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The meteor phenomena … inspiration for space exploration

50 -100 tonnes of meteor
enter in the earth’s atmosphere per day

 Velocity : 11.2 - 72.5 km/s
 Composition: FeO; MgO; Ca; SiO2, …
 Size: radius 1 µm – 10 m

Artistic View Meteor [MidnightWatcher’s]
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Artistic illustration of the Apollo’s re-entry (NASA)

Meteor ablation source of inspiration
for ablative heat shields 

 Velocity : 7.9 - 14 km/s
 Composition TPS: C(gr), SiO2, C6H5-OH
 Size: radius 0.5 m – 2 m



Detection of meteors by the Belgian Institute for Space Aeronomy

What is the incoming meteor flux? Is it 50 or 100 tonnes per day? 

How can the ablation products influence the composition of the  upper atmosphere? 

The purpose of the meteor detection: 

 Belgian RAdio Meteor Stations (BRAMS1), 
uses radio stations all over Belgium

 Detect the meteor trail using radio waves
(Forward Scattering technique)

Efforts made to detect meteors: 

Geometry of specular radio reflections (BRAMS)
2

1 http://brams.aeronomie.be/



How does BRAMS work? 

Transmitter Receiver 

Post-processing

Ionized trail reflection from multiple stations:
velocity and trajectory of the meteor but not the size!! 3



Objectives
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Detailed flow analysis during a meteor entry based on a 
aerospace engineering approach

Focus of the study:
• Continuum flow

• Single fragment meteor

• Geometry: sphere

• Forward stagnation streamline



Outline

• Flow field Modeling

• Gas-surface interaction modeling for meteors

• Numerical tools & results

• Conclusion and Future Work



Outline

• Flow field modeling

• Gas-surface interaction modeling for meteors

• Numerical tools & results

• Conclusion and Future Work



Flow field modeling 

 High entry velocity (11.2 –72.5 km/s)
 High temperatures (e.g. 120,000 K): thermal non-equilibrium effects
 Complex chemical reactions (e.g. dissociation and ionization) 
 High radiative field: computational expensive

1 Soucasse et al, JQSRT (2016) 5



Flow field modeling

Hybrid Statistical Narrow Band (HSNB) method1

 Accurate description
 Low CPU cost for coupling 
 Atomic line treated by Line-by-Line method 
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Flow field modeling
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 High entry velocity (11.2 –72.5 km/s)
 High temperatures (e.g. 120,000 K): complex thermodynamic properties
 Complex chemical reactions (e.g. dissociation and ionization) 
 High radiative field: computational expensive

Assumptions:
• Atmospheric Gas reactions: non equilibrium

• Ablations products: frozen

• Only air radiation mechanisms considered

1 Soucasse et al, JQSRT (2016)
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• Species i mass balance ( O2, N2, …, FeO, Fe, SiO2, MgO, …):

Ablation Model Surface Mass Balance (SMB)
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Mass removal due to evaporation : Mass removal due to mechanical forces :
• Tangential velocity1:

1 Bethe et al, Journal of the Aerospace Sciences Vol.26, No.6 (1959)
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Ablation Model Surface Mass Balance (SMB)
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Mass removal due to evaporation : Mass removal due to mechanical forces :
• Tangential velocity:
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• Elements k mass balance ( O, N, …, Fe, Si, Mg, …):
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Ablation Model Surface Mass Balance (SMB)
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Mass removal due to evaporation : Mass removal due to mechanical forces :
• mass removal :

melt meltm uρ δ=

• evaporation mass blowing rate, �̇�𝑚:
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• yk,w :  gaseous mixture at the wall computed by chemical equilibrium
• Ji,k : elemental mass diffusion computed by CFD

+
Total mass removal



• Energy Balance:

Ablation Model Surface Energy Balance (SEB)
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Meteor ablation flow solver
Stagnation-Line Code CFD Solver 1

 1D Stagnation-Line solver in spherical coordinates
 Cell-centered finite volume
 Roe’s Riemann solver
 Fully implicit time-integration

Mutation++ library 2 

 Thermodynamic properties 
 Transport properties
 Air chemistry 
 Multiphase Equilibrium Solver31 Munafò et al, Phys. Fluids 26, 097102 (2014)

2 Scoggins et al, AIAA 2014-2966 (2014)
3 Scoggins et al, Combust. Flame 162(12):4514-4522 (2015)
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Surface mass balance evaporation coupled



Meteor ablation material solver
Melting material solver

 1D in spherical coordinates
 Finite difference method
 Unsteady solver 
 Expicit time integration
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Variable thermodynamic properties:
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melting removal



Flow/ material solver coupling strategy 

Simulation conditions:

 Meteor composition in the atmosphere:

‒ Simplify Ordinary Chondrite (SiO2: 0.65, MgO: 0.35) meteor, 1 cm radius

 Entry velocity: 15 km/s

 Altitude: 60 to 50 km
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Initial 
conditions

Flow Solver
60 km

Melting material solver
from 60 to 50 km

Flow Solver
50 km

Explicit coupling approach:

flow radq q+

evapm
wallT

new
radius

0 0.6 s



3783wallT K=

20.108 /flow MWq m= 28.527 /rad MWq m=

23.895 kg/m /evapm s=

+
Total heat flux

Flow field at 60 km
Temperature along stagnation streamline Species diffusion along stagnation streamline
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t = 0, …. ,  0.6 s

