Detailed flow modeling of meteor entry at low altitudes

B. Dias A. Turchi J.B. Scoggins T. Magin

Aeronautics and Aerospace Department

Meteoroids 2016 06-10 June 2016, ESTEC, Noordwijk

The meteor phenomena ... inspiration for space exploration

Artistic View Meteor [MidnightWatcher's]

50 -100 tonnes of meteor enter in the earth's atmosphere per day

- Velocity : 11.2 72.5 km/s
- **Composition**: FeO; MgO; Ca; SiO₂, ...
- Size: radius 1 μm 10 m

Artistic illustration of the Apollo's re-entry (NASA)

Meteor ablation source of inspiration for ablative heat shields

- Velocity : 7.9 14 km/s
- Composition TPS: C(gr), SiO₂, C₆H₅-OH
- **Size**: radius 0.5 m 2 m

Detection of meteors by the Belgian Institute for Space Aeronomy

The purpose of the meteor detection:

What is the incoming meteor flux? Is it <u>50 or 100 tonnes</u> per day?

How can the ablation products influence the composition of the upper atmosphere?

Efforts made to detect meteors:

 Belgian RAdio Meteor Stations (BRAMS¹), uses radio stations all over Belgium

 Detect the meteor trail using radio waves (Forward Scattering technique)

¹ http://brams.aeronomie.be/

Geometry of specular radio reflections (BRAMS)

How does BRAMS work?

Ionized trail reflection from multiple stations: velocity and trajectory of the meteor **but not the size!!**

Objectives

Detailed flow analysis during a meteor entry based on a aerospace engineering approach

Focus of the study:

- Continuum flow
- Single fragment meteor
- Geometry: sphere
- Forward stagnation streamline

• Flow field Modeling

• Gas-surface interaction modeling for meteors

• Numerical tools & results

• Conclusion and Future Work

Outline

• Flow field modeling

Gas-surface interaction modeling for meteors

• Numerical tools & results

Conclusion and Future Work

- High entry velocity (11.2 –72.5 km/s)
- High temperatures (*e.g.* 120,000 K): thermal non-equilibrium effects
- Complex chemical reactions (e.g. dissociation and ionization)
- High radiative field: computational expensive

- High entry velocity (11.2 –72.5 km/s)
- High temperatures (e.g. 120,000 K): complex thermodynamic properties
- Complex chemical reactions (e.g. dissociation and ionization)
- High radiative field: computational expensive

Hybrid Statistical Narrow Band (HSNB) method¹

- Accurate description
- Low CPU cost for coupling
- Atomic line treated by Line-by-Line method

Assumptions:

- Atmospheric Gas reactions: non equilibrium
- Ablations products: frozen
- Only air radiation mechanisms considered

- High entry velocity (11.2 –72.5 km/s)
- High temperatures (e.g. 120,000 K): complex thermodynamic properties
- Complex chemical reactions (e.g. dissociation and ionization)
- High radiative field: computational expensive

Hybrid Statistical Narrow Band (HSNB) method¹

- Accurate description
- Low CPU cost for coupling
- Atomic line treated by Line-by-Line method

¹ Soucasse et al, JQSRT (2016)

• Gas-surface interaction modeling for meteors

Numerical tools & results

Conclusion and Future Work

Ablation Model Surface Mass Balance (SMB)

Mass removal due to evaporation :

• Species i mass balance (O₂, N₂, ..., FeO, Fe, SiO₂, MgO, ...):

$$J_{i,w} + \sum_{r=1}^{N_r} \omega_i^r = (\rho v)_w y_{i,w} \quad i=1,...,N_s$$
(1)

Mass removal due to mechanical forces :

• Tangential velocity¹:

$$u = \tau_{flow/melt} \int_{0}^{\delta} \frac{dr}{\mu(T)} + \frac{\partial P}{\partial \theta} \int_{flow/melt}^{\delta} \frac{r}{\mu(T)} dr$$

¹ Bethe et al, Journal of the Aerospace Sciences Vol.26, No.6 (1959)

Ablation Model Surface Mass Balance (SMB)

Mass removal due to evaporation :

