Towards a theoretical determination of the geographical distribution of meteoroids impacts on Earth

> Jorge I. Zuluaga* & Mario Sucerquia Solar, Earth and Planetary Physics Group, SEAP Universidad de Antioquia

> > * jorge.zuluaga@udea.edu.co

Meteoroids 2016 6-10 June, Noordwijk (NL)

Are impacts on Earth spatially (and/or temporarily) Uniform?

Jorge I. Zuluaga* & Mario Sucerquia Solar, Earth and Planetary Physics Group, SEAP Universidad de Antioquia

* jorge.zuluaga@udea.edu.co

Meteoroids 2016 5-10 June, Noordwijk (NL)

Where could be the next Chelyabinsk?

Jorge I. Zuluaga* & Mario Sucerquia Solar, Earth and Planetary Physics Group, SEAP Universidad de Antioquia

* jorge.zuluaga@udea.edu.co

Meteoroids 2016 5-10 June, Noordwijk (NL)

30 Junio, 1908, ~ 7:14 a.m. LMT

15 February, 2013, ~ 9:20 a.m. LMT

Where did they happen?...

Probability 2 independent events (similar type) ~2,400 km away (uniform distribution) **p ~ 0.8%**

Probability of having event pairs separated by more than 2,400 km after N impacts is $P = (1-p)^N$ Expected number of events before having at least 1 spatial coincidence: $\langle N \rangle = 1/p \sim 100$

Assuming a mean periodicity of ~40 years for Chelyabinsk-like events we need to wait ~40,000 years to see similar spatial coincidence

Are impacts uniformly distributed on Earth's surface?

Impacts observed distribution

Bolide events 1994-2013

(Small asteroids that disintegrated in the Earth's atmosphere)

Biases & Caveats:

- Large fireballs
- Low rate events

Impacts observed distribution

Meteor & Meteorites

Biases & Caveats:

- Continents
- Populated & Developed areas
- Mostly nocturnal events
- Large meteoroids

Impacts observed distribution

Large Craters

Credits: Ludovic Ferriere

Data Source: http://www.meteorimpactonearth.com/meteorite.html

Zuluaga & Sucerquia, jorge.zuluaga@udea.edu.co Meteoroids 2016

Biases & Caveats:

- Very large impacts
- Continental areas
- Geological conditions
- Low weathering areas

Can we determine theoretically the distribution of impacts? (regardless impactor size)

Test Particle Integration

Bulk properties of the generated	
test particles and captured objects	
$N_{ m tot}$	9, 346, 396, 100
$N_{ m int}$	10,000,000
Nominal model	
$N_{\mathrm{TCF,short}}$	209,917
$N_{\mathrm{TCF,long}}$	23,771
$N_{\rm TCO}$	18,096
\bar{L}_{TC}	$(62.2 \pm 1.3) \mathrm{d}$
$\bar{ au}_{ m TC}$	(0.383 ± 0.059) rev
$\bar{L}_{ m TCO}$	$(286 \pm 18) d$
$ar{ au}_{ m TCO}$	(2.88 ± 0.82) rev
Fraction of TCOs wit	h
$\tau_{\rm TCO}>2.88{ m rev}$	11%
$\tau_{\rm TCO} > 5 {\rm rev}$	3.4%
$\tau_{ m TCO} > 50 { m rev}$	0.1%
$_{\rm TCO}>271{ m d}$	26%
$_{\rm TCO}>365{ m d}$	15%
$_{ m TCO}>3650{ m d}$	0.1%
Barycentric model	
$N_{\mathrm{TCF,short}}$	320,748
$N_{ m TCF, long}$	34,843
$N_{\rm TCO}$	4,494
$\bar{L}_{ m TC}$	$(53.76 \pm 0.11) \mathrm{d}$
$\bar{ au}_{ m TC}$	(0.21751 ± 0.00037) rev
$\bar{L}_{ m TCO}$	$(334.6 \pm 1.7) \mathrm{d}$
$\bar{\tau}_{\rm TCO}$	(1.1280 ± 0.0019) rev

Delle man outline of the momented

Solar, EArth & Planetary Physics

Test Particle Integration

Caveats:

- Low efficiency (many TPs a few impacts)
- Partial covering of the configuration space.
- Sensitive to numerical integration precision

Granvik, Vaubaillon & Jedicke (2012)

Ray Tracing Algorithm

Meteoroids 2016

Ray Tracing Algorithm

Credit: Rikk the Gaijin

Gravitational Ray Tracing (GRT) Surface Map Earth Surface Image **NEOs** population Camera Light Source Impact Trajectory View Ray Original Shadow Ray trajectory Solar System gravitational field Seene Object Earth's Impact Crater Sites

