MASS INDEX AND MASS OF THE GEMINID METEOROID STREAM

AS FOUND WITH RADAR, OPTICAL, AND LUNAR IMPACT DATA

Rhiannon Blaauw

June 6, 2016

NASA Meteoroid Environments Office/ APL Jacobs ESSSA

Outline

- □ In 2015, Geminid fluxes were found in 3 size ranges
 - Lunar Impact
 - Wide-Field
- □ These fluxes will be used to
 - 1) derive a Geminid mass index
 - 2) derive a Geminid mass the Earth encountered in 2015
 - 3) derive a minimum total mass of the Geminid meteoroid stream
- □ Similar work shown for 2015 Perseids.

Date (UTC)	Flux (gems/km²/ hr)	Limiting Mass (grams)	ZHR
00:00 -24:00 December 14	5.92e-02	1.8e-04	101.9
00:00-24:00 December 15	2.27e-02	1.8e-04	39.1

JACOBS ESSSA Group

Geminid Fluxes – Wide Field

Date (UTC)	Flux (gems/km²/ hr)	Limiting Mass (grams)	ZHR
23:30-12:00 December 14/15	1.89e-03	2.01e-3	29.7

Geminid Fluxes – Lunar Impact

Date (UTC)	Flux (gems/km²/ hr)	Limiting Mass (grams)
23:30-02:00 December 14/15	3.7e-06	30

- \Box 33 impacts were seen over the 2.5 hours on a collecting area of 4 million km²
- □ The Geminid geometry: 89% of unlit portion of Moon exposed to radiant

Raw Fluxes

Finding a mass index with these 3 raw values:

- 1) Need to scale all fluxes to the same time period.
- 2) Used a profile of the 2015 Geminids from CMOR

Scaled Fluxes

From this mass index, those flux values, and the
activity profile of the Geminids, we can derive
the total mass of Geminids the Earth encounters
throughout the stream.

Study	Mass Index	Data
Blaauw et al (2011)	1.69	2007,2008,2009 radar data (CMOR)
Zigo et al (2009)	1.73	1996-2007 forward-scatter radar data
Jones & Morton (1982)	1.69 +/- 0.07	Radar, avg +8 magnitude
Babadzhanov et al (1992)	1.67	Radar observations from Tadjikistan
Chenna Reddy et al (2008)	1.65-1.75	2003 and 2005 Geminids from Gadanki Radar (+3.5 mag)
Chenna Reddy et al (2006)	1.75	2004 Visual Data
Arlt & Rendtel (2006)	1.7	2004 Visual Data

Used activity profile to find total Geminid Flux Earth encounters in 2015

- □ Mass range to integrate over:
 - Lower Limit:
 - Mass index is skewed toward more massive particles, 10⁻⁶ grams chosen as less than that doesn't matter.
 - Upper Limit:
 - What size Geminid does this plot have 1 particle/year hitting Earth.
 - Claims each year a 10⁹ gram Geminid should hit. Slightly smaller than Chelyabinsk.

- □ Mass range to integrate over:
 - Lower Limit:
 - Mass index is skewed toward more massive particles, 10⁻⁶ grams chosen as less than that doesn't matter.
 - Upper Limit:
 - What size Geminid does this plot have 1 particle/year hitting Earth.
 - Claims each year a 10⁹ gram Geminid should hit. Slightly smaller than Chelyabinsk.

- □ Mass range to integrate over:
 - Lower Limit:
 - Mass index is skewed toward more massive particles, 10⁻⁶ grams chosen as less than that doesn't matter.
 - Upper Limit:
 - What size Geminid does this plot have 1 particle/year hitting Earth.
 - Claims each year a 10⁹ gram Geminid should hit. Slightly smaller than Chelyabinsk.

- □ Mass range to integrate over:
 - Lower Limit:
 - Mass index is skewed toward more massive particles, 10⁻⁶ grams chosen as less than that doesn't matter.
 - Upper Limit:
 - What size Geminid does this plot have 1 particle/year hitting Earth.
 - Claims each year a 10⁹ gram Geminid should hit. Slightly smaller than Chelyabinsk.

