Kevin Grimes kevin.m.grimes@jpl.caltech.edu

23 June 2022

3rd Planetary Science Informatics and Data Analytics
Conference

Overview

Background

Motivation

Atlas IV

Next steps

References

https://bit.ly/39DJfZy

Overview

Background

Motivation

Atlas IV

Next steps

References

Background

- "PDS Imaging Node" = Cartography and Imaging Sciences Node of the Planetary Data System
- One node, two facilities USGS & JPL
- Home to upwards of 1PB of planetary digital archives

U.S. Geological Survey

Background

- "PDS Imaging Node" = Cartography and Imaging Sciences Node of the Planetary Data System
- One node, two facilities USGS & JPL
- Home to upwards of 1PB of planetary digital archives
- Diverse collection of products
 - Landers, rovers, orbiters, and probes
 - PDS3 and PDS4
 - Imagery, maps, and other products

Background

- "PDS Imaging Node" = Cartography and Imaging Sciences Node of the Planetary Data System
- One node, two facilities USGS & JPL
- Home to upwards of 1PB of planetary digital archives
- Diverse collection of products
 - Landers, rovers, orbiters, and probes
 - PDS3 and PDS4
 - Imagery, maps, and other products
- Over 1.2M images across 5 missions enhanced by ML processes

Overview

Background

Motivation

Atlas IV

Next steps

References

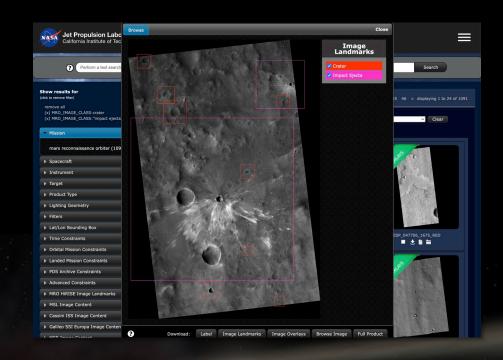
Motivation


Challenge: Enable users to effectively locate data they need to do their research

Partially solved with Atlas III

Motivation

Atlas III


 Faceted search on hundreds of PDS3 keywords from multiple missions

Motivation

Atlas III

- Faceted search on hundreds of PDS3 keywords from multiple missions
- Download original products, as well as their browse imagery and label
- Report generator
- Powered by ML (feature bounding boxes, class faceting)

Motivation

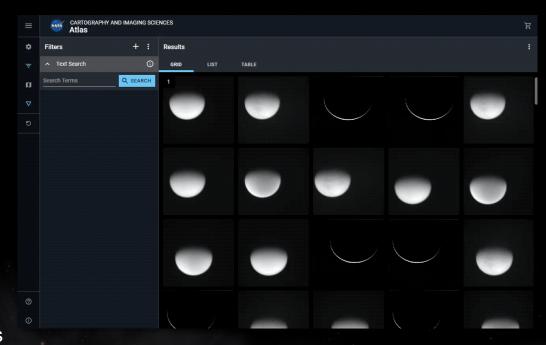
It's great, but...

- Availability and scalability concerns
- Security and performance expectations
- Downloading lots of data at once is a hassle
- Doesn't work on a phone
- Built nearly a decade ago using technologies that have since become outdated

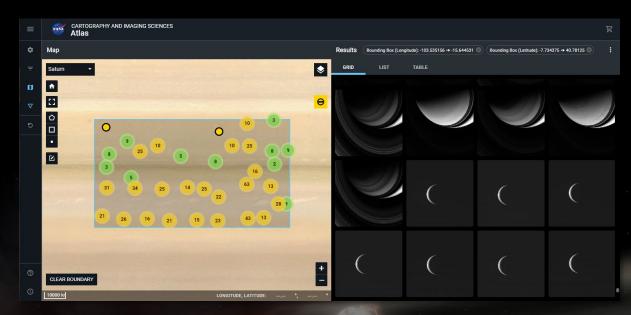
Overview

Background

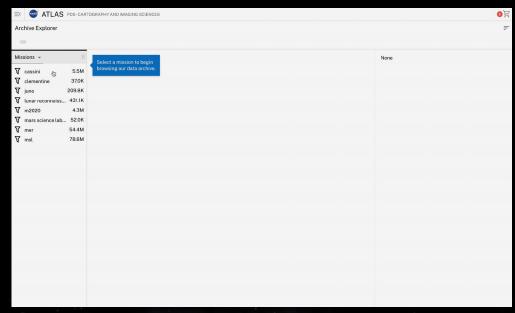
Motivation


Atlas IV

Next steps

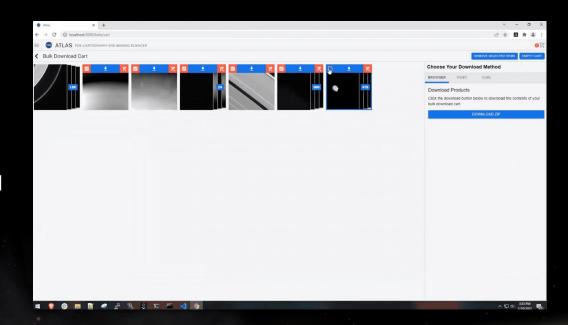

References

- Single-page NodeJS, React, Redux, Webpack application
- Material UI
- Mobile friendly
- Enhanced filtering
- Improved geospatial search support
- Expanded file exploration functionalities
- Streamlined download process
- Tighter integration with machine learning classifiers

