

# **XMM-Newton Timing Monitoring**

Antonio Martin Carrillo Tutor: Marcus Kirsch July 24, 2006



XMM-Newton Antonio Martin Carrillo

1





>XMM-Newton
>Pulsars
>Crab pulsar
>Relative time accuracy
χ<sup>2</sup> epoch folding
>Conclusions
>Next steps



#### XMM-Newton



- Launched in December 1999
- 3 independent CCD cameras called EPIC (European Photon Imaging Camera)
- 2MOS and 1PN
- Several observing modes with different time resolution







## XMM-Newton

- We want to study objects with high spining velocities
- We need a camera with a really good time resolution  $\longrightarrow$  **EPIC PN**



Time Res: 0.03 ms

Time Res: 7  $\mu$ s





#### **Pulsars**

- Neutron stars with high spining velocities and strong magnetic fields
- Radius ~ 10 km
- Density ~  $4x10^{14}$  gcm<sup>-3</sup>
- Temperature  $\sim 10^{10}$  K
- Magnetic field ~  $10^{9-12}$  G







### Crab pulsar

- Discovered at 1968 in radio
- The most studied pulsar in every wavelength
- Very bright source with a stable pulse
- Distance: 2200 pc
- Period of 33 ms
- Two observations per year with XMM-Newton: spring and autumn





# Relative time accuracy

esa EPIC

- Procedure to obtain the relative time accuracy
  - 1. Choose the correct EPIC PN mode
  - 2. Produce the event file
  - 3. Do the barycentric correction
  - 4. Extrapolate the radio data observation
  - 5. Epoch folding to one phase
  - 6. Search for the period in X-ray using  $\chi^2$  test
  - 7. Obtain the  $\chi^2$  plot, the X-ray period and the  $\Delta P/P$

$$\frac{\Delta P}{P} = \frac{P_R - P_X}{P_R} \qquad \text{Relative error}$$



# Epoch folding







# Epoch folding

- Lightcurve of the Crab
- Range between 0.5-10 keV
- Pulse profile presents two maximums









esa

EPIC





#### Relative time accuracy using Crab

• Representation of the relative error vs epoch (left) and observational time (right)





#### esa ESAC EPIC

#### Error approximation

- $\Delta P = P_R P_X \rightarrow \text{error of our observation}$
- Consider that the radio period has no error
- The  $\Delta P$  comes from the error of the X-ray period
- $\chi^2$  distribution can be approximated by a triangle



• Compare the real and approximated errors of the periods





# Preliminary results

• Comparison of expectable relative error and real values for different pulsars





• The relative time accuracy for the Crab with the new observations analysed is:

$$\frac{\Delta P}{P} < 3 \times 10^{-8}$$

• As shown in the previous plots, we can say that the relative error does not depends on the Earth's orbital phase.



XMM-Newton Antonio Martin Carrillo

esa

EPIC





- Monte Carlo simulation to produce the errors of the periods
- Calibration of the factor for the expectable errors of the periods
- Further analysis of other pulsars

