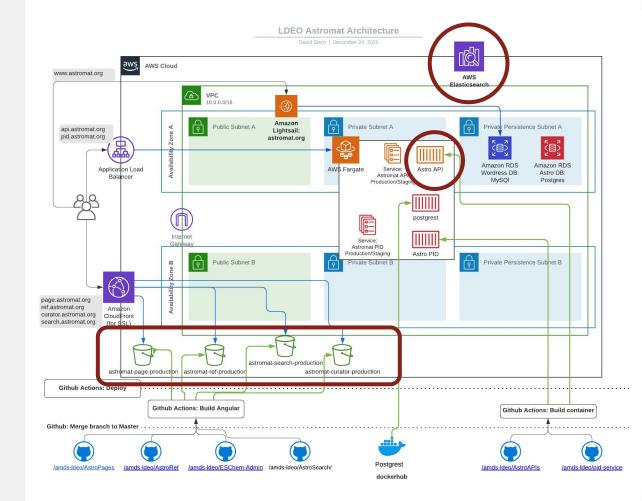


MAINTAINING MICROSERVICES: APPLICATIONS FOR THE ASTROMATERIALS DATA SYSTEM


Planetary Science Informatics and Data Analytics (PSIDA) conference June 23rd, 2022

J.D. Figueroa, K.Lehnert, P. Ji, L. Profeta, J. Mays, A. Johansson,

Lamont-Doherty Earth Observatory, Columbia University, New York, USA

What is AstroMat?

Astromaterial Data System (AstroMat) is a comprehensive data system for laboratory analytical data generated by the study of astromaterials. It is designed as an ecosystem of interconnected applications that provide human- and machine-readable interfaces to the data gathered and managed in AstroMat's databases.

AstroMat Data

With 777,896 chemical data points for lunar (349,610) and meteorite (394,452) collections consisting of 51% mineral analysis, 42.74% rock analysis and 6.2% inclusion analysis, the AstroMat data system aims to become a one stop-shop for curated astromaterials data.

Text cloud of chemical variables as they exist in AstroMat.

Astromat Search

Version 2.1.0 Beta

This application is in beta, so feel free to send us any comments reports, and suggestions as we continue to improve the interfa

FILTERS	ANALYSIS	VARIABLES	OUTPUT	F Co	ollections: UCLA Cosmoc	hemistry Database	e 🔇 🛕 Bulk Materials:		
Sel	lect Filters		Analyze	ed Materia	Is 3 Chemical Variables (
		riables. Leave	•	COLLECTIONS	MISSION	GEO FEATURE			
refine.	l occurrence	s or input Min	and Max to)	Select a graph from the above options. After options below to customize your graph.				
							Subcategory		
	Any selected	l variables are	present.				Trace Element		
	Trace Eleme	ent		^			Varia		
r بر	a/g	Min 0.00	6 10.5				Ir: 1020		
G pi	e g/g	Min 1.47	Max 2050	D					
✓ ^N %	i	Min 5.88	Max 15.2						

Ni

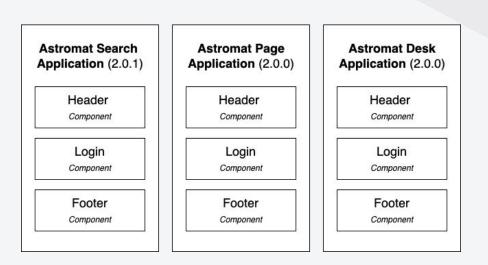
AstroMat Faceted Search

Pre-built static javascript applications using functional programming techniques deliver modular code used to deliver user-friendly front-end applications with quickly accessible data.

The flow of data comes from relational databases, to an elasticsearch index, to API, to front-end applications, and finally to end user(s).

