Introduction Method Results Summary

Tensor Component Analysis for the Investigation of Depth Trends in ChemCam LIBS Data from Gale Crater, Mars

Kristin Rammelkamp, Olivier Gasnault, Olivier Forni, Erwin Dehouck, Candice C. Bedford, Agnès Cousin, Susanne Schröder, Jeremie Lasue, Roger C. Wiens, Nina Lanza

06-21-2022

Introduction

Method

Results

Summary and outlool

- NASA Mars mission landed in Gale crater $\mathbf{6}^{\text{th}}$ of August 2012
- Curiosity has traveled more than 28 km.

Latest selfie taken on sol 3303 (11-20-2021) NASA/JPL-Caltech/MSSS

Mars Science Laboratory

Position on sol 3502 (06-13-2022) https://mars.nasa.gov/msl/mission/ where-is-the-rover/

ChemCam on Curiosity

MSSS/JPL/NASA (PIA18390)

- Chemistry composition at remote distances and at small scales (300-500 microns)
 - Technique: Laser-induced breakdown spectroscopy (LIBS)
 - Remote micro imager (RMI)
 - Along traverse: More than 3 000 targets analyzed with 30 000 LIBS spots and 900k laser shots

Introduction

ChemCam TCA

- Method
- Results
- Summary and outlook

Method

Results

Summary and outloo

- One spectrum: 6144 channels
- Usually: average spectrum from one position discarding the first five shots (dust contamination)
- Recent procedure for chemical composition: Balanced combination of Independent Component Analysis (ICA) and Partial Least-Squares Regression (PLS-R) for prediction of geological major elemental abundances (SiO₂, TiO₂, Al₂O₃, FeO₇, MgO, CaO, Na₂O, K₂O)

Depth Trends with ChemCam

Schematic representation: scaling not realistic

• Usually 30 shots at one position

ChemCam TCA

Introduction

- How much material is ablated with each shot depends on sample properties (rock hardness, laser coupling...). But the final depth of a LIBS crater after 30 shots can be estimated to be in the 100 μm range (Maurice et al., 2016, JAAS)
- Different correlations of elemental emission lines with depth for different mineral phases

Tensor Component Analysis (TCA)

Introduction

Method

Results

Summary and outlook

Concept is similar to matrix decomposition \rightarrow detecting low-rank structure in data

Tensor Component Analysis (TCA)

- Different names: PARAFAC/CANDECOMP/CP all names for same Canonical Polyadic
- Great overview paper by Kolda and Bader (2009): Tensor Decompositions and Applications

TCA for ChemCam shot-to-shot data

 $\frac{n_{points} \times 30 \times 6144}{K} \approx \frac{n_{points} \times R}{A} \approx \frac{6144 \times R}{R \times R \times R} = \frac{\lambda_1}{K} + \dots + \frac{\lambda_R}{K}$

- A-matrix represents the analysis points \rightarrow observation dimension
- B-matrix represents the consecutive shots at one analysis point \rightarrow depth dimension
- C-matrix represents the wavelength \rightarrow spectral dimension

ChemCam TCA

Method

Method

		Cluster 1	Cluster 2	Cluster 3	Cluster 4	Cluster 5	Cluster 6
SiO ₂	mean	75.77	56.16	54.70	48.92	44.42	28.32
	median	76.0	55.30	54.90	49.90	44.10	32.80
	stddev	5.48	4.27	2.63	6.14	3.39	16.65
TiO ₂	mean	2.47	0.74	1.00	1.23	0.92	0.59
	median	2.32	0.75	0.97	1.03	0.90	0.65
	stddev	1.11	0.21	0.15	0.84	0.17	0.34
Al ₂ O ₃	mean	5.54	19.30	11.95	10.94	9.42	5.32
	median	5.20	19.30	11.80	10.90	9.10	5.90
	stddev	3.33	2.59	1.45	2.50	2.03	3.01
FeO ₇	mean	5.43	7.44	18.78	21.15	18.96	10.74
	median	4.90	7.40	18.90	20.10	19.10	11.80
	stddev	3.61	4.91	1.59	4.40	1.88	5.74
MgO	mean	2.43	1.50	5.79	3.43	7.91	2.69
	median	2.30	1.40	5.50	3.50	7.60	2.70
	stddev	0.85	0.77	1.32	0.92	2.30	1.11
CaO	mean	1.60	6.44	1.76	3.32	6.68	23.08
	median	1.10	6.80	1.70	2.80	6.70	21.50
	stddev	1.59	2.66	0.56	1.87	1.61	8.55
Na ₂ O	mean	1.69	5.70	2.72	2.91	2.28	1.01
	median	1.50	5.60	2.65	2.80	2.15	0.97
	stddev	0.86	1.26	0.63	0.77	0.66	0.67
K ₂ O	mean	0.66	1.54	1.43	1.16	0.62	0.30
	median	0.54	1.14	1.39	1.10	0.43	0.26
	stddev	0.67	1.40	0.48	0.58	0.63	0.28
Totals	mean	95.59	98.82	98.13	93.07	91.19	72.05
	median	95.45	98.79	98.18	93.01	91.13	77.88
	stddev	2.72	2.40	2.75	4.85	4.31	17.27

