Using autoencoders and deep transfer learning to determine the stellar parameters of CARMENES M dwarfs

Pedro Mas Buitrago

PhD Student at Spanish Virtual Observatory @CAB

SCI Science Workshop 16 - January 2024

Grant PID2020-112949GBI00 funded by

Deep Transfer Learning

- Deep learning (DL): subset of machine learning in which deep neural networks automatically extract features and create a hierarchical representation of the data.
- DL has two major constraints:
 - \rightarrow Expensive training processes.
 - → **Massive training data:** synthetic data is often used to train the models.
- In deep transfer learning (DTL), the knowledge of a source domain is transferred to a related but not identical target domain.

A DL model is pre-trained in a data-rich domain

The knowledge acquired is exploited to improve generalization in another setting

Big Picture

- To develop a **deep transfer learning approach based on autoencoders,** to determine stellar parameters from high-resolution spectra:
 - → Target sample: 286 M dwarfs high-resolution spectra observed with CARMENES.
 - → **Synthetic data:** Grid of synthetic spectra based on the PHOENIX-ACES models.
- Expectation: To bridge the synthetic gap:
 - Differences in feature distributions between synthetic and observed data.

Autoencoder Step

Narrow the flow of information

Minimize loss function between reconstructed and input spectra

We force the autoencoder to automatically learn a meaningful low-dimensional representation of the synthetic spectra

Deep Transfer Learning step

- Goal: Transfer knowledge from a data-rich source domain (synthetic spectra) to our data-poor target domain (observed CARMENES spectra).
 - → The autoencoder network is **re-trained with the CARMENES spectra**.
 - All the encoder layers until the last one are kept frozen (not updated in re-training).

Why?

Neural networks are hierarchical: we want to **preserve generic learning** (lower layers, closer to the input) from the source domain and **tailor specific features** (higher layers) to the target spectra.

Deep Transfer Learning step

Autoencoder + DTL: New Feature Space

- Initial training of the autoencoder: Low-dim representations of the synthetic spectra.
- Fine-tuning process: Low-dim representations of the CARMENES spectra.
- We end up with a new feature space with no significant differences in the feature distributions between the synthetic and observed spectra.

Stellar Parameter Determination

- Using the **new low-dim feature space as input**, we train a 1-D convolutional neural network (CNN) to estimate the stellar parameters.
 - → The CNN is trained with the synthetic low-dim representations.
 - Once trained, we use the model on the low-dim CARMENES representations to determine the stellar parameters.
- For an in-depth discussion of the results see Mas-Buitrago et al. 2024, in prep.

Key Takeaways

- Using a DTL approach based on autoencoders, we obtain a new feature space where the **synthetic and observed data are much closer**.
- The DTL process **does not involve high-quality measurements**, a main limitation of previous works.
- Future work: we will explore this approach to classify late-type stars from low-resolution EUCLID spectra.

Let's Connect!

https://pedromasb.github.io/