Surface recession 
of 0.8 mm 

approaching steady state

no increase of temperature in the core

Material response from 60 to 50 km (temperature)

Temperature distribution along the material Temperature at the surface and at the core
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constant 0.1 mm melting layer

20.03354 kg/ /mmeltm s=
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Material response from 60 to 50 km (evaporation and melting front)

Animation of moving fronts Melt and evaporation fronts




3368wallT K=

20.262 /flow MWq m= 22.415 /rad MWq m=

28.934 kg/m /evapm s=

+
Total heat flux

Flow field at 50 km
Temperature along stagnation streamline Species diffusion along stagnation streamline
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Conclusion

 Tools developed at VKI for spacecraft entries  have been 
adapted and applied to meteor entry applications:

• The study of radiation has been made with the HSNB method

• The ablative boundary condition was developed with an approach similar to re-entry vehicles

• The material and flow solver were coupled through an explicit procedure

 Important results have been obtained using engineering tools:

• The initial conditions for the flow solver are very important

• More trajectory points are needed between 60 and 50 km for the solver coupling

• The melting layer remains very thin leading to a small mass removal 

• The major source of mass lost is through evaporation

• During intensive evaporation the major source of heat flux is coming from the radiation 
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On-going work

• Experimental studies of real meteors in the Plasmatron1

• Study of the meteor ablation in the Argo solver2

and comparison with experimental results
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• Development of DSMC tools for
higher altitudes (rarefied regimes)

1 Zavalan, VKI RM (2016)
2 Schrooyen, PhD thesis (2016)
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VKI Plasmatron Facility

Plasmatron Facility

Gases: 𝐴𝐴𝐴𝐴𝐴𝐴, 𝑁𝑁2, 𝐶𝐶𝐶𝐶2, 𝐴𝐴𝐴𝐴
Power: 1.2 MW
Temperature: up to 10000 K
Heat-flux:
• Standard configuration

90 kW/m² – 3 MW/m² 
• Subsonic accelerated nozzle

up to ~ 8 MW/m² 
• Supersonic nozzle

up to ~ 16 MW/m² 
Pressure: 1000 Pa – 22000 Pa

Presenter
Presentation Notes




Experimental setup for testing meteorites

Experimental setup (B. Helber)

recording the tests

back surface 
temperature

ablation products

surface temperature

surface radiance



Description of the sample holders

Figure 6. Hemispheric holder configuration

+ –
Cork good insulator pollution
Graphite less pollution conductor

Basalt sample fixed in cork holder

Basalt sample fixed in graphite holder



Plasmatron test with basalt (1 MW/m2, 220 mbar)

Surface temperatureHigh resolution camera 





Plasmatron test with ordinary chondrite (1 MW/m2, 220 mbar)

High resolution camera Surface temperature





Meteor ablation flow solver
Stagnation-Line Code CFD Solver 1

 1D Stagnation-Line solver in spherical coordinates
 Cell-centered finite volume
 Roe’s Riemann solver
 Fully implicit time-integration

Mutation++ library 2 

 Thermodynamic properties : RRHO model
 Transport properties : rigorous Chapman-Enskog expansion 

derived from Kinetic Theory
 Air chemistry : Arrhenius law (reaction rates obtained from Park 

et al, J Thermophys Heat Tr Vol.15, No.1 (2001))
 Multiphase Equilibrium Solver : minimization Gibbs free energy31 Munafò et al, Phys. Fluids 26, 097102 (2014)

2 Scoggins et al, AIAA 2014-2966 (2014)
3 Scoggins et al, Combust. Flame 162(12):4514-4522 (2015)
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Surface mass balance evaporation



2121.06 /flow MWq m=

Comparison flow w/o ablation

Without ablation: With ablation:
20.108 /flowq MW m=

shock 
displacement



A surface composed by multiple constituents
Classification Composition Elemental composition

Simplify
Ordinary Chondrite

SiO2: 0.606 Si:    0.232

MgO: 0.394 Mg: 0.152

O:   0.616

Meteor surface properties

How to compute yk,w for a multi element surface?1

1 First addressed by Milos et al, AIAA 97-0141 (1997)
2 Developed by Scoggins et al, Combust. Flame 2015
3 Extension Gibbs Function Continuation(GFC) by Pope et al, FDA 03-02 (2003)

Multiphase Equilibrium solver2

 Multiphase Gibbs function continuation (MPGFC)3

 Impose any linear constraint to the system:
𝑥𝑥𝑆𝑆𝑆𝑆
𝑥𝑥𝑀𝑀𝑀𝑀

= 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
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Multi species surface equilibrium
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Lets analyze the flow with ablation products using Mutation++...

unconstrained elemental composition: 

• N :   0.151
• O:    0.566
• Mg: 0.03
• Si:    0.244

constrained elemental composition: 

• N :   0.2740
• O:    0.4752
• Mg: 0.0989
• Si:    0.1517



Thermodynamic properties Mutation++ unconstrained vs constrained 
equilibrium

Gases equilibrium composition, 0.09 atm Specific heat at constant pressure, 0.09 atm

constrained,          unconstrained equilibrium (Mutation++)



Transport properties Mutation++...

constrained,          unconstrained equilibrium (Mutation++)

Dynamic viscosity, 0.09 atm



Temperature along stagnation streamline
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Composition along stagnation streamline
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To summarize the ablation properties:

Mass
11.7 g

r = 1 cm
32800 kg/mρ =

29.54 kg/m /s  mass lost = 11.9 g/sm = →

Meteor
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