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LARGE-SCALE DISTORTIONS OF HIPPARCOS-LIKE COORDINATE SYSTEMS

V.V. Makarov
Copenhagen University Observatory, Juliane Maries Vej 30, 2100 Copenhagen ), Denmark

ABSTRACT

The problem of accidental error propagation in the
most general ‘global solution’ of a Hipparcos—like
mission for coordinates of stars is addressed. Unlike
the one—dimensional intermediate ‘star—abscissae’ so-
lution, which has actually been used in the Hipparcos
reductions, the global solution is free of wild amplifi-
cation of random errors at certain harmonics, thanks
to the intrinsic smoothing capability of angular mea-
surements on the sphere. The choice of a basic an-
gle is therefore not a critical issue for a future satel-
lite. The astrometric reference frame is expected to
be rigid with any basic angle in the range of 30° to
150°, as demonstrated by means of a spherical har-
monic technique. A basic angle of 90° would be a
good choice, for example.
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1. INTRODUCTION

Following the remarkable success of the ESA Hippar-
cos mission, several proposals for a future astrometric
satellite are being discussed at present. One of them,
called GATA (Lindegren & Perryman 1995), obtained
a broad support of the astronomical community due
to excellent prospects in various fields of astrophysics
and astrometry. Some interesting smaller national
projects, such as Struve (Yershov et al. 1995) and
DIVA (Réser et al. 1997) can also be mentioned. All
these projects are based on the same observational
principle, which proved to be highly efficient in the
Hipparcos mission.

The observations of a scanning astrometry satellite
of the Hipparcos type are performed by a telescope
with two fields separated by a ‘basic angle’ on the
sky, but superposed in the focal plane in an area of
about one square degree. The basic angle is physi-
cally implemented by a ‘beam combiner’ sending the
light from the two fields into a single telescope. The
beam combiner consists of two plane mirrors bonded
to each other at an angle equal to half the basic angle,
which therefore in fact remains very constant. The
satellite spins slowly, with a period of revolution of
about two hours, so that the two fields scan approx-
imately along a great circle. Accurate astrometric
observation is performed only in the direction of the
great circle, not perpendicularly to the circle.

The complete set of observations during the mis-
sion can be thought of as a great number of arcs,
connecting pairs of programme stars. The length
of each arc is close to the value of the basic angle,
within the width of the field of view of the telescope.
The core of the global solution idea is that this set
of one-dimensional measurements along great circles
can be directly tied up into a coherent system of two-
dimensional coordinates on the sphere, by a least-
squares method, for example. The method was tested
in numerical simulations by Bucciarelli et al. (1991),
and it was adopted as an alternative for the Hippar-
cos data reductions, although never implemented in
practice. It should be noted that the consideration
of the global solution method in the present paper
is vastly simplified compared to any practical imple-
mentation. For example, we do not consider at all
the intervening tasks of the instrumental calibration
and attitude parameters determination.

In the baseline method, which was actually imple-
mented for Hipparcos, an intermediate step of ‘great
circle reductions’ is used (Lindegren & Kovalevsky
1989). In this approach, the set of observations from
about five consecutive revolutions is first treated in a
great circle reduction providing an estimate of each
star’s ‘abscissa’, i.e., the projection of its position
onto a fixed ‘reference great circle’. The solution
provides in addition several instrument parameters
such as the basic angle, field rotation and scale value,
which are assumed to remain constant during an ob-
servation set. In a later stage of the astrometric
data processing the abscissae are combined to yield,
among other quantities, the celestial coordinates «a
and § of the stars.

