

Radar Detectability of meteor head echoes and its implication on the Zodiacal Dust Cloud populations

D. Janches (SWL-NASA/GSFC)

N. Śwarnalingam (CUA), P. Pkorný (UWO), J. M.C. Plane(University of Leeds), D. Nesvorný (SWRi), W. Feng (University of Leeds), J. D. Carrillo - Sanchez (University of Leeds), and D. Vokrouhlický (Charles University)

Astronomical Dust model

Instrument detection treatment Constrain models with measurements

Astronomical Dust model

Instrument detection treatment Constrain models with measurements

Astronomical Dust mode:
1) JFCs Model (Nesvorny et al., 2010)
2) HTC Model (Pokorny et al., 2014)
3) OCC Model (Nesvorny et al., 2011)

Approach

Astronomical Dust model

Instrument detection treatment Constrain models with measurements

Astronomica 1) 1) JFCs Model 2) 2) HTC Model 3) 3) OCC Model 3)

Constrain models with measurements:
1) Specifically HPLA Radar Measurements
2) Specifically Arecibo 430 MHz
3) Specifically Daily Rates and Radial Velocity distributions

Approach

Instrument detection treatment as a function of m,V and a:

- 1) Understanding the ablation and electron production
- 2) Understanding the characteristics of the meteor head echo (i.e. size and shape)
- Understanding how radar signal strength depends on 1 and 2 (SNR)

One of the work's main hypothesis is that most of this flux is undetected by radars due to its small velocity

A main goal of this work is to show if this is in fact true for Arecibo 430 MHz Head Echo (HE) Meteor Observations

Astronomical Models

work's main is that most of undetected by to its small

l of this work is his is in fact cibo 430 MHz (HE) Meteor

Astronomical Models

Astronomical Models

Assuming we know the astronomical input and the manner is detected we can then use the measurements to constrain the amount of particles needed from each source

ISD

HPLA Measurements

Radial Velocities

Line of sight velocities help to constrain the aspect sensitivity dependance of the meteor detection

HPLA Measurements

Horizontal Distance (m)

SD

SNR Results

Results: JFC dilemma

Meteoroids 2016, Noordwijk, The Netherlands, June 6-10, 2016

Original JFC (Nesvorny et al., 2010, Janches et al., 2014, 2015)

Original JFC (Nesvorny et al., 2010, Janches et al., 2014) - mean size ~ 100 microns

Planck JFC (Ade et al., 2014; Janches et al., 2015) mean size ~ 30 microns

Also investigated the effect of:

- β (Janches et al., 2014; 2015) 1-2 order of magnitude required to make a difference -Thomas et al., (2016) shows β is close to Jones 1997 values (see Sternovsky's talk)
- New laboratory measurements of differential ablation (See Plane's talk) showed that at slow velocity Na and K may ablate over a longer range but at a smaller intensity. However, changes on electron production and SNR are a factor of 2 (no the order of magnitude required)

Results: JFC dilemma

Results: HTC & OCC

Nesterico Ida 2011 for Retropol wijkg 173 te 9 Nht / 2016 Juli dere, 6-00, 2016

Over prediction of the detection of meteor entering at shallow angles

Results: HTC & OCC

WestericoIda 2011 for Rebrond wijkg 173 te 91 ht 1201 ton Boulder, 6-00, 2016

Model Distributions removing meteors with entry angles greater than 45 degrees

Over prediction of the detection of meteor entering at shallow angles

60

HTC-R

OCC

Obs.

80

Conclusion: The results strongly suggest that there MUST be a 'preferred' directionality on the detection of meteor HE by HPLA radars

Results: HTC & OCC

Westerico Ida 20146, r Notoop du Aijkg 173 te 9 Nht 1201 con Bouldere, 6-00, 2016

Janches et al., 2004 used a sub-sample of Arecibo detected meteor head echoes. The results suggested a 'down-the-beam' preferential directionality not he detections.

