

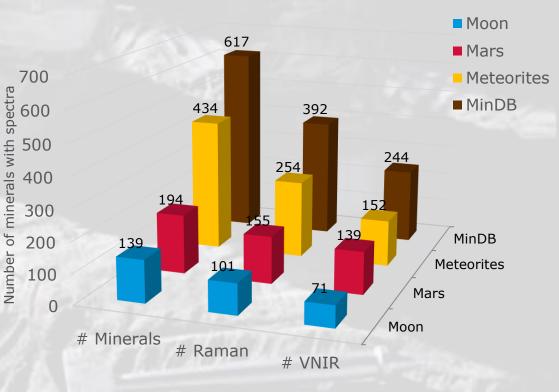
2022 PSIDA

Identifying Planetary Materials

by Combining a custom Mineralogical Database with Machine Learning based Multi-Spectral Classification

Igor Drozdovskiy, S.J. Payler, F. Sauro, L. Turchi, L. Bessone ESA/EAC CAVES & PANGAEA Team Igor.Drozdovskiy@esa.int

Preliminary recognition of minerals or chemical compositions immediately available to Science Backroom


ESA PANGAEA MinDB & ML | 6/20/2022

= II 🛌 == + II == 🚝 == II II = = = = 🖬 🛶 🚺 II == = = 🗰 🗰 🕪

Slide 2

PANGAEA Mineralogical Database

- 1. Based on Bibliographic research:
- **Catalog** of all currently known minerals on Moon, Mars, Meteorites
- 2. Based on available archives and our measurements:
- Archive of reference spectra of minerals and their mixtures

ESA PANGAEA MinDB & ML | 6/20/2022

caves &

Mineralogical Catalogue: Minerals / Endmembers

Name of mineral	Formula	Group		ectral ctability	Descripti	on	Refe	rences	
Name	Formula	Group	Subgroup1	Subgroup 2	<u>Structural</u> groupname	<u># Raman</u> spectra	Raman Detection	# VNIR spectra	VNIR Detection
Acanthite	Ag ₂ S	Sulfides			Acanthite	2			
Actinolite / Actinote / Actynoli	i {Ca ₂ }{Mg _{4.5-2.5} Fe _{0.5-2.5} }(Si ₈ O ₂₂)(OH) ₂	Silicates	Inosilicates	Amphibole	Amphibole	115	0.9	115	0.5
Addibischoffite	Ca ₂ Al ₆ Al ₆ O ₂₀	Oxides	Metal Oxides	Sapphirine	Sapphirine				
Adrianite	Ca12(Al4Mg3Si7)O32Cl6	Silicates	Nesosilicates	Wadalite					
Aegirine / Aegirite	NaFe ³⁺ Si₂O ₆	Silicates	Inosilicates	Clinopyroxene	Pyroxene	50	0.9	19	0.1
Aenigmatite / Cossyrite	Na ₄ [Fe ²⁺ 10Ti ₂]O ₄ [Si ₁₂ O ₃₆]	Silicates	Inosilicates	Aenigmatite	Sapphirine	28			
Ahrensite	SiFe ₂ O ₄	Silicates	Nesosilicates	Spinel	Spinel				
Akaganeite / Akaganéite	(Fe ³⁺ ,Ni ²⁺) ₈ (OH,O) ₁₆ Cl _{1·25} ·nH ₂ O	Oxides	Hydroxides		Coronadite	1		7	

- 617 minerals in total
- Endmembers and Intermediate (Compositions)
- Over 600 references

ESA PANGAEA MinDB & ML | 6/20/2022

Slide 4

MinDB: Analytical datasets

Molecular • VNIR/SWIR reflection • Raman scattering Atomic • LIBS emission • XRF fluorescence

> Reference Spectroscopic archives

Open Access Databases:

VNIR: USGS RELAB COSTRESS

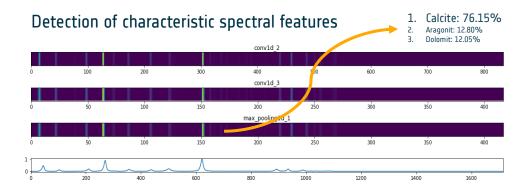
Informations about

- mineralogychemical abundances
- mixtures

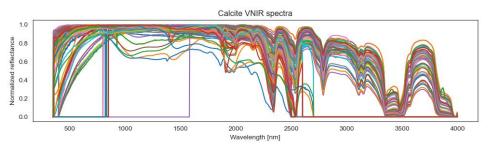
~10,000 High Quality Raman & VNIR Spectra of planetary analog minerals

Our own spectroscopy

Samples from:

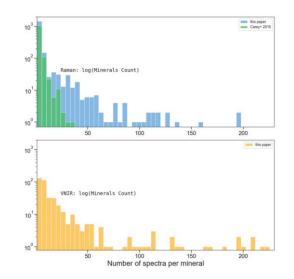

- Mineralogical Museum Bonn
- GeoMuseum Cologne
- Mineralogische
 Staatssammlung Munich
- PANGAEA Sites: Ries Crater, Lanzarote

