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We measured 2500 LIBS spectra under 

Martian atmospheric conditions from 100 

prepared samples. Fig. 3 depicts the 

sample preparation schematically and Fig. 

4 shows one example LIBS spectrum. 

Specifically, each sample consists of:

▪ One basaltic Mars Simulants (JEZ-1, 

MGS-1, MGS-1C, MGS-1S). [5]

▪ Mixed with one out of four salts (NaCl, 

MgCO3, CaSO4 2H20, MgSO4 H2O).

▪ Salt concentrations were varied 

between ~0.5 -15 wt% to account for 

realistic variance of water-deposited 

salts and cements in Martian 

sedimentary rocks.

▪ Four samples without added salt.

Each sample was measured five times 

with five different laser energies (~5-

51mJ) to account for varying laser 

irradiances as it is the case for real 

measurements on Mars. Pulse duration 

and spot diameter of the laser are 6ns 

and 300µm respectively.
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Fig. 1: Classification pipeline for

multi-attribute LIBS data. 

2. Sample preparation and data set

▪ Before training, the dimensionality of the data set was reduced with

principal component analysis (PCA). 

▪ First 15 principal components (PC) served as inputs for the first BPNN 

classifier.

▪ The BPNN architecture for both classification steps is the same, namely

one fully connected hidden layer of size 15 (as shown in Fig. 5).

▪ For the second classification step, a new PCA was down for each Mars 

simulant. Again the first 15 PC served as inputs for the BPNNs.

▪ Train-test splitting was always chosen to be 80%-20%

▪ All BPNNs were trained with a learning rate of 0.01 and Adam optimizer

(implemented with PyTorch).

▪ Fig. 6 shows the final classification accuracies over 50 different data

splittings after 30 epochs of training, for (a) Mars simulant and (b) salt

classification. Different values on the x-axis correspond to different 

splittings of the train-test data. All splits were chosen such that all five

measurement form the same sample were not split up.

3. Conclusion and outlook
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Fig. 5: Architecture 

of BPNN used for

both classification

steps (for the salt

classification, the

output layer is of

size five).
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Fig. 6: Train and test accuracies after 30 epochs for different train-

test data splittings. a) First classification step; b) second

classification step.The mean accuracies over all splitings are

depicted next to the vertical black dotted lines (see text for details). 

▪ The Mars simulant classification works well, with an average train / test 

accuracy of ~ 98% / 96%.

▪ The salt classification is more difficult, since after the first classification 

step, training set sizes are only 0.25 of the initial full data set. 

Furthermore, some salt concentrations are very small, which could make 

classification inaccurate. Future work will focus on improving this 

classification step.

▪ Compared to other machine learning approaches, namely random forest 

classifier (RF) and partial least squares discriminant analysis (PLS-DA), 

we achieved slightly better accuracies with BPNNs. 

▪ A general challenge is the small size of our data set. Since only few 

labeled LIBS data is available, we aim to work on generative models for 

synthetic data extension in the future. Especially variational autoencoders 

(VAEs) and generative adversarial networks (GANs) will be investigated.

LIBS is highly relevant for in-situ 

exploration of extraterrestrial bodies [1], 

and is currently deployed on several 

Mars missions [2, 3, 4]. 

The goal of this study is to build a stepwise classification scheme for multi-attribute 

laser-induced breackdown spectroscopy (LIBS) data using back propagation neural

networks (BPNN). The classification pipeline is depicted in Fig. 1. LIBS uses a 

pulsed laser to induce a plasma on the surface of a sample (see Fig. 2). Light 

emitted by the plasma contains characteristic emission depending on the chemical 

composition of the target. Since there is no need for direct contact to the sample, 

Fig. 2: Picture of the plasma plume

during a LIBS measurement under

Martian atmospheric conditions
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Fig. 3: Sketch of sample preparation

as described in the text.

Fig. 4: Example of a 

standardized LIBS 

spectrum with

some annotated

neutral (I) and 

ionized (II) atomic

emission lines. 
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