Bucciarelli et al. (1991) demonstrated that the global
solution is slightly superior to the baseline method
with respect to the final precision of the resulting
astrometric catalogue. It will undoubtedly be con-
sidered as the basic option for a future astrometric
mission. This paper is a first attempt at an ana-
lytical study of the error propagation in the global
solution technique. The question addressed here is
whether the strategy of observations with a large ba-
sic angle and a relatively small field of view, coupled
with a global solution approach, matches the high
astrometric requirements of a future interferometric
mission.
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Figure 1. Power spectrum coefficients AP; for Aacosd
unknowns as functions of basic angle. The range of each
plot is 0° to 180° horizontally and 0 to 4 vertically. The
indices of spherical functions are given inside each plot.

2. SPHERICAL ORTHOGONAL FUNCTIONS

A rather conventional technique of spherical function
representation of astrometric errors is used in this
paper. The (small) errors of angular coordinates are
represented by the expansion:

J

Aacoss = Y a;Yj(a,8) +e€ (1)
j=0

A5 = > bVi(e,0) +e (2)
j=0

where Y; are spherical orthogonal functions, Ac is
conceived as the difference between the observed co-
ordinate ¢, and the true coordinate ¢;, and € is the
high-frequency component of the noise. The spheri-
cal functions are related to associated Legendre poly-
nomials by the equations

Yims = RpmPam(cosd) sinma
Yoime = RpmPam(cosd) cosma

The index j counts all different spherical orthogonal
functions from 0 to J = (N + 1)%
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Figure 2. The same as Figure 1, but for AJ.

In this application, we have to consider a discrete
set of points (target stars) on the sphere, for which
the corrections (A« cosd, Ad) to the input catalogue
positions should be determined. The condition of
orthogonality in the discrete case is:

> Vi(as, 1) Yi(ei,8) = I+ 8 (3

i€Q

~—

where (2 is the discrete set of points, and I is the total
number of points, provided the stars are uniformly
distributed over the sky.

When the number of terms .J in Equation 1 is close
to the number of stars I, the representation by the
spherical functions is fairly complete, and the high-
frequency term e is relatively small. The average
standard error over the sky can then be calculated,
for 0, for example, as:

6?%

J
var[b] (4)
=0

J

The covariances do not enter this expression, due to
the orthogonality of the basic functions.

The numbers P; =var[b;]/od, where o} is the vari-
ance of an elementary observation, can be interpreted
as power spectrum of the random error, in analogy



with the Fourier power spectrum of star abscissae er-
rors, derived in Makarov et al. (1995). The latter de-
pends critically on the value of the basic angle 7. As
was shown by Makarov (1992), wild amplifications
of abscissae errors at certain harmonics take place,
when v is a simple fraction of 360° (like 1 or 2),
which badly affects the overall astrometric precision

(cf. Figure 2.1 in Perryman & Hassan 1989).

The power spectrum P; describes how the coordinate
variance is divided among the spherical harmonics.
It shows also an expected character of accidental dis-
tortions of the resulting coordinate system. If the
power spectrum is dominated by one or several spe-
cific terms, then a specific pattern of accidental dis-
tortions should be expected.

Given the relativeness of all measurements, there is
no a priori way in which the orientation of the ce-
lestial coordinate axes can be derived purely from
the space observations. The determination of the
celestial positions therefore suffers from a singular-
ity corresponding to the undefined orientation of the
axes. Yet it can be shown that the degeneracy of
the solution emerges only at certain spherical har-
monics (Vityazev 1994). It makes therefore sense to
estimate the precision of «, § from the unaffected
spectral terms, leaving the determination of the axes
orientation as quite a separate problem.

3. NORMAL EQUATIONS

Under the above-mentioned simplifying assumptions,
an observation equation follows directly from the ge-
ometry of an elementary observation. The fact is
disregarded here, that not just a single pair of stars,
but rather all stars within the two simultaneous fields
of view are bridged in one observation. In fact, the
distance between two simultaneously observed stars
can differ a little from the value of basic angle v. Be-
sides, there is always some averaging of photon noise
errors on the scale of the field of view size, that brings
about additional smoothing at high-order accidental
harmonics. It is intuitively clear, and can be proven
by numerical simulations that the overall astromet-
ric performance benefits a lot from a wide field of
view. These effects are, however, not relevant to the
purpose of this paper.

