

Euclid-Roman Cosmic Shear Synergies

Tom Kitching (UCL, MSSL)

- Here I will focus on cosmic shear only combination of 3x2pt statistics including shear and photometric clustering
- Very few joint Roman-Euclid studies. Here proposed programme of possible synergies

 Review some well-known synergies and propose some unexplored ones

What is Euclid ?

Slide from Y. Mellier

BAO, RSD and WL

1.5 billion sources with shapes, 10 slices

Weak Lensing

Simulation of cosmic shear in a CDM model. Line segments represent amplitude and direction of lensing shear produced by over-densities (light blue) and voids (dark blue). (B. Jain, U. Seljak, & S. White 2000, ApJ, 530, 547)

https://www.stsci.edu/files/live/sites/www/files/ho me/roman/_documents/cosmology-with-roman.pdf Roman will enable measurements of millions of galaxy shapes with high signal-to-noise in four bands, providing the best controlled weak-lensing experiment: unique in depth, detail, and control of measurement and astrophysical systematics. The high density of lensed galaxies will make it possible to produce high-resolution maps of dark matter with redshift that can be used to better understand the growth of large-scale structures and provide additional constraints on key cosmological parameters. In addition to mapping galaxy distributions, Roman's potential High-Latitude Survey will enable:

- Wide-area, 4-NIR-band imaging of 170 deg²/month, with a possible total yield of 4 × 10⁸ weak-lensed shapes (40 50 galaxies per square arcminute in the stacked images)
- 4-band photometric redshifts for all of the galaxies, complemented with slitless spectroscopy $(1.0 1.93 \ \mu m)$ for the same areas of sky
- Detection of >20,000 galaxies/month at z > 8, and 1,500 galaxies/month at z > 10
- Imaging depth of 26.9 in Y, J, H bands

Ground based Photometry and Spectroscopy (photo-z)						
		SURVE	/S In ~6 yea	rs		
	Area (deg2)			Description		
Wide Survey	15,000 deg ²	2	Step and stare with 4 dither pointings per step.			
Deep Survey	40 dog2		In at least 2 patches of $> 10 \text{ deg}^2$			
	40 deg-		2 magnitudes deeper than wide survey			
PAYLOAD						
Telescope	1.2 m Korsch, 3 mirror anastigm			gmat, f=24.5 i	m	
Instrument	VIS		NISP			
Field-of-View	$0.787 \times 0.709 \text{ deg}^2$		$0.763 \times 0.722 \text{ deg}^2$			
Capability	Visual Imaging	NIR	Imaging Photom	etry	NIR Spectroscopy	
Wavelength range	550–900 nm	Y (920-	J (1146-1372	Н (1372-	1100-2000 nm	
		1146nm),	nm)	2000nm)		
Sensitivity	24.5 mag	24 mag	24 mag	24 mag	3 10 ⁻¹⁶ erg cm-2 s-1	
	10o extended source	5σ point	5σ point	5σ point	3.5σ unresolved line	
		source	source	source	flux	
	Shapes + Photo-z of <u>n</u> = 1.5 x10 ⁹ galaxies			z of n=2.5x10 ⁷ galaxies		

Possibility other surveys: SN and/or µ-lens surveys, Milky Way (TBC): after Mission PDR

Roman+Euclid can improve all systematic effects in both surveys

*won't discuss in this talk

Deblending

Dominant source of bias

Reference: LSST Synergy With Euclid and WFIRST; Rhodes (2019)

Reference: Hoekstra, Kannawadi, Kitching (2021), 2010.04178

 Possible to calibrate, or use Metadetect, but more data (bands) is better

Shape Measurement

 Pixel level shape measurement from multiple surveys/methods in general leads to better accuracy

 $\log(Q_{dn})$

Kitching et al. (2012) 1202.5254

https://drive.google.com/file/d/1UpzkjMGUNkietkdXbLwKiehl 2uwbUul/view (credit: Hirata)

Astrophysical Systematics

Main astrophysical systematic effect is intrinsic alignments

Dominant model – (non)linear alignment (Hirata & Seljak, 2004) assumes primordial alignment followed by growth factor scaling: Higher redshift is better (for measuring IA)

Roman – better IA constraints, but lower overall signal-to-noise

Euclid more contaminated but higher signal-to-noise.

Expectation that combination of the two would yield best of both – needs investigation

Predictions of the fraction of LSST weak lensing sample objects that would yield a secure (multiple-confirmed-feature) spectroscopic redshift, based either on 1440-second exposure time with Roman (coloured regions)

Roman spectroscopy with Euclid shapes could measure IA function with same S/N as current combinations of BOSS+KiDS over twice the area (from space)

 Alignment changes as a function of radius from a galaxy and SED

Kiessling et al. (2015): 1504.05546

Kirk et al. (2015): 1504.05465.

Multiple alignment measurements of the same population could be to mitigate cosmic variance (Chisari et al. 2016; 1607.05232)

Or can use multiple shear estimates to improve constraints on IA in the nonlinear regime (Leonard et al. 2018; 1802.08263)

Precise Roman-Euclid predictions need investigation

 Most complex systematics are at high source redshift. Euclid+Roman -> better cross-redshift calibration

For a fixed ell-mode Roman high-z will be less contaminated by high-k (small scale effects), but raw shot-noise lower.

Euclid more contaminated but higher signal-to-noise.

Expectation that combination of the two would yield best of both – needs investigation

• Science Synergy

- More than the sum of the parts
- Euclid & Roman can both measure
 - Weak lensing shear g,
 - Weak lensing magnification;
 - Including size s and flux (n(z))
 - Galaxy positions θ , both photometric and spectroscopic
- At least 3 measurements per galaxy
 - Over 10 redshift bins
 - 30 observable maps per experiment -> 60 for two experiments
 - >1500 auto and cross-correlations / power spectra !

• Some will help with systematics

Shear cross-correlation

 $ilde{\gamma} = \gamma^{grav} + \gamma^{int} + \gamma^{sys}$

$$\langle \tilde{\gamma} \tilde{\gamma} \rangle = \langle \gamma^{grav} \gamma^{grav} \rangle + 2 \langle \gamma^{grav} \gamma^{int} \rangle + \langle \gamma^{int} \gamma^{int} \rangle + \langle \gamma^{sys} \gamma^{sys} \rangle$$

Telescope

$$\langle \tilde{\gamma}_o \tilde{\gamma}_r \rangle = \langle \gamma \gamma \rangle + \langle \gamma \gamma_o^{int} \rangle + \langle \gamma \gamma_r^{int} \rangle + \langle \gamma_o^{int} \gamma_r^{int} \rangle + \langle \gamma_o^{sys} \gamma_r^{sys} \rangle$$

This
appears to Small
be small

Figure from D. Bacon

Theory

For a fixed area spectroscopic redshifts in a 3x2pt analysis (cosmic shear+photometric clustering) will allow for lower (cleaner) k-cuts or equivalently much higher dark energy FoM

Trade off between Euclid wider area, higher FoM but more high-k contamination

Versus Roman smaller area, lower FoM, but less high-k contamination

Expectation that combination of the two would yield best of both – needs investigation

 Very few joint Roman-Euclid studies on cosmic shear: mainly to date focussed on data analysis (photo-z, blending)

 Here proposed programme of further possible synergies – more investigation is warranted