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Introduction: The ESA-PANGAEA Mineralogical 

Toolkit is a set of analytical techniques aiming to en-
hance the recognition of planetary materials. It in-
cludes a custom publicly available database called the 
PANGAEA Mineralogical Database (MinDB), which 
contains information on all known minerals found on 
the Moon, Mars, and other planetary bodies [1]. This 
database then serves as the basis for a spectral classifi-
cation system using machine learning (ML) to perform 
in-situ spectroscopic identification of minerals and 
their compositions [2]. Developed and tested together 
in the context of ESA’s astronaut field science training 
using analogue environments, PANGAEA, the mineral 
library, and recognition software are conceived as real-
time decision support tools for future planetary surface 
exploration missions.  

PANGAEA Mineralogical Database: The 
MinDB [1] can be viewed as two distinct products: a 
catalogue of petrographic information (meta-data) and 
an analytical reference library. The catalogue consists 
of petrographic information on all currently known 
minerals identified on the Moon, Mars, and in meteor-
ites. The catalogue is envisioned to provide essential 
analytical in-field information for rapid identification 
and understanding of significance during geological 
exploration. Each mineral entry includes: IMA recog-
nized name, chemical formula, mineral group, surface 
abundance on planetary bodies, geological significance 
in context of planetary exploration, number of collect-
ed VNIR and Raman spectra, their spectral discovera-
bility, and features. The database was compiled 
through systematic literature research, followed by the 
careful intercomparison of all mineral characteristic 
information. The second major part of the MinDB is a 
customized library of analytical data from all known 
planetary terrestrial analogue minerals. This covers 
reflective Visual-to-Near- & Shortwave-Infrared 
(VNIR), Raman vibrational (molecular) spectroscopy, 
Laser-Induced-Breakdown (LIBS), and X-Rays Fluo-
rescence (XRF) atomic spectroscopy. This library also 
includes a set of reference spectra for evaluating the 
detectability of minerals with different analytical 
methods. The archive consists of high-quality spectra 
collected from available open access on-line cata-
logues, such as RRUFF (Raman), USGS, RELAB, 
ECOSTRESS (VNIR), and our own collection of spec-
troscopic measurements of planetary analogue miner-
als taken from different collections and synthetic spec-
tral libraries, such as LIBS NIST, see [2].  

 
Machine Learning (ML) software for recogni-

tion of minerals from multispectral data: To utilize 
the MinDB for in-situ real-time identification of min-
erals and their compositions from the output of analyt-
ical tools, we also developed methods that combine 
material characteristics, mineral structure (obtained 
with VNIR and Raman spectra) and chemical composi-
tion (from XRF and LIBS spectra) to achieve identifi-
cation. To achieve this, we evaluated various ML ap-
proaches used to identify mineral species from single 
analytical methods (Raman, VNIR or LIBS), and de-
veloped a flexible and modular algorithm that can clas-
sify minerals either from one or pair-combined spec-
troscopic methods. Our new approach was then evalu-
ated using our customized library of spectroscopic data 
from the MinDB. Our cross-validation tests show that 
multi-method spectroscopy paired with ML paves the 
way towards rapid and accurate characterization of 
minerals [2], as well as improving the quantification of 
mineral abundances in rocks and soils using ML-based 
spectral unmixing.  

PANGAEA Mineralogical Toolkit as an Analyt-
ical Toolset for Planetary Surface Exploration: The 
PANGAEA Mineralogical Toolkit is envisioned as a 
part of the Electronic Fieldbook ToolSuite (EFB) [3], a 
deployable system supporting field science operations. 
The EFB can interface with handheld spectrometers 
intended for planetary exploration, simultaneously 
feeding their measurements into the embedded Miner-
alogical Toolkit. Combined with various spectral ana-
lytical tools linked to the EFB, the instrument agnostic 
nature of the Mineralogical Toolkit will enable fast and 
reliable in-situ recognition of rocks and minerals, thus 
becoming a crucial decision support tool for future 
human and robotic planetary surface exploration mis-
sions. The first field tests of the PANGAEA Miner-
alogical Toolkit combined with a portable spectrome-
ter linked to the EFB during ESA’s training and ana-
logue testing programs, PANGAEA and PANGAEA-
X by astronauts, planetary scientists, and operations 
engineers, have demonstrated the system’s high predic-
tion accuracy and operational efficiency.  
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