In the small-angle approximation, a linearized obser-
vation equation for a given pair of objects (p,q) is
written as:

Ad = Aaysing, + Aaysing, — Ad, cos ¢, —
Ady cos dg (5)

where Ad is the correction to the pre-calculated dis-
tance d = v, and ¢,., r = p, q is the position angle of
the scan in the direction to the other object of the
pair. Using Equations 1 and 2, the observation equa-
tion can be rewritten in terms of spherical functions
as:

J
Ad = 3 ([¥; () sindy + Vj(g)sin 6] -

Jj=0

b;[Y;(p) cos ¢ + Yi(g) cos ¢q]) (6)
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Thus, the 2I unknown corrections to angular co-
ordinates are replaced by 2J unknown coefficients
(aj,b;), provided J < I. The set A of elementary ob-
servation equations can be solved by a least-squares
method. The normal matrix IN can be evaluated for
(a;,b;) as unknowns. This matrix turns out to be
very sparse and relatively easy to evaluate. For ex-
ample, the off-diagonal elements, corresponding to
covariances between the a— and b—terms, are always
equal to zero. This allows us to split the problem
into two independent smaller problems, for the two
coordinates separately.

The same applies for any combinations of the sin —
and cos — terms of tesseral and sectorial functions
Yom (m # 0). Moreover, all off-diagonal elements
vanish, unless the order of the corresponding func-
tions Yy, m, and Y,,m, is the same, m; = ma, and
the sum of their degrees ny + ny is even.

The diagonal element (4, j) for «, for example, is:

N o= Z (Yf (p) sin? ¢, + Yf(q) sin? ¢, +
(p,a)EA
2Y;(p)Y;(q)sin ¢psingy)

1 . .
= GNobs - T+2 ) V;(p)V;(a) sinp sin &,
(p,9)EA

where Nyps is the number of elementary observations
per star. The latter equality holds, provided the el-
ementary observations are uniformly distributed on
position angle ¢ for each star.

If the second term in the above equation, as well as all
the off-diagonal elements, were equal to zero, the ac-
cidental error would be uniformly distributed among
the spherical harmonics, and the coordinate error
propagation would follow the 1/4/Nopbs law. How-
ever, this is generally not the case.

The normal matrix was evaluated in the following
way. The entire sphere was divided into 4584 regions
of about 9 square degree each. A reference (primary)
point was placed in the centre of each cell. The or-
thogonality of the basic functions was numerically as-
serted to a relative precision better than 10~*. Then,
a set, of 50 secondary ‘stars’ was considered, regularly
situated along the small circle of radius v centered on
each primary point. Thus, the total number of simu-
lated stars in these calculations (and the number of
elementary observations) was A = 229200. Normal
matrices were then calculated for the 144 first terms
of expansions (1) and (2), up to Yi1 11, for values of
in the range 5 to 175 degrees, and covariance matrices
were evaluated. The resulting power spectrum coeffi-
cients AP; are shown in Figures 1 and 2, as functions
of ~.

All the curves in Figures 1 and 2 are fairly smooth,
and this makes an important difference with the case
of one—dimensional great—circle solution. There are
no heavily dominating peaks in the spectra, notwith-
standing the actually infinitely small field of view in
this analysis. The largest variances are found for
YO((;X ), Y2(0a ) and Y4((f‘ ), where they are far beyond the
range of the plots. The correlation coefficients be-
tween these terms are close to +1. This is most
probably a signature of the rank—deficiency of the
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Figure 3. Estimated overall precision of coordinates, ob-
tained in the global solution, as a function of basic angle.

problem. Rotation around the poles is in fact very

similar to the distortion represented by YO((;X ), a signif-
icant difference being only in the circumpolar regions,
where the observation equation (5) becomes invalid.
Moreover, such a rotation can be expressed through a
certain linear combination of (completely correlated)
YO((;X), YZ(OC'), YZL((;)‘), ... zonal terms (Vityazev 1994).
These terms should probably be fixed by the deter-
mination of the coordinate system orientation, which
is quite a separate problem beyond the subject of this
paper.