Dataset

- Previous study about classification of ChemCam LIBS data with unsupervised clustering
- ightarrow 6 clusters of different sizes
 - This study: Only data from cluster 2 observations with felsic compositions (typical elements: Si, Al and alkalis Na and K)
 - Rather small cluster with 485 analysis points
- \rightarrow The data tensor ${\cal X}$ in this study has dimensions: 485 \times 30 \times 6144

Table from Rammelkamp et al., 2021, Earth and Space Science

Selection number of ranks

Introduction

Method

Results

Summary and outlook

Results

Selection number of ranks

- Convergence for all number of ranks R
- Reconstruction error < 10 % for all ranks R > 13
- $\rightarrow\,$ Decision for R=15 model

Normalization factors

Introduction

ChemCam TCA

Method

Results

Summary and outlook

Factors interpretation

 $\rightarrow\,$ All analysis points have non-zero $\,$ A-matrix scores on factor 1 and 2 $\,$

06-21-2022 11 / 15

Introduction

ChemCam TCA

Method

Results

Summary and outlook

Introduction

Method

Results

Summary and outlook

 \rightarrow Baseline felsic composition

Factors interpretation

 \rightarrow All analysis points have non-zero A-matrix scores on factor 1 and 2

Introduction

Method

Results

Summary and outlook

Factors interpretation

 \rightarrow All analysis points have non-zero A-matrix scores on factor 1 and 2

Example: Factor 2

- $\rightarrow\,$ Targets with a stronger dust coverage have higher A-matrix scores on factor 2
- $\rightarrow\,$ Interpretation of factor 2 as the "dust contribution" factor seems correct

ChemCam TCA

Results

Influence of experimental conditions

Method

Results

Summary and outlook

Factor 5: Atmospheric contribution

- Relatively strong emission lines of C and O
- Martian atmosphere is dominated by CO₂
- $\rightarrow\,$ Possibly not optimal laser coupling or focus

Influence of experimental conditions

Method

Results

Summary and outlook

Factor 5: Atmospheric contribution

- Relatively strong emission lines of C and O
- Martian atmosphere is dominated by CO₂
- $\rightarrow\,$ Possibly not optimal laser coupling or focus

Factor 6: Wavelength calibration

- Line positions are shifted on factor 6 in comparison to other factors
- *McTravish2* has high and *Reddick_Bight1* low factor 6 score values
- $\rightarrow\,$ Slightly shifted wavelength calibration

Variations in felsic composition

K (I) Si (I) 0.5 Na (I) 0.4 AI (I) Factor 3 _ 0.3 AI (I) Factor 7 — Factor 9 — Factor 11 0.2 Na (I) Si (I) 0.1 Si (II) 0.0 300 400 500 600 700 800 900 wavelength [nm]

• Factor 3: Strong AI emission lines

ChemCam TCA

Results

- Factor 7: Strong Si emission lines
- Factor 9: Strong Na emission lines
- Factor 11: Strong K emission lines

Method

Results

Summary and outlool

Variations in felsic composition

- Factor 3: Strong AI emission lines
- Factor 7: Strong Si emission lines
- Factor 9: Strong Na emission lines
- Factor 11: Strong K emission lines

Summary and outlook

Method

ChemCam

Results

- Summary and outlook
- Different types of factors were identified: experimental conditions or real compositional variations among the shots
- The main contribution comes from the baseline felsic composition in the selected dataset
- Starting from a group of similar compositions, the method can be used to observe finer effects

Outlook

Summary

- Apply to ChemCam datasets with more compositional variations
- Also interesting for hyperspectral data!

Summary and outlook

Summary

ChemCam TCA

Summary and outlook

- Different types of factors were identified: experimental conditions or real compositional variations among the shots
 - The main contribution comes from the baseline felsic composition in the selected dataset
 - Starting from a group of similar compositions, the method can be used to observe finer effects

Outlook

- Apply to ChemCam datasets with more compositional variations
- Also interesting for hyperspectral data!

Thank you for your attention!