A Monte Carlo type simulation toolbox for solar system small body dynamics

D. Kastinen1,2 and J. Kero2

1Department of Computer Science, Electrical and Space Engineering
Luleå University of Technology (LTU), Sweden

2Swedish Institute of Space Physics (IRF), Kiruna, Sweden

June 7, 2016
Outline

1. Introduction
 - Motivation

2. Software
 - Overview
 - Module overview

3. Input state
 - 21P/Giacobini-Zinner

4. Some results
 - October Draconids validation
 - 2011 - 2012 October Draconids

D. Kastinen and J. Kero
LTU and IRF

A Monte Carlo type simulation toolbox for solar system small body dynamics
Outline

1 Introduction
 ■ Motivation

2 Software
 ■ Overview
 ■ Module overview

3 Input state
 ■ 21P/Giacobini-Zinner

4 Some results
 ■ October Draconids validation
 ■ 2011 - 2012 October Draconids
Motivation for the statistical approach:

- Chaos expand orbital uncertainties when systems are propagated
- Many orbital uncertainties are non-Gaussian
- It is useful to find the distribution of possible scenarios
- ...
Motivation for the module approach:

- Minimize the amount of "re-inventing the wheel"
- Make the toolbox as versatile as possible
- Create a "laboratory" for models and meteoroid streams
- Eventually make the code open-source and easy to adapt
- ...
Module based toolbox

To set up a testing platform for the statistical approach I needed:

A set of programs to handle

- Initial distribution
- Propagation
- Association
- Ejection
- Monte Carlo iteration
- Data flow
Outline

1. Introduction
 - Motivation

2. Software
 - Overview
 - Module overview

3. Input state
 - 21P/Giacobini-Zinner

4. Some results
 - October Draconids validation
 - 2011 - 2012 October Draconids
Module based toolbox

Monte Carlo Module: 14,000 rows
Parent Body Ejector: 7,500 rows
Orbital Association Module: 4,000 rows

For comparison:
the N-body integrator
mercury6: 8,000 rows
Overview

Module based toolbox

Most of the code is infrastructure
File I/O, formatting, data transformation, log systems, etc

OSE
Orbital Stability Estimation

OAA
Orbital Association Analysis

MCAS
Monte Carlo Association Statistics

CMS/mercury6
Celestial Mechanics Simulator

PBE
Parent Body Ejector

SUOC
Statistical Uncertainty Orbital Clones

JPL
JPL ephemeris calculator

C++: balance computational speed and ease of modification
Outline

1. Introduction
 - Motivation

2. Software
 - Overview
 - Module overview

3. Input state
 - 21P/Giacobini-Zinner

4. Some results
 - October Draconids validation
 - 2011 - 2012 October Draconids
Module based toolbox

OSE
Orbital Stability Estimation

OAA
Orbital Association Analysis

MCAS
Monte Carlo Association Statistics

CMS/mercury6
Celestial Mechanics Simulator

PBE
Parent Body Ejector

SUOC
Statistical Uncertainty Orbital Clones

JPL
JPL ephemeris calculator

D. Kastinen and J. Kero
LTU and IRF

A Monte Carlo type simulation toolbox for solar system small body dynamics
Module based toolbox

Statistical Uncertainty Orbital Clones:
Object data (e.g. observations) \rightarrow Orbital element distributions
Module based toolbox

OSE
Orbital Stability Estimation

OAA
Orbital Association Analysis

MCAS
Monte Carlo Association Statistics

CMS/mercury6
Celestial Mechanics Simulator

PBE
Parent Body Ejector

SUOC
Statistical Uncertainty Orbital Clones

JPL
JPL ephemeris calculator

D. Kastinen and J. Kero
LTU and IRF

A Monte Carlo type simulation toolbox for solar system small body dynamics
Module based toolbox

OSE
Orbital Stability Estimation

OAA
Orbital Association Analysis

MCAS
Monte Carlo Association Statistics

CMS/mercury6
Celestial Mechanics Simulator

SUOC
Statistical Uncertainty Orbital Clones

JPL
JPL ephemeris calculator

Parent Body Ejector:
Initial parent body data (e.g. orbit and comet type) \rightarrow Set of ejected particles

D. Kastinen and J. Kero
LTU and IRF
Module based toolbox

https://www.youtube.com/watch?v=MVUXAg1f88A

A Monte Carlo type simulation toolbox for solar system small body dynamics
Module based toolbox