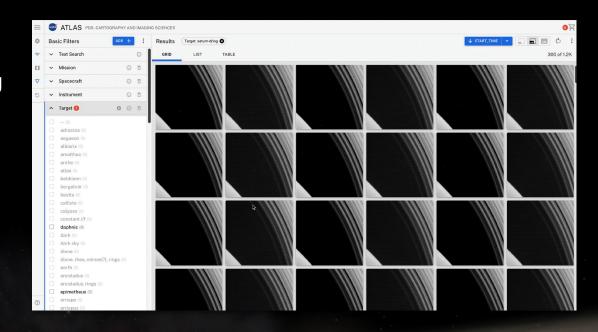

- Facets are addable
 - Scales better with the the 1k+ unique fields in our collection
 - Lowers cognitive load
- Facets are now categorized
 - Time
 - Spatial
 - Lighting
- Supporting documentation for fields parsed from PDS archival documentation
- Faceting is now powered by IMG's Search API

- Geospatial search enabled via integration with CartoCosmos¹
- Supports
 - Bounding box drawing,
 - Nearly 30 planetary bodies,
 - Polar projections, and
 - A whole suite of basemaps and layers for each

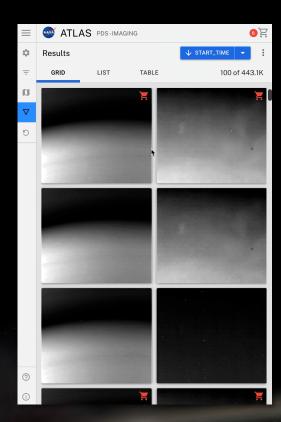
Atlas IV

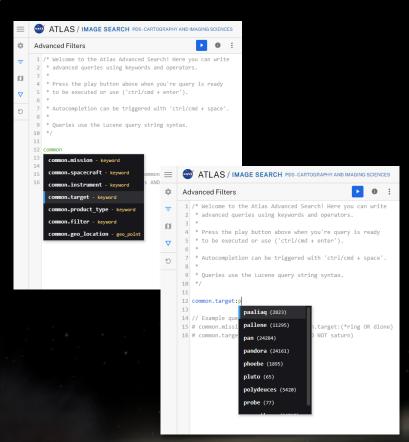

File directory view

- Utilized IMG's Data Access API (virtualized paths)
- Provides a rich and reactive experience that integrates with the rest of Atlas IV
- Provides navigation, filtering, sorting, and basic search


Atlas IV

Shopping cart


- Streamlines download of large counts of files
- Mark items as you're browsing, download later
- Remove items no longer wanted
- Streams to ZIP file (also curl and wget)
- Pause and resume transfer
- Status reporting
- JSON manifest

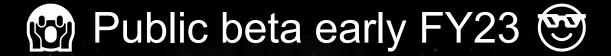

- Dedicated image pages
- Interactive zooming and panning
- Toggleable layers, including landmarks
- Simultaneous viewing of both image and label
- Interactive label with feedback loop

- Mobile friendly
- Extensive help for new users
- Closer integration with machine learning capabilities
- Highly extensible codebase for future improvement
- Virtualized, lazy-loaded, and infinite scrolling results
- Shared design system and tighter relationship with the main PDS Imaging site
- Light and dark mode

- Mobile friendly
- Extensive help for new users
- Closer integration with machine learning capabilities
- Highly extensible codebase for future improvement
- Virtualized, lazy-loaded, and infinite scrolling results
- Shared design system and tighter relationship with the main PDS Imaging site
- Light and dark mode
- Advanced search with syntax highlighting and autocomplete

Overview

Background Motivation Atlas IV Next steps References


Next steps

- Support all data from Atlas III
- Full integration with PDS API
- DEMUD² classifier integration (novelty)
- Generate tiled versions of our browse imagery

Next steps

- Support all data from Atlas III
- Full integration with PDS API
- DEMUD² classifier integration (novelty)
- Generate tiled versions of our browse imagery

Overview

Background Motivation Atlas IV Next steps References

References

- Cover slide graphic: "PIA23647: Tarantula Nebula Spitzer 3-Color Image", retrieved from https://photojournal.jpl.nasa.gov/catalog/PIA23647
- Background graphic of all other slides: "PIA23647: Tarantula Nebula Spitzer 3-Color Image", retrieved from https://photojournal.jpl.nasa.gov/catalog/PIA25161
- [1] https://github.com/PlanetMap/CartoCosmos
- [2] https://github.com/wkiri/DEMUD

More information on the IMG API and the cloud-first architecture it implements may be found here:

https://bit.ly/3QDPxc1

Slides for this presentation: https://bit.ly/39DJfZy

Contact me: kevin.m.grimes@jpl.caltech.edu

jpl.nasa.gov