As could be expected, local maxima of AP; are found
for the sectorial harmonics in A« cos d: )\P3(§' ) =51
at y = 120°, AP\%) = 3.1 at v = 90° and AP\®) = 2.4
and 4.6 at v = 72° and 144°, respectively. As for
the Ad corrections, the most prominent maxima are

APS) = 85aty =120° and AP\)) = 4.8 at v = 145°.

In principle, with such a power spectrum, the general
character of accidental distortions of the resulting co-
ordinate system can be predicted. With a basic angle
of 120°, for example, the accidental distortions would
be most probably dominated by those represented by

Y;g ) and Y;; ). The amplitudes of these distortions

can be predicted, but not the phase (for the 13(3“ )).
Perhaps it is more interesting to estimate the overall
astrometric performance, as a function of ~.

The overall precision for both coordinates is esti-
mated by Equation 4. The result is shown in Fig-

ure 3, where the three poorly determined terms YO(OC' ),

Y;éx ) and Y4((;X ) have been excluded. It confirms that
the astrometric quality of the global solution is vir-
tually the same with any basic angle in the range 30°
to 150°.

4. CONCLUSIONS

We have shown, that the expected amplitudes of
large-scale distortions of Hipparcos-like coordinate
systems can be evaluated without solving the obser-
vation equations, in the most general global solution.
The attributed power spectrum of these distortions
turns out to be fairly smooth, whichever value for the
basic angle is chosen within the interval 30° to 150°.

This allows a free choice of the basic angle for a future
astrometric mission. A basic angle of 90°, for exam-
ple, would provide a coordinate system of high qual-
ity with respect to large-scale accidental distortions.
Besides, it has important advantages as compared
with the v = 58° of Hipparcos. Firstly, a larger ba-
sic angle brings better precision for parallaxes due to
evident geometrical reasons. Secondly, a basic angle,
which gives 360° by multiplication, provides a natu-
ral closure condition on each revolution of the satel-
lite, greatly facilitating the self—calibration of the in-
strument, and somewhat relaxing requirements to its
stability.

ACKNOWLEDGEMENTS

This work was supported by the Danish Space Board.

REFERENCES

Bucciarelli B., Lattanzi M.G., Migliaccio F., Sansé
F., Sarasso M., 1991, Adv. Space Res., Vol. 11,
No. 2, 79.

Lindegren L., Perryman M.A.C., 1995, The GAIA
Concept, in Future Possibilities for Astrometry in
Space, ESA SP-379, Cambridge, UK, p. 23

Lindegren L., Kovalevsky J., 1989, Overview of the
Data Acquisition and Reductions, in The Hippar-
cos Mission, ESA SP-1111, 1

Makarov V.V., 1992, Pis’'ma Astron. Zh., 18, 630
(Sov. Astron. Lett., 1992, 18(4), 252).

Makarov V.V., Hgg E., Lindegren L., 1995, Experi-
mental Astronomy, 6, 211.

Perryman M.A.C., Hassan H., 1989, The Hipparcos
mission, Vol. 1, The Hipparcos Satellite. ESA SP—
1111.

Roser S., Bastian U., deBoer K.S., Hgg E., Roeser
H.P., Schalinski C., Schilbach E., deVegt Ch.,
Wagner S., 1997, ESA SP—402, this volume

Vityazev V.V., 1994, Astron. Astrophys. Transac-
tions, 4, 195.

Yershov V.N., Chubey M.S., II'in A.E., Kopylov .M.,
Gorshanov D.L., Kanayev L.I., Kirian T.R., 1995,

STRUVE. Scientific grounds of the project (in
Russian). Main Astronomical Observatory, SPb.