In other words: The HE is aspect sensitive with a Gaussian function describing the angular dependance.

Results: HE Shape

Color curves = Modeled OCCs Black Curves = Observations

Results: HTC & OCC

A HE described by a Gaussian distribution with $\sigma = 40$ degrees fit best the HTC-Retrograde and OCC to the Arecibo high velocity portion of the speed distributions

Results: HTC & OCC

Original JFC (Nesvorny et al., 2010, Janches et al., 2014) - mean size ~ 100 microns

Planck JFC (Ade et al., 2014; Janches et al., 2015) mean size ~ 30 microns - Assuming the HE is aspect sensitive following a Gaussian distribution with a σ = 40 degrees

- 50 % of

The consideration of aspect sensitivity int he HE detection treatment reduces the number of JFCs detection to the 'ball park' of the observed rates.

Results: HE Shape

	Mass Flux (t/d)	
Population	MFP	
JFC (Planck)	15	
HTC P	0.9	
HTC R	0.2	
OCC	0.3	

Results: HE Shape

	Mass Flux (t/d)		
Population	MFP		
JFC (Planck)	15		
HTC P	0.9		
HTC R	0.2		
OCC	0.3		

Results: HE Shape

What about HE Size?

Results: HE Size

	Mass Flux (t/d)				
Popul ation	MFP	MFP/ 5	MFP/ 10	MFP/ 100	
JFC (Planc	17	17	33	337	
HTC P	0.9	0.4	0.4	9	
HTC R	0.2	0.05	0.06	1.2	
OCC	0.3	1	1.2	6	

Results: HE Size

- 1) HE must be aspect sensitive and likely a factor of 5 to 10 smaller than the MFP to:
 - a) a flux where most of the contribution comes from slow JFCs
 - b) make the majority of slow JFC undetected
 - c) fit the high velocity populations to the observations.

- 1) HE must be aspect sensitive and likely a factor of 5 to 10 smaller than the MFP to:
 - a) a flux where most of the contribution comes from slow JFCs
 - b) make the majority of slow JFC undetected
 - c) fit the high velocity populations to the observations.

However:

2) These results are not prove that Nesvorny's JFC model is correct, only that if it is correct we have a way to make it undetectable. There are still conflicting issues that must be addressed:

- 1) HE must be aspect sensitive and likely a factor of 5 to 10 smaller than the MFP to:
 - a) a flux where most of the contribution comes from slow JFCs
 - b) make the majority of slow JFC undetected
 - c) fit the high velocity populations to the observations.

However:

- 2) These results are not prove that Nesvorny's JFC model is correct, only that if it is correct we have a way to make it undetectable. There are still conflicting issues that must be addressed:
 - a) lack of observations of gravitational focusing effects due to slow velocity flux (Love & Allton, 2006)
 - b) Miao & Stark (2001) required a faster distribution to explain the LDEF detection ratio between different surfaces of the spacecraft
 - c) Lack of observational evidence that slow particles come from only the helion and anti-helion directions (Campbell-Brown, 2015, radars, etc)

Conclusions

- 3) About 10% of the flux has to come from a combination of HTC and OCC particles
- 4) In particular OCCs are important because without their contribution, more than half of the HTC population would required to be retrograde in order to fit the HPLA observations. Currently only 11% HTC are retrograde in the HTC model (Levinson et al., 2006; Pokorny et al., 2014)
- 5) If the radius of the HE ~ MFP then flux from OCCs ~ 50% of HTCs, for smaller radius OCCs ~ 2 times the HTCs

- 3) About 10% of the flux has to come from a combination of HTC and OCC particles
- 4) In particular OCCs are important because without their contribution, more than half of the HTC population would required to be retrograde in order to fit the HPLA observations. Currently only 11% HTC are retrograde in the HTC model (Levinson et al., 2006; Pokorny et al., 2014)
- 5) If the radius of the HE ~ MFP then flux from OCCs ~ 50% of HTCs, for smaller radius OCCs ~ 2 times the HTCs

