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Introduction: 

Laser-induced breakdown spectroscopy (LIBS) is a 

spectroscopic technique for analyzing elemental com-

positions both qualitatively and quantitatively. LIBS 

uses a pulsed laser to induce a plasma on the surface of 

a sample. Light emitted by the plasma contains charac-

teristic emission depending on the chemical composi-

tion of the target. Since there is no need for direct con-

tact to the sample, LIBS is highly relevant for in-situ 

exploration of extraterrestrial bodies [1]. The first ex-

traterrestrial LIBS instrument, ChemCam, which is 

part of the Mars Science Laboratory payload collected 

more than 800000 single shot spectra since landing in 

2012 [2]. In 2021 another two LIBS setups landed on 

Mars: the MarSCoDe Instrument of China’s Tianwen-1 

mis-sion [3] and the SuperCam instrument of NASA’s 

Per-severance rover [4]. 

Besides the favorable applicability of LIBS, the com-

plexity of the underlying physics, as well as high sensi-

bility to experimental conditions, make it challenging 

to accurately classify and quantify chemical compo-

nents. This is especially true for in-situ measurements 

when experimental conditions cannot be controlled. 

Because of this, machine learning techniques have 

found numerous applications for analyzing LIBS spec-

tra in recent years. [5, 6]  

Method: 

In this study, we focus on developing a classification 

scheme for LIBS spectra measured in our laboratory 

(read [7] for detailed setup description) in simulated 

Martian atmospheric conditions. The data set used for 

our analysis consists of 2500 LIBS spectra obtained 

from 100 different samples. The goal is to classify 

LIBS spectra according to different group attributes: 

Four different Mars simulants [8] (MGS-1, MGS-1C, 

MGS-1S and JEZ-1) served as a basis for our sample 

composition, i.e. 625 spectra per Mars simulant.  

Furthermore, different salts (NaCl, MgCO3, MgSO4 

and CaCO3) have been added with varying concentra-

tions (~ 0.5-15%) to simulate a realistic variance of 

water-deposited salts and cements in Martian sedimen-

tary rocks. To account for varying laser irradiances due 

to varying sample-to-laser distance, as it is the case for  

in-situ applications on Mars, each sample was meas-

ured with five different laser pulse energies ranging 

from ~5mJ – 50mJ (6 ns pulse duration and 300 µm 

laser spot diameter). 

Developing a classification algorithm that is able to 

correctly predict all attributes at once, i.e. the Mars 

simulant, added salt and the laser energy, is challeng-

ing. Therefore, we choose to tackle this classification 

problem stepwise. We focus on backpropagation neural 

networks (BNN) as a first choice at each classification 

step. 

In the first step the samples are classified according to 

their main component, i.e. the Mars simulant. Since 

each spectrum consists of more than 28000 data points, 

the dimensionality of the data set was reduced with 

principal component analysis (PCA) prior to training to 

improve the efficiency. The PCA scores are then used 

as input for training a BNN. The highest accuracy is 

achieved when using the first 15 PCA scores and one 

hidden layer of size 20. The resulting training and vali-

dation accuracy are >98% and >95% respectively. 

In future work we will include further sub models 

for stepwise classification of other spectral features 

such as the laser energy used in the experiment and 

the salt added to the sample. 
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