The CILBO meteor orbit database

Thomas Albin1,2, Detlef Koschny3,4, Rachel Soja1, Ralf Srama1 and Bjoern Poppe2

(1) Institute for Space Systems, Stuttgart, Germany
(2) University of Oldenburg, Oldenburg, Germany
(3) European Space Agency, Nordwijk, The Netherlands
(4) Chair of Astronautics, Technical Univ. Munich, Garching, Germany
1. Introduction
2. Dataset Quality
3. Earth-bound particles (EBP) & Interplanetary Particles (IDP)
4. Bias Effects
5. Summary / Outlook
1. Introduction
1. Introduction

- Koschny & Diaz (2002) published the MOTS software for calculating trajectories from stereoscopic meteor data

- Albin et al. (2016, International Meteor Conference, not published yet): Monte-Carlo based MOTS extension to determine the orbital elements of meteors
 - Resample “Virtual Observations”
 - Compute an Ensemble of trajectories per meteor
 - Determine statistics → generate “cleaned” dataset
1. Introduction

Sphere of Influence (~900,000 km)

Trajectory within Earth’s Sphere of Influence

Trajectory in ECLIPJ2000

Sphere of Influence (~900,000 km)
1. Introduction

- “Cleaned” and unbiased Database:
 - No meteors with frames less than 4 (velocity bias, Albin et al. 2015b)
 - No trajectory deviations with more than 500 meters
 - Altitude check (at least 80 km altitude)
- This leads to a database with 12,045 meteors (Jan 2013 – AUG 2015)
- Quantitative “quality” of the data...
2. Data Quality

- Median Absolute Deviation (Inclination)
2. Data Quality

- Median Absolute Deviation (Eccentricity)
2. Data Quality

- Median Absolute Deviation (Tisserand (Jupiter))
3. EBP & IDP

- Some meteors in the MC Simulation did not reach Earth's SOI
- The determined initial velocity of the meteor was smaller than 11.2 km/s
 - Meteor decelerated already before detection
 - Captured IDP in Earth's SOI
 - Space Debris
3. EBP & IDP

- Earth-bound particles
3. EBP & IDP

- The database contains approximately 10,000 IDPs

- Classification by the Tisserand (Jupiter) Parameter:
 - $T > 3$ (Asteroidal) ~ 50 %
 - $T < 2$ (JFC) ~ 30 %
 - $2 < T < 3$ (Halley-type) ~ 20 %

$$T = \frac{a_p}{a} + 2 \cdot \sqrt{\frac{a}{a_p} (1 - e^2) \cos i}$$
3. EBP & IDP

- Interplanetary Particles
3. EBP & IDP

- Interplanetary Particles
3. EBP & IDP

- Interplanetary Particles
4. Bias Effects

- The large database allows also extensive bias analysis

- In previous works we have identified miscellaneous bias effects
 - Velocity determination bias (Albin et al. 2015b)
 - Velocity distribution bias (Kretschmer et al. 2015)
 - Camera pointing bias (Albin et al. 2015a)

- With the database we can determine possible camera and pointing depending bias effects
4. Bias Effects

- Brightness distribution depending on the radiant-boresight distance
- Possible consequence: mass index of streams varies during the night (?)
5.1 Summary

- Database with over 12,000 meteor orbits
 - Orbital elements in ECLIPJ2000 and Earth-centric coordinates
 - Detection parameters (altitude, angular distance, radiant, velocity, …)
- Database: SQLite
 - No server needed
 - One file
 - Several programming languages understand the format
5.2 Outlook

- Analysis of:
 - IDPs
 - ISDs (Hyperbolic Particles)
 - Earth-bound particles
- Identification of source regions (streams, sporadics), mass index → and comparison with e.g. the IMEX model (R. H. Soja's presentation at 10.00 am)
- Unbiasing of the dataset
/1/ http://www.rssd.esa.int/index.php?project=METEOR&page=Index