FILTERS	ANALYSIS	VARIABLES	OUTPUT	F	Collections: LUNAR S		12001		
Sel	ect Filters		(12001 LUNAR SAMPLE	ES			
Drag a c	olumn header	here to group I	by that colun	nn		_		<u>Metadata</u>	
	Sample	Datase	Dataset		Citation		Metadata		
	10017-33	MAJO	R AND TRAC	Э <u>Е Е</u>	WÄNKE,1970				
	10018-22	MAJO	MAJOR AND TRACE E		WÄNKE,1970		Expedition Name APOLLO 12		
	10044-32	MAJO	MAJOR AND TRACE E		<u>WÄNKE,1970</u>				
	10057-40	MAJO	MAJOR AND TRACE E		<u>WÄNKE,1970</u>				
	10060-16	MAJO	MAJOR AND TRACE E		<u>WÄNKE,1970</u>		Taxons Name Soil » Unsieved		
	10084-18	MAJO	MAJOR AND TRACE E		WÄNKE,1970				
	12001,114	MAJO	MAJOR AND TRACE E		WÄNKE,1971				
	12001,912	2 Result	Results of instrumen		BARRA,2006		Туре		
	12001,911	1 Result	Results of instrumen		BARRA,2006		Soil		
	12001,907	5 Result	s of instrume	en	BARRA,2006				
	12023,146	2 Result	Results of instrumen		BARRA,2006		Extorn	al Links	
	12023,145	3 Result	Results of instrumen		BARRA,2006		Externa	ai liiks	
	12024,074	4 Result	Results of instrumen		BARRA,2006		Virtual Microscope		
	12032,108	NEW A	NEW ABUNDANCE DE		GARG,1976			he	
	12032,366	18 Result	s of instrume	en	BARRA,2006				
	12032,366	12032,366 41 Results of in		en	BARRA,2006	NASA Sample Catalog		atalog	
	12032,366	032,366 7 Results of instrumen		en	BARRA,2006		More Info		
	12032,366	12032,366 13 Results of instrumen		BARRA,2006		ASU Digital Petrographic Slide More Info			
	12032,366	12032,366 30 Results of instrumen			BARRA,2006				
	12033,634	12033,634 26 Results of instrumen		BARRA,2006		PDS Geosciences Node Spectral Librar			
	12033,634	18 Result	Results of instrumen		BARRA,2006		More Info		
	12033,634	6 Result	s of instrume	<u>m</u>	BARRA,2006				

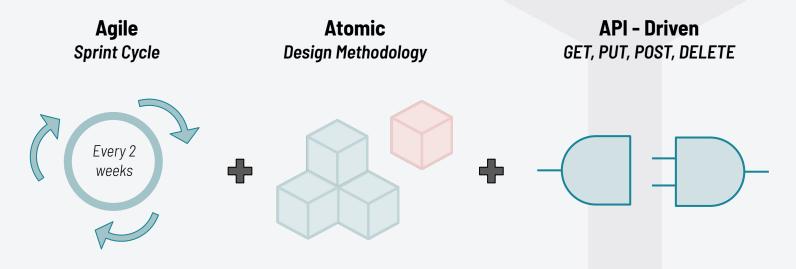
Landing Page Philosophy


After search and export features, AstroMat looks forward to designing dynamic parent sample pages that contain aggregate metadata and links to appropriate external resources.

Our landing pages will also include a hierarchical representation of all samples and aggregate sample data representing analysis done and sample sub-components.

Maintaining Front-End Applications

Employing the Modular Federation Approach


Current State of Frontend Applications

- Request data from API resource, which pulls data from an elasticsearch index.
- Single Page Applications (SPAs) all have duplicate components including header, navigation, login, and footer components.
- All SPAs are stored in AWS S3 buckets through continuous deployment.
- All applications require similar design, usability, and interoperability.

Why Modular Applications?

Compartmentalization of project management

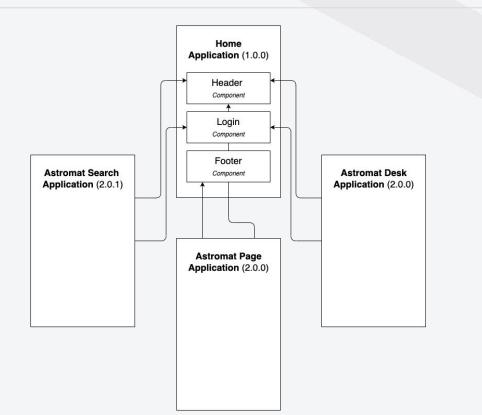
Design theory aims to treat applications as component pieces. APIs distribute data according to application endpoint/query specifications

The Benefits of Modular Architectures

- Simple to update and refactor application components.
- Decrease complexity makes it easier to maintain.
- Enhanced collaboration since developers can focus on pieces rather than the entire system.
- Readable code due to decreased complexity and functional programming approach.
- Bugs are easier to detect and address.
- Modular components are reusable.
- Iterative development and continuous deployment.

Moving towards *distributed*, *decentralized*, *dynamic*, and *cloud-based* web applications.

The Drawbacks of Modular Architectures


- Higher initial investment.
- Greater planning complexity.
- Continuous monitoring to maintain codebase.

Ok, so modular is good. Now what?

Modular Federation - Home Application

- All applications are still independent of one another, but gather components from the *Home Application* which hosts the shared components (Header, Footer, Login, etc.)
- In this scenario, modular federation is taken from a built and deployed static asset store (AWS S3).
- Home App modular components are shared through a remote entry webpack configuration.

Multiple components are taken from a single asset store to feed modular applications.

In conclusion...

Micro-frontends Enhance Maintenance of Modular Applications

Although caveats exist, such as initial investment and planning requirements, designing micro-frontends to be consumed by modular applications can effectively reduce the maintenance costs of updating reusable components while maintaining cohesive and non-duplicative code. Projects looking to maintain API-driven single page applications should consider implementing modular federation for ease and efficiency of maintenance.

