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ABSTRACT

Over the past few years it has been demonstrated
that iterative methods for finding the solution of lin-
ear systems of equations offer major advantages over
the ‘direct’ methods in various physical and numeri-
cal problems. We discuss here improvements in con-
jugate gradients algorithms applied to the reduction
on the reference great circles for the Hipparcos or
GATA-like type of observations. We consider the
CPU time and the storage requirements for various
conjugate gradients methods. We recommend use of
the stabilized version of the bi-conjugate-gradients
algorithm with left Jacobi preconditioning. This al-
gorithm requires 67 per cent greater storage than the
simplest CG algorithm without preconditioning, but
is typically three times faster and has a better con-
vergence. Our results can be used in future space
astrometric projects.
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1. THE PROBLEM STATEMENT

The problem of the great-circle reduction reduces to
that of finding, in a least-squares sense, x the vec-
tor of the small unknown corrections to the approxi-
mate values satisfying a linearized observation equa-
tion (Marel 1988, Marel & Petersen 1992):

y=Ax=A, x, + Asx, + Aix; (1)

with the m x n (m > n) design matrix A of partial
derivatives, and y the vector with linearized observa-
tions, i.e. the observed value minus a value computed
from approximate data on the unknown parameters.
The unknowns x and design matrix A are partitioned
into an attitude, star and instrument part, respec-
tively denoted by indices a, s and ¢. The submatrices
A, and Ag are very sparse, each of them containing
only one non-zero element per row. On the other
hand A; is almost completely filled (Figure 1).

The solution x of the least-squares problem can be
computed from the so-called normal equations:

Naa Nas Nai Xa ba
Nga Ng Ny Xs = by (2)
Nia Nis Ny Xj b;

with Npq = A;J;WyyAq and b, = AgWyyy for
D,q = a, s,t, and with weight matrix Wy, , where:

00*W' = Cyy = E{(y — E{y})"(y — E{y})} 3)

and oy is the variance of unit weight.

2. CHOICE OF A SOLUTION METHOD

Iterative methods for the solution of huge and sparse
linear systems of equations require less storage and
can use simpler data structure then direct methods.
They fully exploit the sparsity in the system of equa-
tions. Moreover in many problems the iterative solu-
tion can be computed faster than the direct solution.

In the last several years several high quality packages
became available (Templates, NSPCG, ITPACK,
PIM(Cunha & Hopkins 1996)). After examining sev-
eral options (Ilin 1997) we have decided to use the
PIM package.

3. THE PARALLEL ITERATIVE METHODS

The Parallel Iterative Methods (PIM) (Cunha &
Hopkins 1996) is a collection of FORTRAN 77 rou-
tines designed to solve systems of linear equations on
parallel computers using a variety of iterative meth-
ods. PIM offers a number of iterative methods, in-
cluding:

e conjugate-gradients (CQG);

e conjugate-gradients for normal equations with
minimization of the residual norm (CGNR);

e conjugate-gradients for normal equations with
minimization of the error norm (CGNE);

e bi-conjugate-gradients (Bi-CG);
e conjugate-gradients squared (CGS);
e the stabilized version of Bi-Conjugate-Gradients

(Bi- STAB) the restarted, stabilized version of
Bi-Conjugate-Gradients (RBi-CGSTAB);
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Figure 1. Non-zero structure of the design and normal matrices.
Table 1. CPU-time, number of iterations and storage.
preconditioning storage
Method no left right symmetric  matrix+
CG 102.2(699) *(2000) *(2000) 34.4(207) 6n
CGEV *(2000) *(2000) *(2000) 34.0(207) 6n
BiCG *(2000) *(2000) *(2000) *(2000) 8n
CGS *(2000) 41.8 (175) 42.4(180) 43.8(179) 10n
Bi-CGSTAB 251.0(1168) 32.0(138) 51.4(220) 42.6(176) 10n
RBi-CGSTAB  172.7(491) 27.8 (72) 50.5(129) 38.5 (94) (64+2k)n
RGMRES *(2000) 46.6 (46) *(2000) 1396(1333) (4+k)n
RGMRESEV *(2000) 46.7(46) *(2000) 1400(1333) (4+k)n
RGCR *(2000) 4745.0(1984) * (2000) *(2000) (54+2k)n
CGNR *(2000) *(2000) *(2000) *(2000) 6n
CGNE *(2000) *(2000) *(2000) *(2000) 6n
QMR *(2000) *(2000) *(2000) *(2000) 11n
TFQMR *(2000) *(2000) *(2000) *(2000) 10n