ESA PANGAEA MinDB & ML | 6/20/2022

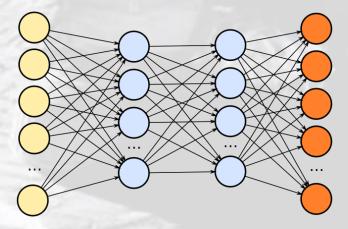

Raman: RUFF

•

Comparison and validation of spectra



Large variation in quaility & wavelength ranges of available spectra


Not enough representative data \rightarrow Augmentation & Balancing

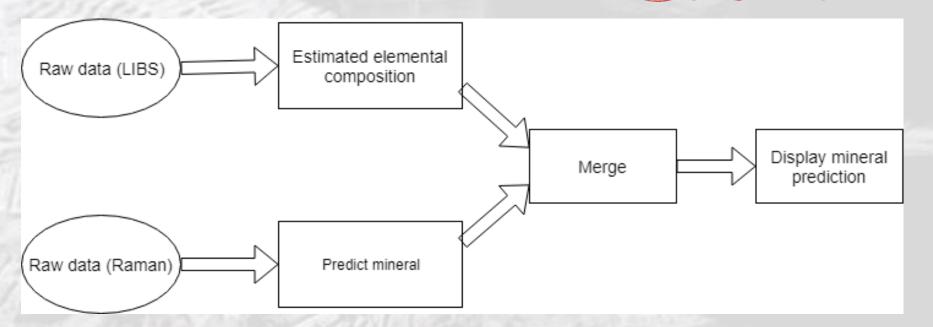
Drozdovskiy, I. et al. 2020, Data in Brief, 31, 105985.

Slide 6

Recognition: Machine Learning approach?

• Benefits:

- Fast & Accurate to match
- Handles multi-variety of data
- Self-Learning improvements from New Data!


Drawbacks

- Requires Massive Data sets
- Needs to teach algorithms from the data

ESA PANGAEA MinDB & ML | 6/20/2022

Slide 7

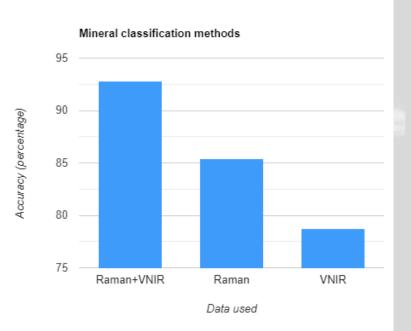
Novel approach: 2-types of Data Fusion

Combining data from different spectroscopic methods

ESA PANGAEA MinDB & ML | 6/20/2022

Slide 8

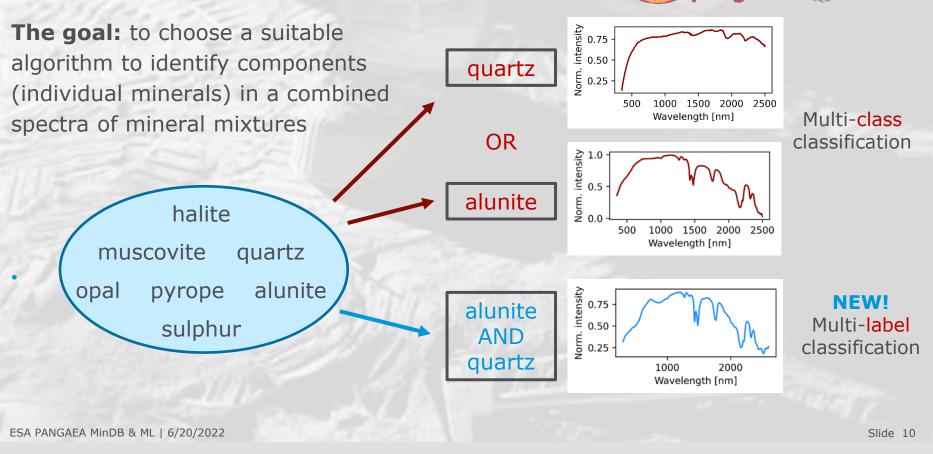
European Space Agency


esa

caves & pangaea

Reliable identification of minerals

- **Improved** the current state-of-the-art matching algorithm for *single spectroscopic method* with our Deep Convolutional Neural Network solution
- Classification based on *dual* Raman+VNIR, Raman+LIBS or VNIR+LIBS outperformes the stateof-the-art mineral classification based on single method



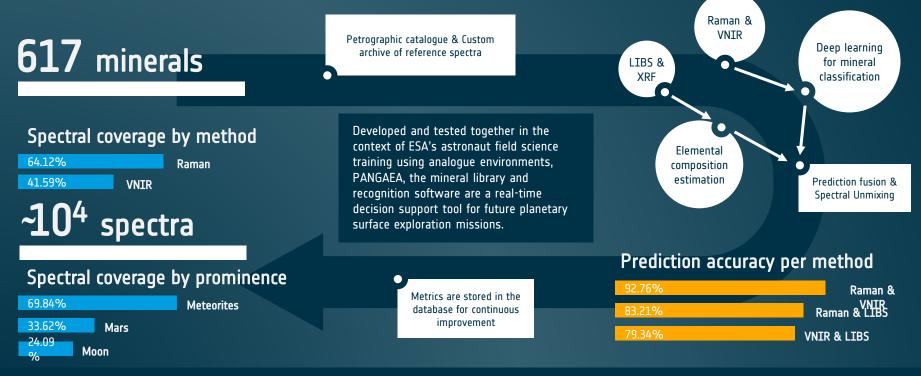
Jahoda, P., Drozdovskiy, I., Payler, S.J., Turchi, L., Bessone, L. and Sauro, F., 2021. Machine learning for recognizing minerals from multispectral data. Analyst, 146(1), pp.184-195.

ESA PANGAEA MinDB & ML | 6/20/2022

Slide 9

European Space Agency

esa


caves &

pangaea

Multi-label Recognition: Mineral Mixtures

Recognizing Planetary Rocks And Minerals

Combining a Custom Mineralogical Database with Machine Learning based Multispectral Unmixing

- Mineralogical DataBase Data in Brief <u>https://doi.org/10.1016/j.dib.2020.105985</u>
- Machine Learning The Analyst <u>https://doi.org/10.1039/D0AN01483D</u>

