variations with age of the
ratio of the velocity dispersions, of the vertex devi-
ation and the age-velocity dispersion relation (AVR)
have been estimated.

Our results con�rm that mixing is not complete
at about 0:8 � 1 Gyr. The shape of the velocity
ellipsoid changes with time, getting rounder from
�U/�V /�W =1=0:63=0:42 � 0:04 at about 1 Gyr to
1=0:7=0:62 � 0:04 at 4 � 5 Gyr. The AVR rises to
a maximum, thereafter remaining roughly constant;
there is no dynamically signi�cant evolution of the
disk after about 4 � 5 Gyr. The velocity dispersion
in the direction perpendicular to the galactic plane
saturates at about 15�17 km s�1 for thin disk stars.
The vertex deviation declines with age and remains
near zero after 5 Gyr.

Key words: kinematics; velocity ellipsoid; disk heat-
ing; vertex deviation.

1. INTRODUCTION

As a �rst approximation the Galaxy can be assumed
to be stationary and axisymmetric. The kinemat-
ics of stars in the solar neighbourhood may di�er
from the kinematics predicted for an axisymmetric
and stationary disk (Binney & Tremaine 1987). In
particular, the shape and the orientation of the veloc-
ity ellipsoid may reect the existence of small as well
as large-scale irregularities. For instance, the vertex
deviation (the galactic longitude of the largest prin-
cipal axis of the velocity ellipsoid) may be non-zero
due to the presence of either small-scale irregulari-
ties such as spiral arms, gravitational wakes induced
by giant molecular clouds, etc. or of large-scale oscil-
lations (i.e. axisymmetric time-dependent distortions
or non-axisymmetric distortions) of the galactic disk
(Kuijken & Tremaine 1992).

It has long been known that the random velocities
of disk stars vary with age. However, due to the

lack of accurate kinematical data, a detailed study
of the age-velocity dispersion relation has not been
possible. Any interpretation of the kinematics of the
solar neighbourhood needs also to establish to what
extent the stars do form a well-mixed system.

The availability of Hipparcos parallaxes and proper
motions together with radial velocity complementary
data for about 3000 stars allow to redetermine the ve-
locity distribution functions in the solar neighbour-
hood on new bases. The gathered sample mostly con-
tains thin disk stars. The variations with age of the
shape of the velocity ellipsoid and of the vertex de-
viation as well as the age-dependence of the velocity
dispersion relation are presented.

2. MATERIAL

This study is essentially based on the Hipparcos sur-
vey stars for which kinematical data and individual
ages have been estimated. Astrometric data (po-
sitions, parallaxes and proper motion components)
have been taken from the Hipparcos Catalogue (ESA
1997). Radial velocity data have been obtained from
the literature (Barbier-Brossat 1997, Duot 1995) or
newly measured in an extensive ground-based pro-
gramme. For early type stars the new radial veloci-
ties were obtained within the framework of an ESO
key-programme (Gerbaldi et al. 1989) for southern
stars and of a survey carried out at the Observatoire
de Haute Provence (Grenier 1997) for northern stars.
For late type stars, only a part of the radial velocities
of the Coravel ESO key-programme has been used
(Udry et al. 1997). From these astrometric and spec-
troscopic data the velocity components with respect
to the Sun (U; V;W ) were calculated. U is directed
towards the galactic center, V in the direction of the
galactic rotation and W perpendicular to the galac-
tic plane. The errors in the velocity components were
computed taking into account the errors on the astro-
metric and spectroscopic data as well as the correla-
tion coe�cients between the astrometric parameters
(Meillon et al. 1997). A correction for galactic rota-
tion was also included using the Oort's constants A
and B given by Kerr & Lynden-Bell (1986).

The shape and orientation of the velocity ellipsoid
were then calculated. The corresponding uncertain-
ties were estimated from the errors and correlations
on the velocity components.
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Figure 1. Velocity ellipsoid axis ratios versus age (2812 stars, running average 500 points window).

In order to study the variation of the velocity ellip-
soid with age, individual ages were estimated from
Bertelli et al. (1994) isochrones. E�ective temper-
atures and [Fe/H] metallicities were derived from
Str�omgren photometry or taken from the spectro-
scopic values compiled by Cayrel et al. (1997). Abso-
lute magnitudes were estimated from Hipparcos par-
allaxes and V -magnitudes were corrected for redden-
ing using Str�omgren photometry.

The stars on the giant branch, in clusters and all
known binaries, variables and spectroscopically pe-
culiar stars were eliminated. Moreover, only stars
with an error on the age determination < 50 per cent
and on the velocity components < 15 km s�1 were
retained. To avoid the contamination by thick
disk population stars, stars with total velocities >
65 km s�1 were also eliminated. The �nal sample
contains 2812 stars. Most of the stars have metal-
licities > �0:5 dex and estimated ages smaller than
about 10 Gyr (only a few have ages between 10 and
12 Gyr).

3. RESULTS

3.1. The Shape of the Velocity Ellipsoid

The variations with age of the velocity ellipsoid axis
ratios (�V =�U and �W =�U ) are shown in Figure 1.
For the coldest populations (ages smaller than about
1 Gyr) the ratio �V =�U changes from about 0.9 re-
ecting the rather spherical velocity distribution of
the gas to 0.63�0.04 at about 1 Gyr. For such
younger objects, the kinematical behaviour is domi-
nated by the presence of moving groups (Sabas 1997,
Figueras et al. 1997). For ages > 1 Gyr the ratio
rapidly increases up to 0.7�0.04 at about 3 Gyr, then
remains unchanged within the estimated errors. The
axis ratio (�W =�U ) also varies rapidly with age, from
0:42� 0:04 at 1 Gyr to 0:62� 0:04 at about 4 Gyr.

The Oort ratio (�2
V
=�2
U
) is related to the Oort con-

tants A and B. For a at galactic rotation curve in
the solar neighbourhood, this ratio equals 0.5. The

sources quoted by Kerr & Lynden-Bell (1986) give
values ranging from 0.36 to 0.5. If we reasonably
assume complete mixing after about 1 Gyr, a simi-
lar range of values is observed: from 0:36 � 0:05 to
0:49� 0:06 as a function of age. For stars with ages
> 1 Gyr, the velocity distribution in each component
is consistent with being a Gaussian, according to the
Kolmogorov-Smirnov test at the 95per cent signi�-
cance level.

3.2. The Age-Velocity Dispersion Relation

In recent years observational evidence showed that
the age-velocity dispersion relation (AVR) is more
complex than a unique fairly smooth relationship
(Str�omgren 1987). Figure 2 presents the variation
of �U , �V and �W with age. In the diagram three
main age zones can be distinguished:

� stars with ages < 0:8 � 1 Gyr corresponding to
incomplete mixing;

� stars with ages between about 1 and 4 Gyr for
which a variation of the shape of the velocity
ellipsoid is observed;

� stars with ages between 4 and 10 Gyr for which
no trend of the velocity dispersion with age is
observed. �W increases up to 17 � 1 km s�1

and saturates at 15 km s�1 if only the stars
with �0:15 < [Fe=H] < 0:15 are kept. The
total velocity dispersion is smaller than about
37� 2 km s�1.

Di�erent mechanisms have been invoked to explain
the disk heating (Lacey 1992). These results provide
a new base for critical tests of these mechanisms and
will be discussed in a forthcoming paper.

3.3. The Vertex Deviation

The vertex deviation lV , the galactic longitude of the
largest principal axis of the velocity ellipsoid, is given
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