e the restarted, generalized minimal residual
(RGMRES);

the restarted, generalized conjugate residual
(RGCR);

the quasi-minimal residual with coupled two-
term recurrences (QMR);

the transpose-free quasi-minimal residual

(TFQMR) and Chebyshev acceleration.

The routines allow the use of preconditioning; the
user may choose to use left-, right- or symmetric-
preconditioning. Several stopping criteria are also
available.

4. PRECONDITIONING

We used the simplest preconditioning that consist of
just the diagonal of the coefficient matrix (Jacobi pre-
conditioning):

QiNQox = Qqb, (4)

where Q; = diag(A)~! for left preconditioning,
Q. = diag(A)~! for right preconditioning, and Q; =
Q- = diag(A)~'/2 for symmetric preconditioning.



5. STOPPING CRITERIA

Ideally we would like to stop when the magnitudes
of the error e(l) = _x(l) — x fall below a user-supplied
threshold. But e is hard to estimate directly, so

we use the residual @ = Ax® —b instead, which is
more readily computed. We used following criterion:

IED | < estop - 1D ()

This criterion yields the forward error bound:

le®l < AT -l < estop - AT - [IBIL - (6)

6. TEST MATRIX

We used matrices generated by our package of obser-
vations simulation for the space astrometry project
Struve. We consider here the case with 3000 stars
within the circular scan of 1 degree width, with 11
instrument parameters and with 4050 frames. The
number of observation equations is 67487. The ‘input
catalogue’ was obtained by adding systematic and ac-
cidental noise to the true star coordinates (see Ilin
1997 for details).

The special compressed format was used to storage

only nonzero elements of the sparse matrices A and
N.

7. NUMERICAL RESULTS

Table 1 presents CPU time in seconds (sequential
Pentium- 133), the number of iterations (in brack-
ets) and the storage requirements for several CG-like
methods. Star indicates that the method did not
converge in the maximum allowed number (2000) of
iterations or that the method failed to converge. For
restarted methods the basis number & = 10 was used.
We took estop = 10~® as the stopping criterion.

8. PARALLELISM

Everyone can easily implement CG-like algorithms
for multiprocessor computers. The basic time-
consuming kernels of iterative schemes are:

e inner product;

e vector updates;

e matrix-vector products;

e preconditioning solves.
A number of computational schemes in the PIM li-

brary have been specially reorganized for parallelism
to reduce the idle time for some processors.
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9. COMPARISION WITH LSQR METHOD

The LSQR algorithm (Paige & Saunders 1982) works
directly on the design matrix, using column scal-
ing as a preconditioning method. We have solved
the problem (1) with our test matrix by the LSQR
method. This method requires 1086 iterations and
1135 s of CPU time. Therefore it works slower than
most of CG-like methods. However Marel 1988 notes
that the LSQR algorithm is not significantly faster
than Choleski factorization realized in the Hipparcos
great-circle reduction. Therefore considering CG-like
methods could give a considerable gain for the data
reduction in the future space astrometric missions.

10. SUMMARY

To solve adequately the problem of the great-circle
reduction in the future space astrometric projects
involving several million programme stars we rec-
ommend use of nonstationary iterative (conjugate-
gradients-like) methods.

The left or symmetrical Jacobi preconditioning re-
duces the number of iterations needed, and improves
the convergence of all conjugate gradients methods.

We recommend use of the stabilized version of the bi-
conjugate-gradient algorithm with left Jacobi precon-
ditioning. This algorithm requires 67 per cent greater
storage than the simplest CG algorithm without pre-
conditioning, but is typically three times faster and
has a better convergence.
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