GRT: initial conditions

Sampling the Earth Surface

GRT: Initial conditions Distribution of 223 geographical sites with minimum separation of 10 degrees

GRT: Initial conditions

Elevation

We generate local configuration: Azimuth (A), elevation (a), impact velocity (v)

Integration convert local configuration (A,a,v) to orbital configuration (q,e,i)

Integration characteristics:

- Gragg-Burlish-Stoer Method
- Time of integration: Max (2 years, 2 Orbital Period)
- All 8 planets + Moon
- Planetary positions: JPL Ephemeris DE430

Precission test with the moon as a test particle

Integration characteristics:

- Gragg-Burlish-Stoer Method
- Time of integration: Max (2 years, 2 Orbital Period)
- All 8 planets + Moon
- Planetary positions: JPL Ephemeris DE430

Solar, EArth & Planetary Physics

Solar, EArth & Planetary Physics

Le Feuvre & Wieczorek (2008)

Meteoroids 2016

Marginal distributions (14291 NEOs)

"3D" Distribution

Local volume

Weighted Sum

Price, 2012

For distances in the q-e-i space we use a **simplified Drummond metric** (Drummond, 1981):

$$D_D^2 \equiv |\vec{x} - \vec{x}_i|^2 = \left(\frac{e - e_i}{e + e_i}\right)^2 + \left(\frac{q - q_i}{q + q_i}\right)^2 + \left(\frac{i - i_i}{180^\circ}\right)^2$$

Source intensity (number density) around a given "ray" footprint **x**:(q,e,i) is given by an SPH-like formula (Price ,2012):

$$n(\vec{x}) = \sum_{i} W(|\vec{x} - \vec{x}_i|, h)$$

After experiencing with different scale lengths, we find that h = 0.1 better fits our purposes.

Probability of having an impact with parameters A, a, v which is associated with a ray terminal configuration $\mathbf{x} = (q, e, i)$ is given by:

$$P(A_j, a_j, v_j) \sim n(\vec{x}_j)$$

The total relative probability of having an impact on a given site is approximated as:

 $P(\text{site}) \sim \sum_{i} P(A_j, a_j, v_j)$

* biased

GRT: Preliminary* results

15 February 2013, 03:20 UTC

Source distribution for 'chelyabinsk'

15 February 2013, 03:20 UTC

Source distribution for 'noordwijk'

15 February 2013, 03:20 UTC

Source distribution for 'hawaii'

Solar, EArth & Planetary Physics

15 February 2013, 03:20 UTC

2.0 2.0 0.8 1.5 1.5 0.6 bo 1.0 <u>ව</u> 1.0 0.4 0.5 0.5 0.2 0.0 0.0 0.2 0.4 0.8 1.0 0.2 0.4 0.8 1.0 0.2 0.6 0.8 0.6 0.6 0.4 q (AU) q (AU) е

Source distribution for 'chelyabinsk'

Ð

15 February 2013, 03:20 UTC

Source distribution for 'madagascar'

Solar, EArth & Planetary Physics

astitute of Physics / University of Antion

15 February 2013, 03:20 UTC

Source distribution for 'mcmurdo'

15 February 2013, 03:20 UTC

Source distribution for 'medellin'

15 December 2013, 03:20 UTC

Source distribution for 'medellin-december'

15 February 2013, 03:20 UTC

data/ensamble-20130215032034

data/ensamble-20130215152034

An analogy (with cosmology) The Dipole component of the CMBR

An analogy (with cosmology) We don't want a trivial dipole, we want a signal!

data/ensamble-20130215032034

Solar, EArth & Planetary Physics

GRT: Initial conditions

Elevation

We generate local configuration: Azimuth (A), elevation (a), impact velocity (v)

data/ensamble-20130215032034

data/ensamble-20130215152034

Summary and Conclusions

• We [adapted, reinvented, coined the name] of a (new) method to calculate the spatial/temporal distribution of impacts on Earth

Gravitational Ray Tracing

- Pros: Complex gravitational settings, efficiency.
- Contras: Computationally intensive.
- Range of problems where it can be applied: lunar impacts, rate and differential flux of cratering, Jupiter impacts, temporarily captured objects
- Stay tunned!: <u>http://github.com/seap-udea</u>

Questions?

jorge.zuluaga@udea.edu.co

Don't forget to cite us: Zuluaga & Sucerquia (2016)