- At some point, the power law mass index breaks down or Geminids that large do not exist
- In last 3 years, the largest Geminid seen in the All-Sky cameras was ~600 grams. Currently the upper limit is set at 1000 grams
 Range: 10⁻⁶ to 10³ grams

Geminid Results

0.271 grams/km²

Geminid mass fluence Earth encountered throughout the 2015 Geminids.

• Accounts for the range of masses, the date range of activity, and the varying flux.

Total amount of Geminid mass the whole Earth encountered during 2015 Geminids.

- $M_c = 3.5^{*}10^7$ grams = total mass collected by the Earth during stream transit
- t = 16 days = equivalent duration of shower
- V_{F} = 30.28 km/s = Earth's heliocentric velocity
- $R_{F} = 6371$ km = radius of Earth
- ε = angle the Earth's path is inclined to the orbit of the stream 22 degrees
- $V_{G} = 35 \text{ km/s}$ =geocentric velocity of the meteoroids

$$V_{H}$$
= 33 km/s = Meteoroid's heliocentric velocity

Diameter: 5.10 km * (estimated diameter from IRAS observations)

All Points

(Hughes & McBride, 1989)

Geminid Results

L

Total mass of the Geminid meteoroid stream.

$$= \frac{M_C t V_E^2 V_H \sin^2 \varepsilon}{R_E^2 4 V_G}$$

BUT there is a factor, f, always included. To account for Earth not travelling through the center of the stream. Usually f=10.

Perseid stream mass:

Comparison

Quantity	Perseids	Geminids	PER ∨s GEM	H & M 1989 Perseids	H & M 1989 Geminids	H & M 1989 PER vs GEM
Mass Rate at Peak (grams/km²/hr)	1.28 e-4	9.10 e-4	0.14x	1.01 e-4	8.64 e-4	0.12x
Mass Fluence (grams/km²)	1.1 e-2	27.1 e-2	0.041 x			
Mass at Earth/year (grams)	1.44 e+6	34.6 e+6	0.042x			
Total mass of stream (grams)	33.0 e+16	1.64 e+16	20x	31 e+16	1.6 e+16	19x

*H & M = Hughes & McBride

- □ Geminid mass index 1.68 +/- 0.04 over 5 orders of magnitude.
- □ Geminids: 5.1 km asteroid 3200 Phaethon.
- □ Perseids: 26 km comet Swift-Tuttle.

Conclusions

- □ Geminid mass index 1.68 +/- 0.04 over 5 orders of magnitude
- □ Geminids: 5.1 km asteroid 3200 Phaethon.
- Perseids: 26 km comet Swift-Tuttle.
- □ Geminid flux is much higher.
- Geminids deposit much more material.

Conclusions

- □ Geminid mass index 1.68 +/- 0.04 over 5 orders of magnitude
- □ Geminids: 5.1 km asteroid 3200 Phaethon.
- Perseids: 26 km comet Swift-Tuttle.
- □ Geminid flux is much higher.
- Geminids deposit much more material.
- We see similar ZHRs for Perseids because of their speed: seeing smaller Perseids.
- BUT Perseid stream size is much larger because the orbit size.

Conclusions

- □ Geminid mass index 1.68 +/- 0.04 over 5 orders of magnitude
- □ Geminids: 5.1 km asteroid 3200 Phaethon.
- Perseids: 26 km comet Swift-Tuttle.
- □ Geminid flux is much higher.
- Geminids deposit much more material.
- We see similar ZHRs for Perseids because of their speed: seeing smaller Perseids.
- BUT Perseid stream size is much larger because the orbit size.
- Implies 3200 Phaethon has only shed ~ 1/10th of its mass, or shed a 70 meter shell of material.
- Implies Swift-Tuttle has shed about 3% of its mass, or 150 meter shell of material.