• Elements k mass balance (O, N, ..., Fe, Si, Mg, ...):

$$\sum_{i=1}^{N_s} \sigma_{i,k} \frac{M_k}{M_i} (1) \Longrightarrow J_{i,k} + \dot{m}_{evap} \ y_{k,s} = (\rho v)_w \ y_{k,w} \quad k=1,...,\epsilon$$

Mass removal due to mechanical forces :

• Tangential velocity:

$$u = \tau_{flow/melt} \int_{0}^{\delta} \frac{dr}{\mu(T)} + \frac{\partial P}{\partial \theta} \int_{flow/melt}^{\delta} \frac{r}{\mu(T)} dr$$

Ablation Model Surface Mass Balance (SMB)

Mass removal due to evaporation :

• evaporation mass blowing rate, *m*:

$$\dot{m}_{evap} = \frac{J_{i,k}}{(y_{k,w} - y_{k,s})}$$

- $y_{k,w}$: gaseous mixture at the wall computed by chemical equilibrium
- J_{i,k}: elemental mass diffusion computed by CFD

Mass removal due to mechanical forces :

• mass removal :

$$\dot{m}_{melt} = \rho_{melt} u \delta$$

Ablation Model Surface Energy Balance (SEB)

• Energy Balance:

$$\lambda \nabla T_{w} + \sum_{i=1}^{N_{s}} h_{i} \rho_{i} V_{i} + (\dot{m}_{evap} + \dot{m}_{melt}) h_{c} + q_{rad,in} = q_{rad,out} + \dot{m}_{evap} h_{w} + k \frac{\partial T}{\partial r} + \dot{m}_{melt} h_{c}$$

• Flow field Modeling

Gas-surface interaction modeling for meteors

• Numerical tools & results

Conclusion and Future Work

Meteor ablation flow solver

¹ Munafò et al, Phys. Fluids 26, 097102 (2014)

² Scoggins et al, AIAA 2014-2966 (2014)

³ Scoggins et al, Combust. Flame 162(12):4514-4522 (2015)

Meteor ablation material solver

1D in spherical coordinates Finite difference method Unsteady solver Expicit time integration $\rho c_{p}(\mathbf{T}) \frac{\partial T}{\partial t} = \frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} k \frac{\partial T}{\partial r} \right)$

Surface energy balance

Flow/ material solver coupling strategy

Simulation conditions:

- Meteor composition in the atmosphere:
 - Simplify Ordinary Chondrite (SiO₂: 0.65, MgO: 0.35) meteor, 1 cm radius
- Entry velocity: 15 km/s
- Altitude: 60 to 50 km

Explicit coupling approach:

Flow field at 60 km

Material response from 60 to 50 km (temperature)

Material response from 60 to 50 km (evaporation and melting front)

Animation of moving fronts

Melt and evaporation fronts

Flow field at 50 km

Gas-surface interaction modeling for meteors

• Flow field Modeling

Numerical tools & results

• Conclusion and Future Work

Conclusion

- Tools developed at VKI for spacecraft entries have been adapted and applied to meteor entry applications:
 - The study of radiation has been made with the HSNB method
 - The ablative boundary condition was developed with an approach similar to re-entry vehicles
 - The material and flow solver were coupled through an explicit procedure

- Important results have been obtained using engineering tools:
 - The initial conditions for the flow solver are very important
 - More trajectory points are needed between 60 and 50 km for the solver coupling
 - The melting layer remains very thin leading to a small mass removal
 - The major source of mass lost is through evaporation
 - During intensive evaporation the major source of heat flux is coming from the radiation

On-going work

• Experimental studies of real meteors in the Plasmatron¹

• Study of the meteor ablation in the Argo solver² and comparison with experimental results

• Development of DSMC tools for higher altitudes (rarefied regimes)

¹ Zavalan, VKI RM (2016)
² Schrooyen, PhD thesis (2016)

Detailed flow modeling of meteor entry at low altitudes

B. Dias A. Turchi J.B. Scoggins T. Magin

Aeronautics and Aerospace Department

t:

Acknowledgment:

- Federico Bariselli
- Aldo Frezzotti
- Florentina Luiza Zavalan
- the Belgian Research Action through Interdisciplinary Networks (BRAIN) for the METRO: Meteor TRajectories and Origins project