OSE
Orbital Stability Estimation

OAA
Orbital Association Analysis

MCAS
Monte Carlo Association Statistics

SUOC
Statistical Uncertainty Orbital Clones

PBE
Parent Body Ejector

CMS/mercury6
Celestial Mechanics Simulator

JPL
JPL ephemeris calculator

D. Kastinen and J. Kero
LTU and IRF
A Monte Carlo type simulation toolbox for solar system small body dynamics
Monte Carlo Association Statistics:
Connecting everything, handles the total simulation

D. Kastinen and J. Kero
LTU and IRF
A Monte Carlo type simulation toolbox for solar system small body dynamics
Module based toolbox

So far:

- 4 cometary ejection models (3 sublimation, 1 user function)
- 2 integrators (Symplectic, electromagnetic effects, ...)
- 4 orbital similarity functions (e.g. D-criteria)
- And so on...
Outline

1. Introduction
 - Motivation

2. Software
 - Overview
 - Module overview

3. Input state
 - 21P/Giacobini-Zinner

4. Some results
 - October Draconids validation
 - 2011 - 2012 October Draconids

D. Kastinen and J. Kero
LTU and IRF
A Monte Carlo type simulation toolbox for solar system small body dynamics
The case study

Purpose of 21P/Giacobini-Zinner case study:

- Proof of concept
- Implementation validation
- Investigation of mass power law deviations
- Temporal development of orbital associations
Input state

- Ejected material between 1866 and 1972
- Ejection model by (Hughes 2000)
- Each of the 17 perihelion passages sampled with 50 clones
- 6 714 499 test particles propagated
- Particles within Earth Hill Sphere considered meteors (43 637 total)
- Execution time on 2 personal computers: 1 week
Outline

1. Introduction
 - Motivation

2. Software
 - Overview
 - Module overview

3. Input state
 - 21P/Giacobini-Zinner

4. Some results
 - October Draconids validation
 - 2011 - 2012 October Draconids
October Draconids validation

2011 October Draconids

Meteor shower probability during 2011

D. Kastinen and J. Kero
LTU and IRF

A Monte Carlo type simulation toolbox for solar system small body dynamics
2011 October Draconids

Orbital elements of synthetic 2011 October Draconids and MURMHUD observation KDE
Outline

1 Introduction
 - Motivation

2 Software
 - Overview
 - Module overview

3 Input state
 - 21P/Giacobini-Zinner

4 Some results
 - October Draconids validation
 - 2011 - 2012 October Draconids
The case study

Usually the mass ratio’s (amplitude/duration) is considered a simple power law (mass index).

By comparing radar and visual meteors (Ye et al., 2013b), (Fujiwara et al., 2016):

- 2011 October Draconids followed the power law
- 2012 did not

Why? How? Observational bias or meteoroid stream physics?
2011 October Draconids mean encounter rates
2011 October Draconids probability distribution

D. Kastinen and J. Kero
LTU and IRF

A Monte Carlo type simulation toolbox for solar system small body dynamics
2012 October Draconids mean encounter rates

D. Kastinen and J. Kero

LTU and IRF

A Monte Carlo type simulation toolbox for solar system small body dynamics
2012 October Draconids probability distribution
Mass transfer functions

Normalized difference in mass distribution 2011 - 2012

$f < 0 \leftrightarrow 2012$ higher abundance

$f > 0 \leftrightarrow 2011$ higher abundance

D. Kastinen and J. Kero
LTU and IRF

A Monte Carlo type simulation toolbox for solar system small body dynamics
Mass transfer functions

Normalized difference in mass distribution 2011 - 2012

\[f < 0 \rightarrow 2012 \text{ higher abundance} \]
\[f > 0 \rightarrow 2011 \text{ higher abundance} \]

Thank you for listening!
2011 October Draconids Mass transfer functions

Most probable mass flux configuration

D. Kastinen and J. Kero

LTU and IRF

A Monte Carlo type simulation toolbox for solar system small body dynamics
2012 October Draconids Mass transfer functions

Most probable mass flux configuration

D. Kastinen and J. Kero
LTU and IRF

A Monte Carlo type simulation toolbox for solar system small body dynamics
2011 - 2012 October Draconids

Predictions

Most probable yearly meteoroid encounter rate

- Yearly flux
- Examined meteor storms
- Predicted meteor storms

D. Kastinen and J. Kero
LTU and IRF

A Monte Carlo type simulation toolbox for solar system small body dynamics
Statistical Uncertainty Orbital Clones

Adopted from "OpenOrb: Open-source asteroid orbit computation software including statistical ranging"

by GRANVIK et al.