
MAINTAINING MICROSERVICES:
APPLICATIONS FOR THE ASTROMATERIALS

DATA SYSTEM

J.D. Figueroa, K.Lehnert, P. Ji, L. Profeta, J. Mays, A. Johansson,

Lamont-Doherty Earth Observatory, Columbia University, New York, USA

Planetary Science Informatics and Data Analytics (PSIDA) conference
June 23rd, 2022

What is AstroMat?
Astromaterial Data System
(AstroMat) is a comprehensive
data system for laboratory
analytical data generated by the
study of astromaterials. It is
designed as an ecosystem of
interconnected applications that
provide human- and
machine-readable interfaces to
the data gathered and managed
in AstroMatʼs databases.

AstroMat Data

With 777,896 chemical data points for lunar
(349,610) and meteorite (394,452) collections
consisting of 51% mineral analysis, 42.74%
rock analysis and 6.2% inclusion analysis,
the AstroMat data system aims to become a
one stop-shop for curated astromaterials
data.

— Text cloud of chemical variables as they exist in
AstroMat.

AstroMat Faceted Search

Pre-built static javascript applications using
functional programming techniques deliver
modular code used to deliver user-friendly
front-end applications with quickly
accessible data.

The flow of data comes from relational
databases, to an elasticsearch index, to API,
to front-end applications, and finally to end
user(s).

Landing Page Philosophy

After search and export features, AstroMat
looks forward to designing dynamic parent
sample pages that contain aggregate
metadata and links to appropriate external
resources.

Our landing pages will also include a
hierarchical representation of all samples
and aggregate sample data representing
analysis done and sample sub-components.

Maintaining Front-End
Applications

Employing the Modular Federation
Approach

Current State of Frontend Applications

● Request data from API resource, which
pulls data from an elasticsearch index.

● Single Page Applications (SPAs) all have
duplicate components including header,
navigation, login, and footer components.

● All SPAs are stored in AWS S3 buckets
through continuous deployment.

● All applications require similar design,
usability, and interoperability.

Agile
Sprint Cycle

Atomic
Design Methodology

Every 2
weeks

Why Modular Applications?

Compartmentalization of
project management

Design theory aims to treat
applications as component

pieces.

APIs distribute data according
to application endpoint/query

specifications

API - Driven
GET, PUT, POST, DELETE

● Simple to update and refactor application components.

● Decrease complexity makes it easier to maintain.

● Enhanced collaboration since developers can focus on pieces rather than the entire system.

● Readable code due to decreased complexity and functional programming approach.

● Bugs are easier to detect and address.

● Modular components are reusable.

● Iterative development and continuous deployment.

The Benefits of Modular Architectures

Moving towards distributed, decentralized, dynamic, and cloud-based web applications.

● Higher initial investment.

● Greater planning complexity.

● Continuous monitoring to maintain codebase.

The Drawbacks of Modular Architectures

Ok, so modular is good. Now what?

Modular Federation - Home Application

● All applications are still independent of one
another, but gather components from the
Home Application which hosts the shared
components (Header, Footer, Login, etc.)

● In this scenario, modular federation is taken
from a built and deployed static asset store
(AWS S3).

● Home App modular components are shared
through a remote entry webpack
configuration.

Multiple components are
taken from a single asset
store to feed modular
applications.

In conclusion…
Micro-frontends Enhance Maintenance of Modular Applications

Although caveats exist, such as initial investment and planning requirements, designing

micro-frontends to be consumed by modular applications can effectively reduce the

maintenance costs of updating reusable components while maintaining cohesive and

non-duplicative code. Projects looking to maintain API-driven single page applications should

consider implementing modular federation for ease and efficiency of maintenance.

jdf@ldeo.columbia.edu