VKI Plasmatron Facility

Plasmatron Facility

Gases: *Air*, *N*₂, *CO*₂, *Ar* Power: 1.2 MW Temperature: up to 10000 K Heat-flux:

- Standard configuration 90 kW/m² – 3 MW/m²
- Subsonic accelerated nozzle up to ~ 8 MW/m²
- Supersonic nozzle up to ~ 16 MW/m²

Pressure: 1000 Pa – 22000 Pa

Experimental setup for testing meteorites

Experimental setup (B. Helber)

Description of the sample holders

Figure 6. Hemispheric holder configuration

	+	_
Cork	good insulator	pollution
Graphite	less pollution	conductor

Basalt sample fixed in cork holder

Basalt sample fixed in graphite holder

Plasmatron test with basalt (1 MW/m², 220 mbar)

Surface temperature

Plasmatron test with ordinary chondrite (1 MW/m², 220 mbar)

Surface temperature

Meteor ablation flow solver

- ¹ *Munafò et al*, Phys. Fluids 26, 097102 (2014) ² Scoggins et al, AIAA 2014-2966 (2014)
- ³ Scoggins et al, Combust. Flame 162(12):4514-4522 (2015)

- Stagnation-Line Code CFD Solver¹ 1D Stagnation-Line solver in spherical coordinates Cell-centered finite volume Roe's Riemann solver Fully implicit time-integration $\frac{\partial}{\partial t}\mathbf{U} + \frac{\partial}{\partial r}\mathbf{F}^{inv} + \frac{\partial}{\partial r}\mathbf{F}^{vis} + \frac{\mathbf{G}^{inv} + \mathbf{G}^{vis}}{r} = \mathbf{S}$
- Thermodynamic properties : RRHO model
- Transport properties : rigorous Chapman-Enskog expansion derived from Kinetic Theory
- Air chemistry : Arrhenius law (reaction rates obtained from *Park* et al, J Thermophys Heat Tr Vol.15, No.1 (2001))
- <u>Multiphase Equilibrium Solver</u>: minimization Gibbs free energy³

Comparison flow w/o ablation

A surface composed by multiple constituents

Classification	Composition	Elemental composition
	SiO ₂ : 0.606	Si: 0.232
Simplify Ordinary Chondrite	MgO: 0.394	Mg: 0.152
		O: 0.616
	Meteor surface properties	

How to compute $y_{k,w}$ for a multi element surface?¹

Multiphase Equilibrium solver²

- Multiphase Gibbs function continuation (MPGFC)³
- Impose any linear constraint to the system:

$$\frac{x_{Si}}{x_{Mg}} = const$$

¹ First addressed by *Milos et al*, AIAA 97-0141 (1997)

² Developed by *Scoggins et al*, Combust. Flame 2015

³ Extension Gibbs Function Continuation(GFC) by *Pope et al*, FDA 03-02 (2003)

Multi species surface equilibrium

Gaseous Elemental mole fraction vs Temperature, 0.09 atm;

— constrained, --- unconstrained equilibrium

Lets analyze the flow with ablation products using Mutation⁺⁺...

unconstrained elemental composition:

- N: 0.151
- 0: 0.566
- Mg: 0.03
- Si: 0.244

constrained elemental composition:

- N: 0.2740
- 0: 0.4752
- Mg: 0.0989
- Si: 0.1517

Thermodynamic properties Mutation⁺⁺ unconstrained vs constrained equilibrium

— constrained, — unconstrained equilibrium (Mutation⁺⁺)

Transport properties Mutation⁺⁺...

Dynamic viscosity, 0.09 atm

Temperature along stagnation streamline

Translational temperature —— and internal temperature – –

Composition along stagnation streamline

Species diffusion

To summarize the ablation properties:

r = 1 cm $\rho = 2800 \text{ kg/m}^3$

 $\dot{m} = 9.54 \text{ kg/m}^2/\text{s} \rightarrow \text{mass lost} = 11.9 \text{ g/s}$

To summarize the ablation properties:

r = 1 cm $\rho = 2800 \text{ kg/m}^3$

 $\dot{m} = 9.54 \text{ kg/m}^2/\text{s} \rightarrow \text{mass lost} = 11.9 \text{ g/s}$ Meteor