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Introduction:  The ChemCam instrument, located 
on the Curiosity rover on Mars, measures rock chemi-
cal compositions at a distance via laser-induced break-
down spectroscopy (LIBS) spectra using analysis with 
traditional regression methods. Deep neural networks 
(Deep NNs) have recently2 been employed to make 
predictions using the LIBS data calibrated on Earth; 
however, the models lack uncertainty estimates in their 
predictions, resulting in unknown confidence in model 
predictions of  Mars data, where the true value is not 
available. In these distant and foreign environments, it 
is essential for terrestriallytrained NN models to con-
tain uncertainty quantification (UQ). We examine two 
straightforward UQ methods, Bootstrap and Monte-
Carlo Dropout, applied to NNs trained on  LIBS cali-
bration data.  

Dense Neural Network and UQ Methods:  
Bootstrap: Bootstrap uncertainty intervals for a 

trained model are produced by re-sampling the data, 
retraining the model, and producing a prediction from 
the new model. The distribution of these new data 
points defines the bootstrap uncertainty intervals. We 
only retrain the NN output layer, as this choice has 
been  shown to produce satisfactory results1.  

Monte-Carlo Dropout (MCD): MCD refers to the 
random elimination (dropout) of NN nodes at either 
training or  prediction time, which allows us to obtain a 
distribution over predictions. In these results, we apply 
MCD to a proportion p of neurons at prediction time to 
approximate Bayesian inference over the weight 
space3.  

NN model implementation: In order to efficiently 
explore the UQ method properties, we consider a sim-
ple, dense NN with single hidden layer: the input 
(LIBS spectra), hidden, and output (composition) lay-
ers are of size 5000, 512, and 1 respectively. The NN 
key parameters are the hidden layer size (fixed to 512) 
and activation function (fixed to ReLu), layer weight ℓ" 
regularization parameter 𝜆𝜆,  and dropout rate p.  

ChemCam Data:  We use ChemCam LIBS cali-
bration measurements5 made in a terrestrial Mars at-
mosphere chamber, corresponding to 378 unique mate-
rials. We compute the average LIBS spectrum for each 
material after discarding the first five shots, and then 
rescale by the maximum value across all wavelengths. 
The training, test, and validation sets are of size 200, 
100, and 50 respectively. For simplicity, we consider a 
single composition value of SiO2 as it is the most 
abundant in the samples.  

Results:  Evaluation metrics: In order to assess the 
mean predictions and uncertainty intervals we compute 
three metrics: (i) Root Mean Square Error (RMSE): 
square root mean of the difference squared between 

model prediction and LIBS reference value (ii) Cover-
age: percentage of predicted data points falling within 
model error bars, and (iii) Interval Score: a function4 
that penalizes both interval size and RMSE.  
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Figure 1: Top: True vs. predicted composition, in-
cluding 95% intervals for three modes. Bottom: Sum-
mary of metrics.   

Summary: We train a series of NNs in the parame-
ter 

space  log 𝜆𝜆 ∈ [−5, −4, −3, −2]  and 𝑝𝑝 ∈ 
[0.05, 0.1, 0.2, 0.3]. In Figure 1, we present a model 
(log 𝜆𝜆 = −5) analyzed with bootstrap and MCD: Boot, 
MCD1 (p=0.05) and MCD2 (p=0.1). These models 
have a RMSE comparable to previous works2. The 
bootstrap model performs the best on all three metrics. 
The lowest dropout rate also produced good results, 
although the interval score was worse. Increasing the 
dropout rate further to p=0.1 results in larger error 
bars. Our results demonstrate that bootstrap and MCD 
can potentially be useful for UQ applied to ChemCam 
data, although the parameter choices are important to 
consider.  

Future Work: We plan to include additional com-
positions and examine the performance on Mars-
collected data.   

Acknowledgements: Research presented here was 
supported by the 2021 Los Alamos Applied Machine 
Learning workshop, and the Laboratory Directed Re-
search and Development program of Los Alamos Na-
tional Laboratory under project number 20210043DR.  

References: [1] Brosse et al. (2020), [2] Castorena 
et al. (2021) Spec. Acta Part B. [3] Gal & Ghahramani. 
2016. PMLR. [4] Gneiting et al. 2007. J. Am. Stat. As-
soc. [5] Clegg et al. (2017) Spectrochim. Acta B.  

Pre
dict
e

d 




