Unveil the microphysical properties of Europa and Ganymede surfaces

Guillaume Cruz Mermy Research Fellow at ESAC

Aranjuez, Spain January 25,2024

• On Earth : Solid state of water

• On Earth : Solid state of <u>water</u>

Moderately-to-highly volatile molecules in their solid state (Schmitt, 1995)

 H_2O , CO_2 , CO, SO_2 , CH_4 , NH_3 , N_2

CO₂ ice also called « Dry ice »

From Tulk et al., 2019

• On Earth : Solid state of <u>water</u>

Moderately-to-highly volatile molecules in their solid state (Schmitt, 1995)

 H_2O , CO_2 , CO, SO_2 , CH_4 , NH_3 , N_2

• Hydrates (X . n H₂O)

Anhydrous compound Hydration state

Chloral Hydrate

Why studying surface ices ?

Differentiated:

- Metallic Core ullet
- **Rocky interior** \bullet
- Water reservoirs
- Icy surfaces

Why studying surface ices ?

External processes

- Impacts
- Charged Particles
- Sunlight

Internal processes

- Cryovolcanism
- Diapirism
- Geyser/Plumes

Surface microphysics: composition, grain size, porosity, roughness

Method: reflectance spectroscopy

Complex light-matter interactions

- Reflection
- Absorption
- Transmission
- Scattering

Method: reflectance spectroscopy

Intimate mixing model (Hapke, 1993, 2012)

- Single scattering albedo: **ω**
- Particle phase function: P(g) \cap
- Multiple Scattering: $H(\mu)$
- Opposition effect: B(g)
- Surface roughness: **S**

$$r(\mu_0,\mu,g) = \frac{\omega}{4\pi} \frac{\mu_0}{(\mu_0+\mu)} \left\{ [1+B(g)]P(g) + H(\mu_0)H(\mu) - 1 \right\} S(\mu_0,\mu,g)$$

The intimate mixing (Keshava & Mustard, 2002)

Direct modelling

Reflectance spectrum:

- Volume abundance
- Grain size
- Surface roughness
- Geometry
- Phase function

Access to these properties via inverse modelling

Datasets

Near Infrared Mapping Spectrometer (NIMS) Galileo mission, NASA

James Webb Space Telescope

Villanueva et al. (2023)

<u>Europa</u>: Cycle 1, 1250, Guaranteed Time Observations (GTO), PI : Dr. Geronimo Villanueva <u>Ganymede</u>: Cycle 1, 1373, Early Release Science Programs (ERS). PI : Pr. Imke de Pater

Results: NIMS

Radiative transfer (Hapke, 2012) + Bayesian MCMC framework

Water ice drops within lineaments

Magnesium Chloride increase toward lineaments

Dark lineaments a preferential location for material exchange ?

Results: JWST

NIRSpec (band fitting) + NIRCam (mapping)

RESEARCH ARTICLE

ICY MOONS

Endogenous CO₂ ice mixture on the surface of Europa and no detection of plume activity

G. L. Villanueva¹*, H. B. Hammel², S. N. Milam¹, S. Faggi^{1,3}, V. Kofman^{1,3}, L. Roth⁴, K. P. Hand⁵, L. Paganini⁶, J. Stansberry⁷, J. Spencer⁸, S. Protopapa⁸, G. Strazzulla⁹, G. Cruz-Mermy¹⁰, C. R. Glein¹¹, R. Cartwright¹², G. Liuzzi¹³

CO₂ ice strongly correlated with chaos units ! Carbon source within Europa ?

Conclusions & Perspectives

- Microphysical properties accessible via Radiative Transfer modelling
- First maps of the microphysical properties of Europa !
- Combining JWST High Spec. Res with NIMS Spatial Res.
- Fusion of NIRSpec & NIRCam
- Proposal for future JWST observation of Ganymede

JUICE Mission:

Radiometric Calibration of MAJIS

Define ROI

On going & future collaborations:

GEOPS: F. Schmidt, F. Andrieu ; IPAG: B. Schmitt, E. Quirico ; ESAC: T. Cornet ; OBSPM: T. Fouchet, D. Bockelee-Morvan ; IAS: F. Poulet. ; NASA-Goddard: G. Villanueva